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A. Computation of Ellipsoids

In this section, we present computation of the parameters
of ellipsoids representing occupancy of traffic participants.
For an object Oi, let Bi = [l w h] be its 3D dimensions,
where l, w and h are its length, width and height on the
ground plane, respectively. We wish to calculate the center
µi

c and spread Σi−1

c of the ellipsoid representing the occu-
pancy of Oi with respect to the camera coordinate system C
of the current frame.

Consider an object coordinate system O, which has the
same orthonormal axes as the camera coordinate system and
the origin at the projected point of the object center on the
ground plane. For an object Oi, the center µi

o and spread
Σi−1

o of the ellipsoid representing the occupancy of Oi in
the object coordinate system are expressed as

µi
o =

[
0 0 h

2

]>
, (1)

Σi−1

o =
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l2 0 0
0 4

w2 0
0 0 4

h2

 . (2)

In object coordinates, the ellipsoid equation is written as

(xt − µi
o)>Σi−1

o (xt − µi
o) = 1, (3)

where xt is a point in object coordinates. Given the rela-
tive pose of Oi in camera coordinates, we can extract the
rotation R and translation t for converting points in camera
coordinates to object coordinates and rewrite (3) as

(Rxc + t− µi
o)>Σi−1

o (Rxc + t− µi
o) = 1, (4)

where xc is a point in camera coordinates.
Let t′ = t− µi

o, then (4) becomes

x>c R>Σi−1

o Rxc + 2(R>t′)>R>Σi−1

o Rxc

+ t′>Σi−1

o t′ = 1. (5)

Next, denote Σ′i
−1

c = R>Σi−1

o R and µi
c = −R>t′, then

(5) becomes

(xc − µi
c)
>Σ′i

−1

c (xc − µi
c)− µi

c

>
Σ′i

−1

c µi
c

+ t′>Σi−1

o t′ = 1. (6)

Finally, denoting Σi−1

c =
Σ′i

−1

c

1− t′>Σi−1

o t′ + µi
c
>

Σ′i−1

c µi
c

,

we have the ellipsoid equation in camera coordinates

(xc − µi
c)
>Σi−1

c (xc − µi
c) = 1. (7)

Therefore, the center µi
c and spread Σi−1

c of the ellipsoid
representing the occupancy of Oi in camera coordinates are
expressed as

µi
c = −R>t′, (8)

Σi−1

c =
Σ′i

−1

c

1− t′>Σi−1

o t′ + µi
c
>

Σ′i−1

c µi
c

, (9)

where R, t′, Σ′i
−1

c , Σi−1

o are derived as above.

B. Other Energies for 3D Object Localization
This section provides the details of other energies, namely

dynamic and size energies (in addition to point track and
detection bounding box energies already presented in the
main paper), that are used in our localization experiment.

B.1. Dynamic energy

Dynamic energy imposes both temporal smoothness and
holonomic constraints. In particular, holonomic constraints
penalize changes in object position that are not in the direc-
tion of object orientation at the previous time step, as

E itdyn-hol = 1− ωi(t− 1) · (pi(t)− pi(t− 1)). (10)

Temporal smoothness constraints add a penalty for unsmooth
changes in object orientation and velocity over consecutive
time steps, as

E itdyn-ori = ‖ωi(t)− ωi(t− 1)‖2, (11)

E itdyn-vel = ‖(pi(t)− 2pi(t− 1)) + pi(t− 2)‖2. (12)
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The total dynamic energy is expressed as a weighted combi-
nation of holonomic and smoothness constraints

E itdyn = λdyn-holE itdyn-hol + λdyn-oriE itdyn-ori + λdyn-velE itdyn-vel,

(13)

where λdyn-hol, λdyn-ori and λdyn-vel are the weights of the
component energies.

B.2. Size energy

Size energy imposes prior knowledge on object dimen-
sions as

E itsize = (Bi − B̂)>Σ−1
B̂

(Bi − B̂), (14)

where B̂ and ΣB̂ are the mean and covariance, respectively,
of object dimensions obtained from the KITTI dataset.

C. Parameter settings

Parameter k, ku, kd λtrack λdetect λdyn λsize

Value 10 ln(49) 1 1 10 7

Table 1: Parameter settings for our experiments.
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