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1. WELDON Model

Image size I Region scale α (%) L5 size
224× 224 100 7× 7
249× 249 90 8× 8
280× 280 80 9× 9
320× 320 70 10× 10
374× 374 60 12× 12
448× 448 50 14× 14
560× 560 40 18× 18
747× 747 30 24× 24

Table 1. Proposed multi-scale CNN feature extraction networks.
Input images are rescale to IxI images, with I in the range
[224; 747]. At each scale, regions span 224 × 224 areas, so that
the region scale is α = 224/I .

2. WELDON Ranking
2.1. Notations

We detail the formulation of the WELDON ranking in-
stantiation given in Section 4 of the submitted paper, with
the assumption k = m. We use a latent structured output
ranking formulation, following [8]: our input is a set of N
training images x = {xi}, i ∈ {1;N}, with their binary la-
bels yi, and our goal is to predict a ranking matrix c ∈ C of
size N ×N providing an ordering of the training examples.
The structured output feature map of our ranking instanti-
ation, i.e. the computation of L7 from L6 (Figure 2 of the
submitted paper), is:

L7(x, c,h) =
∑
p∈P

∑
n∈N

cpnW7

[
l6phpn − l6nhnp

]
(1)

where P (resp. N ) is the set of positive (resp. negative)
examples, n′i is the number of regions for image i, and

h = {(hpn,hnp) ∈ {0, 1}n
′
p × {0, 1}n

′
n , (2)

n′
p∑

z=1

hpnz = k,

n′
n∑

z=1

hnpz = k, (p, n) ∈ P ×N}

hpn is a vector which represent the selected region for im-
age p when we consider the couple of image (p, n). l6phpn =∑n′

p

z=1 h
pn
z l6pz is the feature map of image p with the se-

lected regions hpn, where hpnz is the z-th value of vector
hpn and l6pz is the feature map of region z.

2.2. Proof of Proposition 1 of the submitted paper

In this section, we detail the proof of Proposition 1 of
the submitted paper, which generalizes [1] to top instances
[5]. Inference consists in computing model prediction, i.e.
computing ĉ:

ĉ = argmax
c∈C

L8(x, c) (3)

where L8(x, c) is given in Eq (3) of the submitted paper:
L8(x, c) = stop(L7(x, c)) + slow(L7(x, c)). We prove
that the inference is equivalent to a supervised inference,
where each image xi is represented by stop(W7L6

i) +
slow(W7L6

i). We show that the selected regions can be
predicted independently to ranking c:

L8(x, c) = stop(L7(x, c)) + slow(L7(x, c)) (4)

= max
h

∑
p∈P

∑
n∈N

cpnW7

 n′
p∑

z=1

hpnz l6pz −
n′
n∑

z′=1

hnpz′ l
6n
z′


+min

h′

∑
p∈P

∑
n∈N

cpnW7

 n′
p∑

z=1

h′
pn
z l6pz −

n′
n∑

z′=1

h′
np
z′ l6nz′


(5)

=
∑
p∈P

∑
n∈N

(
max

(hp,hn)
cpn

 n′
p∑

z=1

hpzW7l
6p
z −

n′
n∑

z′=1

hnz′W7l
6n
z′


+ min

(h′p,h′n)
cpn

 n′
p∑

z=1

h′
p
zW7l

6p
z −

n′
n∑

z′=1

h′
n
z′W7l

6n
z′

) (6)

The maximization (resp. minimization) can be decom-
posed for each term of the sum, so maximizing (resp. mini-
mizing) the sum is equivalent to maximize (resp. minimize)
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each term of the sum. Now, we analyze the predicted re-
gions with respect to cpn value.

If cpn = 1

max
(hp,hn)

 n′
p∑
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hpzW7l
6p
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n′
n∑
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hnz′W7l
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(h′p,h′n)

 n′
p∑

z=1

h′
p
zW7l

6p
z −
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n∑
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n
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z′
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6p
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n′
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p
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 (7)
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hnz′W7l
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z′


=stop(W7L6

p) + slow(W7L6
p) (8)

− (stop(W7L6
n) + slow(W7L6

n))

If cpn = −1
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−
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p) (10)
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n) + slow(W7L6

n))

We notice that the predicted regions are the same in the two
cases: the predicted regions can be fixed independently to
the value of cpn. The inference can be written as a super-
vised inference, where the region are fixed independently to
the ranking matrix c, and each image xi is represented by
stop(W7L6

i) + slow(W7L6
i).

3. Optimization - Gradient Computation

In this section, we detail some gradient computations:
soft-max, logistic regression, and ranking AP.

Soft-max The equation of the soft-max is:

L9(c) =
eL8(c)∑
c′ e

L8(c′)
(11)

The gradient is:

∂L9(c)

∂L8(c′′)
=

eL8(c)(∑
c′ e

L8(c′)
)2 δc=c′′ −

eL8(c)+L8(c′′)(∑
c′ e

L8(c′)
)2

(12)

where

δp =

{
1 if p is true
0 otherwise (13)

Logistic regression The equation of the logistic regres-
sion is:

L9(c) =
(
1 + e−yL8(c)

)−1
(14)

where y = +1 if the object is present, and y = −1 other-
wise. The gradient is:

∂L9(c)

∂L8(c)
=
−ye−yL8(c)

1 + e−yL8(c)
(15)

Ranking AP We detail the gradient of L8(c) (Section 2
in supplementary) with respect to W7:

∂L8(c)

∂W7
=
∑
p∈P

∑
n∈N

cpn

 n′
p∑

z=1

(hp+z + hp−z )l6pz

 (16)

+

 n′
n∑

z′=1

(hn+z′ + hn−z′ )l6nz′


where
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h
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hzW7l
6p
z , s.t.

n′
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z=1

hz = k (17)
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6p
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n′
p∑
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n′
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6n
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n∑

z=1

hzW7l
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Figure 1. MAP with respect to the number of top/low instances at scale α = 30%

4. Experiments

VOC 2007 [2] VOC 2007 is a multi-label dataset with
20 object classes. The models are learned on the trainval
set (∼5.000 images) and performances are evaluated on test
set (∼5.000 images). Each binary classification problem is
evaluated with AP, and the final performance is the average
of all binary performances.

VOC 2012 [3] VOC 2012 is a multi-label dataset with
20 object classes. The models are learned on the train set
(∼5.700 images) and performances are evaluated on val set
(∼5.800 images). The performance evaluation is the same
that VOC 2007.

VOC 2012 Action [3] VOC 2012 Action is a multi-label
dataset with 10 action classes. The models are learned on
the train set (∼2.000 images) and performances are evalu-
ated on val set (∼2.000 images). Bounding boxes are not
used during training or testing. The performance evaluation
is the same that VOC 2007.

COCO [6] COCO is a multi-label dataset with 80 ob-
ject classes. The models are learned on the train2014
set (∼80.000 images) and performances are evaluated on
val2014 set (∼40.000 images).

MIT67 [7] The dataset has 67 classes of cluttered indoor
scenes. We use the standard train/test split with 5360 (resp.
1340) training (resp. testing) images. The performances are
evaluated with multi-class accuracy.

15 Scene [4] The dataset has 15 classes of scenes. We use
5 random train/test splits with 1500 (resp. 2985) training
(resp. testing) images. The performances are evaluated with
multi-class accuracy.
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