

# A Consensus-Based Framework for Distributed Bundle Adjustment - Supplementary Material

**Theorem 4.1.** (Convergence) With  $f_1$  and  $f_2$  as in (17)-(18), let  $\{(P^{(t)}, X^{(t)})\} \subset R^{3 \times 4 \times m} \times R^{3 \times n}$  denote a sequence generated by algorithm 1. Assuming that local minimizers of (1) exists, are unique and that the scene depth  $d$  is bounded from below by  $d = P_{i3}^{(t)} \begin{bmatrix} X_i^{(t)} \\ 1 \end{bmatrix} \geq d_{\min} > 0$ ,  $i \in [1, m]$ . Then there exists a  $\mathbb{R} \ni \rho_{\min} > 0$  such that if  $\rho^{(t)} > \rho_{\min}$  (with  $t \geq T$  for some fixed  $T$ ) then Algorithm 1 is guaranteed to converge and every limit point of  $\{(P^{(t)}, X^{(t)})\}$  is a local minimizer of (1).

*Proof.* This theorem follows from theorems A.1 and A.2.  $\square$

## A. Proof of Theorem 4.1.

Let  $e_{ij} : \mathcal{Q} \times \mathbb{R}^3 \mapsto \mathbb{R}^+$  denote the residual of 3D point  $j$  in image  $i$ ,

$$\epsilon_{ij}(P_i, X_j) = w_{ij} \|u_{ij} - \pi(P_i, X_j)\|^2, \quad (27)$$

and  $g_k : \mathcal{Q}^m \times \mathbb{R}^{3 \times n}$

$$g_k(P, X) = \sum_{i \in c_k} \sum_{j=1}^n \epsilon_{ij}(P_i, X_j). \quad (28)$$

Define  $P_k : \mathbb{R}^{3 \times n} \mapsto \mathcal{Q}^{|c_k|}$  as

$$P_k(X) = \arg \min_{P \in \mathcal{Q}^{|c_k|}} \sum_{\substack{i \in c_k \\ 1 \leq j \leq n}} w_{ij} \|u_{ij} - \pi(P_i, X_j)\|^2. \quad (29)$$

With  $P_k(X) = \{P_{ik}(X)\}_{i \in c_k}$  and  $P_{ik}(X) = \begin{bmatrix} p_{1ik}(X)^T \\ p_{2ik}(X)^T \\ p_{3ik}(X)^T \end{bmatrix}$  we can write

$$\bar{g}_k(X) = g_k(P_k(X), X) = \sum_{\substack{i \in c_k \\ 1 \leq j \leq n}} \epsilon_{ij}(P_i(X), X_j) = \sum_{\substack{i \in c_k \\ 1 \leq j \leq n}} w_{ij} \|u_{ij} - \pi(P_i(X), X_j)\|_2^2. \quad (30)$$

**Lemma A.1.** If the scene depth of the resectioning problem (29) is bounded from below by  $d_{\min}$ ,

$$p_{3ik}(X)^T \begin{bmatrix} X_j \\ 1 \end{bmatrix} \geq d_{\min}, \quad j = 1, \dots, n, \quad (31)$$

and with  $P_k(X)$  unique, then,

- (i) the function  $\bar{g}_k : \mathbb{R}^{3 \times n} \mapsto \mathbb{R}$  is smooth,
- (ii)  $\bar{g}_k$  has a locally Lipschitz continuous gradient, that is,  $\exists L_k \geq 0$  such that

$$\|\nabla_X \bar{g}_k(Y_1) - \nabla_X \bar{g}_k(Y_2)\| \leq L_k \|Y_1 - Y_2\|, \quad (32)$$

- (iii) the Hessian of  $\bar{g}_k$  has eigenvalues that are bounded from below,  $\exists \lambda_k < \infty$

$$\nabla_X^2 \bar{g}_k(Y) + \lambda_k I \succ 0, \quad (33)$$

for finite  $Y, Y_1, Y_2$ .

