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1. WELDON Model

Image size I | Region scale o (%) | Lb size
224 x 224 100 7Tx7
249 x 249 90 8§x8
280 x 280 80 9x9
320 x 320 70 10 x 10
374 x 374 60 12 x 12
448 x 448 50 14 x 14
560 x 560 40 18 x 18
AT x 747 30 24 x 24

Table 1. Proposed multi-scale CNN feature extraction networks.
Input images are rescale to Ix/ images, with [ in the range
[224;747]. At each scale, regions span 224 X 224 areas, so that
the region scale is a = 224/1.

2. WELDON Ranking
2.1. Notations

We detail the formulation of the WELDON ranking in-
stantiation given in Section 4 of the submitted paper, with
the assumption £ = m. We use a latent structured output
ranking formulation, following [8]: our input is a set of N
training images x = {x;}, ¢ € {1; N}, with their binary la-
bels y;, and our goal is to predict a ranking matrix ¢ € C of
size N x N providing an ordering of the training examples.
The structured output feature map of our ranking instanti-
ation, i.e. the computation of L7 from L6 (Figure 2 of the

submitted paper), is:
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where P (resp. N) is the set of positive (resp. negative)
examples, n is the number of regions for image 4, and

h = {(b"",h"") € {0,1}" x {0,1}", )
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hP™ is a vector which represent the selected region for im-
. . 6p
age p when we consider the couple of image (p,n). I, =

S "% hP™18P s the feature map of image p with the se-
lected regions hP", where hZ" is the z-th value of vector
hP" and 197 is the feature map of region 2.

2.2. Proof of Proposition 1 of the submitted paper

In this section, we detail the proof of Proposition 1 of
the submitted paper, which generalizes [1] to top instances
[5]. Inference consists in computing model prediction, i.e.
computing ¢:

¢ = argmax L8(x, c) 3)
ceC

where L8(x, c) is given in Eq (3) of the submitted paper:
L8(x,¢) = stop(LT(x,¢)) + s10w(LT7(x,c)). We prove
that the inference is equivalent to a supervised inference,
where each image z; is represented by stop(W7L6i) +
S10w(W7L6"). We show that the selected regions can be
predicted independently to ranking c:
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=max ) Y Wy Z homgP — Z hZPgr
pEP neEN 2'=1
+ mln Z Z cpnWr Z S N Z X N
pEP neN 2/=1
®)
";’ n;z
= n hPW 157 — R W18
> D macon| S WS oWl
pEP neN z=1 =1

+ min cpn Zh”’w 1 Zh’ W71§,”) (6)

(h/p h”’
z'=1

The maximization (resp. minimization) can be decom-
posed for each term of the sum, so maximizing (resp. mini-
mizing) the sum is equivalent to maximize (resp. minimize)



each term of the sum. Now, we analyze the predicted re-
gions with respect to ¢, value.
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We notice that the predicted regions are the same in the two
cases: the predicted regions can be fixed independently to
the value of c,,. The inference can be written as a super-
vised inference, where the region are fixed independently to
the ranking matrix c, and each image z; is represented by
Stop(W7L6") + S100 (W7L6").

3. Optimization - Gradient Computation

In this section, we detail some gradient computations:
soft-max, logistic regression, and ranking AP.

Soft-max The equation of the soft-max is:

eLS(c)
L9(c) = S, L8 (11)
The gradient is:
8L9(C) eLS(c) 5 eLS(c)—i—LS(c”)
8L8(C”) o (ZC/ eLS(c’))2 e=c” (ZC/ eLS(c’))2
(12)
where
| 1 ifpistrue
Op = { 0 otherwise (3)

Logistic regression The equation of the logistic regres-
sion is:

L9(c) = (14758 (14)

where y = +1 if the object is present, and y = —1 other-
wise. The gradient is:
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Ranking AP We detail the gradient of L8(c) (Section 2
in supplementary) with respect to W:
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Figure 1. MAP with respect to the number of top/low instances at scale o = 30%

4. Experiments

VOC 2007 [2] VOC 2007 is a multi-label dataset with
20 object classes. The models are learned on the trainval
set (~5.000 images) and performances are evaluated on fest
set (~5.000 images). Each binary classification problem is
evaluated with AP, and the final performance is the average
of all binary performances.

VOC 2012 [3] VOC 2012 is a multi-label dataset with
20 object classes. The models are learned on the frain set
(~5.700 images) and performances are evaluated on val set

(~5.800 images). The performance evaluation is the same
that VOC 2007.

VOC 2012 Action [3] VOC 2012 Action is a multi-label
dataset with 10 action classes. The models are learned on
the train set (~2.000 images) and performances are evalu-
ated on val set (~2.000 images). Bounding boxes are not
used during training or testing. The performance evaluation
is the same that VOC 2007.

COCO [6] COCO is a multi-label dataset with 80 ob-
ject classes. The models are learned on the train2014
set (~80.000 images) and performances are evaluated on
val2014 set (~40.000 images).

MIT67 [7] The dataset has 67 classes of cluttered indoor
scenes. We use the standard train/test split with 5360 (resp.
1340) training (resp. testing) images. The performances are
evaluated with multi-class accuracy.

15 Scene [4] The dataset has 15 classes of scenes. We use
5 random train/test splits with 1500 (resp. 2985) training
(resp. testing) images. The performances are evaluated with
multi-class accuracy.
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