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Abstract

In this supplementary material, we provide detailed
derivations of other types of rolling shutter essential ma-
trices as well as their linear algorithms.

1. Deriving the 7 x 7 rolling shutter essential
matrix for uniform RS camera

Under the uniform rolling shutter camera model, the
scanline coplanarity constraint can be expressed as:
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where R,/ defines the relative rotation while t,  + =

t —&—u;dg —u;R,, ,-d1 defines the relative translation. where

R defines the rotation between the central row of the second
frame to the central row of the first row.
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Expanding this equation with the aid of the small rotation
approximation results in
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By defining the following auxiliary variables,

Eq = [t]xR7
E; = R[d1]x + [t|xR[wW1]x,
E; = [dQ]xR+[ }X[WQ]X ,
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we arrive that,
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Finally we obtain:
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where
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This gives a 7 x 7 uniform RS essential matrix F,
whose elements are functions of the 18 unknowns (i.e.
{R,t,wi,ws,dy,ds}). Also note the induced epipolar
curves are cubic.

In total there are 45 homogeneous variables, thus min-
imum 44 points in general configuration are sufficient to
solve this 7 x 7 RS essential matrix.

1.1. Detail of the linear 44-point solver

For the uniform rolling shutter relative pose problem, we
first solve for the uniform rolling shutter essential matrix
F € R7 7. Then from the 45 elements in F, recover the
eight matrices E;,7 = 0,--- ,7. Finally, the relative pose
(R, t), rotational velocities w1, wo and translational veloc-
ities dy, ds are extracted from the eight matrices.

Due to its special structure, the uniform RS essential ma-
trix F' consists of 45 homogeneous variables, i.e., 44 DoF.
According to the uniform RS essential matrix Eq.-(10), by
collecting 44 correspondences, we can solve for the uniform
RS essential matrix M linearly through the singular value
decomposition (SVD).



0 0 Ei!
0 0 Eg?
—E E E® E11 E3
F = —-E7* E? —-E{* - E¥?
E;;l _ E%3 E521 _ E$3 E%l _ Ei3 _|_Egi _ E$3
EéQ E22 E%2 +Eg)2
EE];S Egg E%S +E§)3

1.2. Normalization

In solving the linear rolling shutter essential matrix F
through linear 20 point algorithm, it is important to imple-
ment a proper normalization.

Below we describe two approaches for performing
such a normalization: 1) Normalizing the image coordi-
nates data (u;,v;) and (u;,v;) in the way as described
in [1]. 2) Under the linear rolling shutter relative pose
formulation, the inputs are monomials (u?, w;v;, i, v;, 1)
and (u;?, ujv;,u;,v;,1), a better normalization should
be defined on (u?,uv;, u;,v;, ) and (u;? ulkuz,vz,l)
rather than (u;,v;) and (uj,v;). Therefore, in this
paper, we propose to normalize (u?,u;v;,u;,v;,1) and
(u;?, ujv!, ul, vl 1) in the way as in [1].
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2. Details about recovering the atomic essential
matrices from a 5 x 5 linear RS essential
matrix

Once a 5 x 5 linear RS essential matrix F' is found,
our next step is to recover the individual atomic essential
matrices Eg, E; and E;. In the main paper we derived
21 linear equations defined on the three essential matri-
ces. Because these three essential matrices contain 27 el-
ements, we need six extra constraints to solve for Eg, E;
and E,. To this end, we resort to the inherent constraints
on the standard 3 x 3 essential matrices, e.g. det(E) =0
and 2EETE — Tr(EET)E = 0, since Eg, E; and E; are
standard 3 x 3 essential matrices. Note that these non-linear
constraints generally give rise to cubic (3-order) equations.
Next we will show how to reduce them to quadratic ones.

2.1. Enforcing inherent constraints on the atomic
essential matrices

Theorem 1. A real nonzero 3 x 3 matrix E is a fundamental
matrix if and only id it satisfy the equation:

det(E) = 0. (12)

Theorem 2. A real nonzero 3 x 3 matrix E is an essential
matrix is and only if it satisfies the equation:

EE"E — 2trace(EET)E 0. (13)

621 Egl —l—E;:;ll E321 Egl T
32 EgQ —|—E§2 E§2 EgQ
_ Ezi Esis _ Elll o Egi +Eg,3 E§3 _ E%l E§’3 _ Ei’,l
—E7? —-E{* — Ef? —E7? —E7?
Bt _ E113 —|—E§1 _ E23 B2l _ g3 g3l _ Ei)’g
%2 EéZ +E§2 ESZ ESQ
223 E&S —|—E§3 ESS ESB |
(an

Theorem 3. If three essential matrices By, E1, Es consists
of a common rotation, ie., Eg = [t]xR, E; = [t1]xR,
E; = [to]xR, the column reorganized matrices F; =
iE(l)inﬂE%]’ Fy = [Eng%7E%i’ F; = [ESaE:I))vE%i are
rank deficient.

det(Fl) = 07 det(Fz) = 0, det(F3) =0. (14)

Proof. According to the definition, F; = [E}, E],E}] =
[t x R, t; x Rl ty x R!]. Therefore, all the rows of

F; are orthogonal to R!, we must have rank(F;) = 2
or det(F;) = 0. Similarly, we have det(F3) = 0 and
det(Fg) =0. O]

Note that F'1, F5 and F'3 are not necessarily an essential
matrix.

By collecting the rank deficient constraints on essen-
tial matrices Eg, E;, Es and column reorganized matrices

F,,Fs,F3. In total, we have the following 6 rank con-
straints:

rank(Eg) = rank([t]xR) = 2,
rank(E;) = rank([v1]xR) = 2,
rank(E3) = rank([v2]xR) = 2,

rank(Fy) = rank([Eg,, E E3)) =2, (15)
rank(Fy) = rank([ E%) =2,
rank(F3) = rank([Ej, EJ, E3]) = 2

By enforcing the above six constraints together with the 21
linear equations, the atomic essential matrices Eq, E; and
E> can be recovered. Besides the rank constraints, the cu-
bic equations defined on the essential matrix also constrain
Ey, E; and E5. By exploiting the special structure of these
essential matrices, we could reach the following method
which involves quadratic equations only.
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