*Proof.* The error function  $\epsilon_{ij}(P, X)$  (27) can be rewritten as

$$\epsilon_{ij}(P, X) = w_{ij} \frac{(p_1[\frac{X}{1}] - u_{ij}^x p_3[\frac{X}{1}])^2 + (p_2[\frac{X}{1}] - u_{ij}^y p_3[\frac{X}{1}])^2}{(p_3[\frac{X}{1}])^2} = w_{ij} \frac{\alpha^2 + \beta^2}{\gamma^2}, \quad (34)$$

with

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} p_1[\frac{X}{1}] - u_{ij}^x p_3[\frac{X}{1}] \\ p_2[\frac{X}{1}] - u_{ij}^y p_3[\frac{X}{1}] \\ p_3[\frac{X}{1}] \end{bmatrix}. \quad (35)$$

With the above expressions being linear in  $X$  and  $P$  respectively, (35) can then be written  $[\alpha \ \beta \ \gamma]^T = A_X \text{vec}(P) = A_P X + a_P$ . In [2] it was shown that the gradient of (27) is given by

$$\frac{\partial \epsilon_{ij}}{\partial X} = w_{ij} \frac{2}{\gamma^2} A_P^T \begin{bmatrix} \alpha \\ \beta \\ -\frac{\alpha^2 + \beta^2}{\gamma} \end{bmatrix}, \quad (36)$$

$$\frac{\partial \epsilon_{ij}}{\partial P} = w_{ij} \frac{2}{\gamma^2} A_X^T \begin{bmatrix} \alpha \\ \beta \\ -\frac{\alpha^2 + \beta^2}{\gamma} \end{bmatrix}. \quad (37)$$

As  $\gamma = (p_3^T[\frac{X}{1}]) \geq d_{\min}$  by assumption, it follows that the error function  $\epsilon_{ij}$  is smooth.

From (29) we have that

$$\frac{\partial g_k}{\partial P}(P_k(X), X) = 0. \quad (38)$$

Differentiating (30) and using (38) yields

$$\nabla_X \bar{g}_k(X) = \frac{\partial g_k}{\partial P}(P_k(X), X) \frac{\partial P}{\partial X}(X) + \frac{\partial g_k}{\partial X}(P_k(X), X) = \frac{\partial g_k}{\partial X}(P_k(X), X) = \sum_{i \in c_k} \sum_{j=1}^n \frac{\partial \epsilon_{ij}}{\partial X}(P_i(X), X_j) \in C^\infty, \quad (39)$$

proving part (i) of the lemma. This result is a special instance of the *Envelope theorem*, see [1] for more. Extending this result to hold for more specific instances where  $\mathcal{Q}$  contains additional constraints, such as Euclidean structure, is a straightforward application of more general forms of this theorem. For (ii), the second part of the lemma, local Lipschitz continuity follows directly from the smoothness of  $\nabla_X \bar{g}_k$ .

Differentiating (39) we obtain the Hessian of  $\bar{g}_k$  as

$$\nabla_X^2 \bar{g}_k(X) = \sum_{i \in c_k} \sum_{j=1}^n \frac{\partial^2 \epsilon_{ij}}{\partial X^2}(P_i(X), X_j), \quad (40)$$

with

$$\frac{\partial^2 \epsilon_{ij}}{\partial X^2} = w_{ij} \frac{2}{\gamma} A_P^T \begin{bmatrix} 1 & 0 & -\frac{2\alpha}{\gamma} \\ 0 & 1 & -\frac{2\beta}{\gamma} \\ -\frac{2\alpha}{\gamma} & -\frac{2\beta}{\gamma} & \frac{\alpha^2 + \beta^2}{\gamma^2} \end{bmatrix} A_P. \quad (41)$$

It was shown in [2] that

$$\frac{\partial^2 \epsilon_{ij}}{\partial X^2} \succeq w_{ij} \frac{2}{d_{\min}^2} A_P^T \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & -3 \frac{\alpha^2 + \beta^2}{\gamma^2} \end{bmatrix} A_P. \quad (42)$$

Now, for any  $v \in \mathbb{R}^3$ ,  $\|v\| = 1$  we have

$$v^T \left( \frac{\partial^2 \epsilon_{ij}}{\partial X^2} \right) v \geq w_{ij} \frac{2}{d_{\min}^2} v^T \left( A_P^T \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & -3 \frac{\alpha^2 + \beta^2}{\gamma^2} \end{bmatrix} A_P \right) v \geq -w_{ij} \frac{6}{d_{\min}^2} \frac{\alpha^2 + \beta^2}{\gamma^2} \|A_P\| = \quad (43)$$

$$= -\frac{6}{d_{\min}^2} \epsilon_{ij} \|A_P\| \geq -\lambda_{ij} > -\infty. \quad (44)$$

Then with  $\lambda_k = \sum_{i \in c_k} \sum_{j=1}^n \lambda_{ij}$  statement (iii) follows.  $\square$

Using (30) we can write the iterations of algorithm 1 as

$$Z^{k(t+1)} = \text{prox}_{f_2/\rho^{(t)}}(2\bar{X}^{k(t)} - Z^{k(t)}) + Z^{k(t)} - \bar{X}^{k(t)} \quad (45)$$

$$\bar{X}^{k(t+1)} = \text{prox}_{\sum_k \bar{g}_k/\rho^{(t)}}(Z^{k(t+1)}) \quad (46)$$

$$X_j^{(t+1)} = \bar{X}_j^{k(t+1)}, \text{ for any } k \in [1, l] \text{ such that } \bar{w}_j^k = 1, \quad (47)$$

$$P^{(t+1)} = \bigcup_{k=1}^l P_k(\bar{X}^{k(t+1)}). \quad (48)$$

For convenience we introduce a further latent variable  $Q \in \mathbb{R}^{3 \times n}$  and visibility matrix  $\bar{W} \in \mathbb{R}^{3 \times n \times l}$  defined as,  $\bar{W}^k = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} (\bar{w}^k)^T$ ,  $k = 1, \dots, l$ . Then (45)-(48) can be written

$$\sum_{k=1}^l \bar{W}^k \circ Q^{(t+1)} = \text{prox} \left( \sum_{k=1}^l \bar{W}^k \circ (2\bar{X}^{k(t)} - Z^{k(t)}) \right), \quad (49)$$

$$Z^{k(t+1)} = Q^{(t+1)} + Z^{k(t)} - \bar{X}^{k(t)}, \quad (50)$$

$$\bar{X}^{k(t+1)} = \text{prox}_{\sum_k \bar{g}_k/\rho^{(t)}}(Z^{k(t+1)}), \quad (51)$$

$$X_j^{(t+1)} = \bar{X}_j^{k(t+1)}, \text{ for any } k \in [1, l] \text{ such that } \bar{w}_j^k = 1, \quad (52)$$

$$P^{(t+1)} = \bigcup_{k=1}^l P_k(\bar{X}^{k(t+1)}). \quad (53)$$

From the necessary conditions for optimality of (49) and (51) we have

$$0 = \bar{W} \circ (Q^{k(t+1)} - 2\bar{X}^{k(t)} + Z^{k(t)}), \quad (54)$$

$$0 = \nabla_X g_k(\bar{X}^{k(t+1)}) + \rho \bar{W} \circ (\bar{X}^{k(t+1)} - Z^{k(t+1)}), \quad (55)$$

with  $\bar{W} = \sum_{k=1}^l \bar{W}^k$ .

Next define the auxiliary function  $F : \mathbb{R}^{l \times 3 \times n} \times \mathbb{R}^{3 \times n} \times \mathbb{R}^{l \times 3 \times n} \mapsto \mathbb{R}^+$  as

$$F(\{\bar{X}^k\}, Q, \{Y^k\}) = \sum_{k=1}^l \left( g_k(\bar{X}^k) + \frac{\rho}{2} \|\bar{W}^k \circ (Q - \bar{X}^k + Y^k)\|_F^2 - \frac{\rho}{2} \|\bar{W}^k \circ Y^k\|_F^2 \right). \quad (56)$$

We now show that the change in function value of  $F$  between iterations is bounded.<sup>1</sup>

**Lemma A.2.** *Let  $\{\bar{X}^{(t)}, Q^{(t)}, Z^{(t)}\}$  denote a sequence generated by (49)-(51). If the conditions of Lemma A.1 hold, we have*

$$\begin{aligned} F(\{\bar{X}^{k(t)}\}, Q^{(t)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}) - F(\{\bar{X}^{k(t+1)}\}, Q^{k(t+1)}, \{Z^{k(t+1)} - \bar{X}^{k(t+1)}\}) \geq \\ \sum_{k=1}^l \left( \left( \frac{\rho - \lambda}{2} - \frac{L^2}{\rho} \right) \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 + \frac{\rho}{2} \|Q^{(t+1)} - Q^{(t)}\|_F^2 \right). \end{aligned} \quad (57)$$

<sup>1</sup>In order to simplify notation for the remainder of this appendix we assume that  $\bar{W}_j^k = 1, \forall k, j$ , extending this proof to general visibility matrices is entirely straightforward, however resulting in a substantially more cluttered notation.

With  $\mathcal{Q} \in \mathbb{R}^{3 \times 4}$ ,  $L = \max_i L_i$  and  $\lambda = \max_i \lambda_i$ .

*Proof.*

$$F\left(\{\bar{X}^{k(t)}\}, Q^{(t)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}\right) - F\left(\{\bar{X}^{k(t+1)}\}, Q^{(t+1)}, \{Z^{k(t+1)} - \bar{X}^{k(t+1)}\}\right) = \quad (58)$$

$$= F\left(\{\bar{X}^{k(t)}\}, Q^{(t)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}\right) - F\left(\{\bar{X}^{k(t)}\}, Q^{(t+1)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}\right) + \quad (59)$$

$$+ F\left(\{\bar{X}^{k(t)}\}, Q^{(t+1)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}\right) - F\left(\{\bar{X}^{k(t+1)}\}, Q^{(t+1)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}\right) + \quad (60)$$

$$+ F\left(\{\bar{X}^{k(t+1)}\}, Q^{(t+1)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}\right) - F\left(\{\bar{X}^{k(t+1)}\}, Q^{(t+1)}, \{Z^{k(t+1)} - \bar{X}^{k(t+1)}\}\right) \geq \quad (61)$$

$$\geq \sum_{k=1}^l -\rho < Q^{(t+1)} - \bar{X}^{k(t)} + Z^{k(t)} - \bar{X}^{k(t)}, Q^{(t+1)} - Q^{(t)} > + \frac{\rho}{2} \|Q^{(t+1)} - Q^{(t)}\|_F^2 + \quad (62)$$

$$- \rho < \nabla_{\bar{X}^k} F(\bar{X}^{k(t+1)}, Q^{(t+1)}, Z^{k(t)} - \bar{X}^{k(t)}), \bar{X}^{k(t+1)} - \bar{X}^{k(t)} > + \frac{\rho - \lambda}{2} \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 + \quad (63)$$

$$- \rho < Z^{k(t+1)} - \bar{X}^{k(t+1)} - Z^{k(t)} + \bar{X}^{k(t)}, Q^{(t+1)} - \bar{X}^{k(t+1)} > = \quad (64)$$

$$= \sum_{k=1}^l -\rho < Q^{(t+1)} - (2\bar{X}^{k(t)} - Z^{k(t)}), Q^{(t+1)} - Q^{(t)} > + \frac{\rho}{2} \|Q^{(t+1)} - Q^{(t)}\|_F^2 + \quad (65)$$

$$- \rho < \nabla_X g_k(\bar{X}^{k(t+1)}) + \rho(Q^{(t+1)} - \bar{X}^{k(t+1)} + Z^{k(t)} - \bar{X}^{k(t)}), \bar{X}^{k(t+1)} - \bar{X}^{k(t)} > + \frac{\rho - \lambda}{2} \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 + \quad (66)$$

$$- \rho \|\{Z^{(t+1)} - \bar{X}^{k(t+1)} - (Z^{k(t)} - \bar{X}^{k(t)})\}\|_F^2 = \quad (67)$$

$$= \sum_{k=1}^l \frac{\rho}{2} \|Q^{(t+1)} - Q^{(t)}\|_F^2 + \frac{\rho - \lambda}{2} \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 - \frac{1}{\rho} \|\nabla_X g_k(\bar{X}^{k(t+1)}) - \nabla_{\bar{X}^k} g_k(\bar{X}^{k(t)})\|_F^2 \geq \quad (68)$$

$$\geq \sum_{k=1}^l \frac{\rho}{2} \|Q^{(t+1)} - Q^{(t)}\|_F^2 + \left( \frac{\rho - \lambda}{2} - \frac{L^2}{\rho} \right) \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2. \quad (69)$$

Here the first inequality follows from the strong convexity of  $F$  for  $\rho > \lambda$ . The simplification of (64) follows from (50), expression (65) becomes (68) through (54) and (66) is simplified using (50) and (54). The final inequality follows directly from applying Lemma A.1.  $\square$

**Theorem A.1.** *With conditions as in Lemma A.2 for all  $t$ . If*

$$\frac{\rho - \lambda}{2} - \frac{L^2}{\rho} > 0, \quad (70)$$

*then the sequences  $\{\bar{X}^{(t)}\}_{t=1}^\infty$ ,  $\{Q^{(t)}\}_{t=1}^\infty$  and  $\{Z^{(t)}\}_{t=1}^\infty$  are convergent. That is,*

$$\lim_{t \rightarrow \infty} \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 = 0, \quad (71)$$

$$\lim_{t \rightarrow \infty} \|Q^{(t+1)} - Q^{(t)}\|_F^2 = 0. \quad (72)$$

$$\lim_{t \rightarrow \infty} \|Z^{k(t+1)} - Z^{k(t)}\|_F^2 = 0. \quad (73)$$

*Proof.* First we show that the sequence  $F(\{\bar{X}^{k(t)}\}, Q^{(t)}, \{Z^{k(t)} - \bar{X}^{k(t)}\})$  is non-negative.

$$F(\{\bar{X}^{k(t)}\}, Q^{(t)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}) = \quad (74)$$

$$= \sum_{k=1}^l \left( \bar{g}_k(\bar{X}^{k(t)}) + \frac{\rho}{2} \|Q^{(t)} - \bar{X}^{k(t)} + Z^{k(t)} - \bar{X}^{k(t)}\|_F^2 - \frac{\rho}{2} \|Z^{k(t)} - \bar{X}^{k(t)}\|_F^2 \right) = \quad (75)$$

$$= \sum_{k=1}^l \left( \bar{g}_k(\bar{X}^{k(t)}) + \frac{\rho}{2} \|Q^{(t)} - \bar{X}^{k(t)} + \frac{1}{\rho} \nabla_X \bar{g}_k(\bar{X}^{k(t)})\|_F^2 - \frac{\rho}{2} \|\frac{1}{\rho} \nabla_X \bar{g}_k(\bar{X}^{k(t)})\|_F^2 \right) = \quad (76)$$

$$= \sum_{k=1}^l \left( \bar{g}_k(\bar{X}^k) + \langle \nabla_X \bar{g}_k(\bar{X}^{k(t)}), Q^{(t)} - \bar{X}^k \rangle + \frac{\rho}{2} \|Q^{(t)} - \bar{X}^k\|_F^2 \right) \geq \sum_{k=1}^l \bar{g}_k(\bar{X}^k) \geq 0. \quad (77)$$

The equality succeeding (75) follows from (55). The second-to-last inequality is a result of the strong convexity of (51) for  $\rho > \lambda$ , according to Lemma A.1 (iii). To see that (70) implies that  $\rho > \lambda$  let  $\rho_1$  and  $\rho_2$  denote the two roots of  $\rho^2 - \lambda\rho - 2L^2 = 0$ . Since the discriminant of this quadratic equation,  $\Delta = \lambda^2 + 8L^2$  is nonnegative,  $\rho_1, \rho_2$  must be real. Choosing  $\rho_1 \geq \rho_2$ , from Vieta's formulas we have that

$$\rho_1 \rho_2 = -2L^2 < 0, \quad (78)$$

$$\rho_1 + \rho_2 = \lambda > 0. \quad (79)$$

Since (78) implies that  $\rho_1 > 0$  and  $\rho_2 < 0$  then from (79) it follows that  $\rho_1 > \rho_1 + \rho_2 = \lambda$ .

Summing first the left hand side of (57) over all  $t$  from 1 to  $T$  yields the telescopic series,

$$\sum_{t=1}^T \left[ F(\{\bar{X}^{k(t)}\}, Q^{(t)}, \{Z^{k(t)} - \bar{X}^{k(t)}\}) - F(\{\bar{X}^{k(t+1)}\}, Q^{(t+1)}, \{Z^{k(t+1)} - \bar{X}^{k(t+1)}\}) \right] = \quad (80)$$

$$F(\{\bar{X}^{k(1)}\}, Q^{(1)}, \{Z^{k(1)} - \bar{X}^{k(1)}\}) - F(\{\bar{X}^{k(T)}\}, Q^{(T)}, \{Z^{k(T)} - \bar{X}^{k(T)}\}). \quad (81)$$

By applying (77) and (81) to (57) and letting  $T \rightarrow \infty$  we can bound the infinite sum of the right hand side of (57) as follows,

$$F(\{\bar{X}^{k(1)}\}, Q^{(1)}, \{Z^{k(1)} - \bar{X}^{k(1)}\}) \geq \quad (82)$$

$$\geq \sum_{t=1}^{\infty} \left[ \sum_{k=1}^l \left( \left( \frac{\rho - \lambda}{2} - \frac{L^2}{\rho} \right) \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 + \frac{\rho}{2} \|Q^{(t+1)} - Q^{(t)}\|_F^2 \right) \right] \geq 0. \quad (83)$$

This then implies,

$$\lim_{t \rightarrow \infty} \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 = 0, \quad (84)$$

$$\lim_{t \rightarrow \infty} \|Q^{(t+1)} - Q^{(t)}\|_F^2 = 0. \quad (85)$$

To show that  $\{Z^{(t)}\}_{t=1}^{\infty}$  is also convergent we use (55) to write,

$$\|Z^{k(t+1)} - Z^{k(t)}\|_F^2 = \left\| \frac{1}{\rho} \left( \nabla_X \bar{g}_k(\bar{X}^{k(t+1)}) - \nabla_X \bar{g}_k(\bar{X}^{k(t)}) \right) + \left( \bar{X}^{k(t+1)} - \bar{X}^{k(t)} \right) \right\|_F^2 \leq \quad (86)$$

$$\frac{1}{\rho^2} \|\nabla_X \bar{g}_k(\bar{X}^{k(t+1)}) - \nabla_X \bar{g}_k(\bar{X}^{k(t)})\|_F^2 + \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2 \leq \left( \frac{L^2}{\rho^2} + 1 \right) \|\bar{X}^{k(t+1)} - \bar{X}^{k(t)}\|_F^2. \quad (87)$$

Letting  $t \rightarrow \infty$  and using (84) we obtain

$$\lim_{t \rightarrow \infty} \|Z^{k(t+1)} - Z^{k(t)}\|_F^2 = 0, \quad (88)$$

□

**Theorem A.2.** *With conditions as in Lemma A.2 for all  $t$ . Let  $(P^{(*)}, X^{(*)})$  be a limit point of the sequence  $\{(P^{(t)}, X^{(t)})\}$  generated by Algorithm 1. If  $\rho > \rho_{\min}$  then  $(P^{(*)}, X^{(*)})$  will be a local minima of (1).*

*Proof.* From (50) we have that

$$\|Z^{k(t+1)} - Z^{k(t)}\|_F^2 = \|Q^{(t+1)} - \bar{X}^{k(t)}\|_F^2, \forall k. \quad (89)$$

Thus  $\lim_{t \rightarrow \infty} \bar{X}^{k(t)} = Q^{(*)}$  and we have that  $X^{(*)} = \bar{X}^{k(*)} = Q^{(*)}, \forall k$ . Inserting this in (55), using (50) and (54), yields

$$0 = \nabla_X \bar{g}_k(X^{(*)}) + \rho \left( X^{(*)} - Z^{k(*)} \right) = \nabla_X \bar{g}_k(X^{(*)}) + \rho \left( X^{(*)} - (Q^{(*)} + Z^{k(*)} - X^{(*)}) \right) = \quad (90)$$

$$= \nabla_X \bar{g}_k(X^{(*)}) + \rho \left( X^{(*)} - (2X^{k(*)} - Z^{k(*)} + Z^{k(*)} - X^{(*)}) \right) = \nabla_X \bar{g}_k(X^{(*)}). \quad (91)$$

Finally, from (39) and (38) we have that

$$\nabla_X f(P^{(*)}, X^{(*)}) = \sum_{k=1}^l \nabla_X g_k(P^{(*)}, X^{(*)}) = \sum_{k=1}^l \nabla_X g_k(P(X^{(*)}), X^{(*)}) = \sum_{k=1}^l \nabla_X \bar{g}_k(X^{(*)}) = 0, \quad (92)$$

$$\nabla_P f(P^{(*)}, X^{(*)}) = \sum_{k=1}^l \nabla_P g_k(P(X^{(*)}), X^{(*)}) = 0. \quad (93)$$

Identifying (92) and (93) as the necessary conditions for local optimality of (1) completes the proof.  $\square$

Finally, a brief comment on certain critical configurations related to solving (29). The above results are based on the existence of  $\frac{\partial P_k}{\partial X}$  for all  $\{\bar{X}^{(t)}\}_{t=1}^\infty$ . However, there are certain configurations  $X \in \mathbb{R}^{3 \times n}$  for which (29) does not have a unique solution and hence  $P_k$  is not guaranteed to have partial derivatives. Collapsing all the  $n$  entries in  $X$  to a single point is one example of such a configuration.

Here we handle such instances by adding a small regularizing term to (29) when an iterate  $X^{(t)}$  does not permit a unique solution,

$$P_k^\epsilon(X) = \arg \min_{P \in \mathcal{Q}^{|c_k|}} \sum_{\substack{i \in c_k \\ 1 \leq j \leq n}} w_{ij} \|u_{ij} - \pi(P_i, X_j)\|^2 + \epsilon \|P_i\|_F^2. \quad (94)$$

With  $\epsilon > 0$  it can be shown ([1]) that  $\frac{\partial P_k^\epsilon}{\partial X}$  then exist for all  $\bar{X}^{(t)}$  and bounded scene depths. By deriving the equivalent of theorems A.1 and A.2 for this reformulation and modifying algorithm 1 accordingly it holds that the function values of  $F$  will still decrease, even if such critical configurations are encountered. By our initial assumption on the uniqueness of local minimizers it can then be shown that, with  $\epsilon$  sufficiently small, critical configurations will never occur after a finite number of iterations. Consequently  $\frac{\partial P_k}{\partial X}$  will exist for all subsequent iterations and theorem 4.1 can then be applied directly.

## References

- [1] P. Milgrom and I. Segal. Envelope Theorems for Arbitrary Choice Sets. *Econometrica*, 70(2):583–601, 2002. 2, 6
- [2] C. Olsson, F. Kahl, and R. Hartley. Projective least-squares: Global solutions with local optimization. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pages 1216–1223. IEEE, June 2009. 2