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Theorem 4.1. (Convergence) With f1 and f2 as in (17)-(18), let {(P (t), X(t))} ⊂ R3×4×m × R3×n denote a sequence
generated by algorithm 1. Assuming that local minimizers of (1) exists, are unique and that the scene depth d is bounded
from below by d = P

(t)
i3

[
X

(t)
i
1

]
≥ dmin > 0, i ∈ [1,m]. Then there exists a R 3 ρmin > 0 such that if ρ(t) > ρmin

(with t ≥ T for some fixed T) then Algorithm 1 is guaranteed to converge and every limit point of {(P (t), X(t))} is a local
minimizer of (1).

Proof. This theorem follows from theorems A.1 and A.2.

A. Proof of Theorem 4.1.
Let eij : Q× R3 7→ R+ denote the residual of 3D point j in image i,

εij(Pi, Xj) = wij ||uij − π(Pi, Xj)||2, (27)

and gk : Qm × R3×n

gk(P,X) =
∑
i∈ck

n∑
j=1

εij(Pi, Xj). (28)

Define Pk : R3×n 7→ Q|ck| as

Pk(X) = arg min
P∈Q|ck|

∑
i∈ck

1≤j≤n

wij ||uij − π(Pi, Xj)||2. (29)

With Pk(X) = {Pik(X)}i∈ck and Pik(X) =

[
p1ik(X)T

p2ik(X)T

p3ik(X)T

]
we can write

ḡk(X) = gk(Pk(X), X) =
∑
i∈ck

1≤j≤n

εij(Pi(X), Xj) =
∑
i∈ck

1≤j≤n

wij ||uij − π(Pi(X), Xj)||22. (30)

Lemma A.1. If the scene depth of the resectioning problem (29) is bounded from below by dmin,

p3ik(X)T
[
Xj
1

]
) ≥ dmin, j = 1, ..., n, (31)

and with Pk(X) unique, then,
(i) the function ḡk : R3×n 7→ R is smooth,
(ii) ḡk has a locally Lipschitz continuous gradient, that is, ∃Lk ≥ 0 such that

||∇X ḡk(Y1)−∇X ḡk(Y2)|| ≤ Lk||Y1 − Y2||, (32)

(iii) the Hessian of ḡk has eigenvalues that are bounded from below, ∃λk <∞

∇2
X ḡk(Y ) + λkI � 0, (33)

for finite Y, Y1, Y2.
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Proof. The error function εij(P,X) (27) can be rewritten as

εij(P,X) = wij

(
p1[X1 ]− uxijp3[X1 ]

)2
+
(
p2[X1 ]− uyijp3[X1 ]

)2
(p3[X1 ])

2 = wij
α2 + β2

γ2
, (34)

with  α
β
γ

 =

 p1[X1 ]− uxijp3[X1 ]
p2[X1 ]− uyijp3[X1 ]

p3[X1 ]

 . (35)

With the above expressions being linear in X and P respectively, (35) can then be written [ α β γ ]
T

= AXvec(P ) =
APX + aP . In [2] it was shown that the gradient of (27) is given by

∂εij
∂X

= wij
2

γ2
ATP

 α
β

−α
2+β2

γ

 , (36)

∂εij
∂P

= wij
2

γ2
ATX

 α
β

−α
2+β2

γ

 . (37)

As γ = (pT3 [X1 ]) ≥ dmin by assumption, it follows that the error function εij is smooth.
From (29) we have that

∂gk
∂P

(Pk(X), X) = 0. (38)

Differentiating (30) and using (38) yields

∇X ḡk(X) =
∂gk
∂P

(Pk(X), X)
∂P

∂X
(X) +

∂gk
∂X

(Pk(X), X) =
∂gk
∂X

(Pk(X), X) =
∑
i∈ck

n∑
j=1

∂εij
∂X

(Pi(X), Xj) ∈ C∞, (39)

proving part (i) of the lemma. This result is a special instance of the Envelope theorem, see [1] for more. Extending this result
to hold for more specific instances where Q contains additional constraints, such as Euclidean structure, is a straightforward
application of more general forms of this theorem. For (ii), the second part of the lemma, local Lipschitz continuity follows
directly from the smoothness of∇X ḡk.

Differentiating (39) we obtain the Hessian of ḡk as

∇2
X ḡk(X) =

∑
i∈ck

n∑
j=1

∂2εij
∂X2

(Pi(X), Xj), (40)

with

∂2εij
∂X2

= wij
2

γ
ATP

 1 0 − 2α
γ

0 1 − 2β
γ

− 2α
γ − 2β

γ
α2+β2

γ2

AP . (41)

It was shown in [2] that

∂2εij
∂X2

� wij
2

d2
min

ATP

 1
3 0 0
0 1

3 0

0 0 −3α
2+β2

γ2

AP . (42)



Now, for any v ∈ R3, ||v|| = 1 we have

vT
(
∂2εij
∂X2

)
v ≥ wij

2

d2
min

vT

ATP
 1

3 0 0
0 1

3 0

0 0 −3α
2+β2

γ2

AP
 v ≥ −wij

6

d2
min

α2 + β2

γ2
||AP || = (43)

= − 6

d2
min

εij ||AP || ≥ −λij > −∞. (44)

Then with λk =
∑
i∈ck

∑n
j=1 λij statement (iii) follows.

Using (30) we can write the iterations of algorithm 1 as

Zk(t+1) = proxf2/ρ(t)(2X̄
k(t) − Zk(t)) + Zk(t) − X̄k(t) (45)

X̄k(t+1) = prox∑
k ḡk/ρ

(t)(Zk(t+1)) (46)

X
(t+1)
j = X̄

k(t+1)
j , for any k ∈ [1, l] such that w̄kj = 1, (47)

P (t+1) =

l⋃
k=1

Pk(X̄k(t+1)). (48)

For convenience we introduce a further latent variable Q ∈ R3×n and visibility matrix W̄ ∈ R3×n×l defined as, W̄ k =[
1
1
1

]
(w̄k)T , k = 1, ..., l . Then (45)-(48) can be written

l∑
k=1

W̄ k ◦Q(t+1) = prox

(
l∑

k=1

W̄ k ◦ (2X̄k(t) − Zk(t))

)
, (49)

Zk(t+1) = Q(t+1) + Zk(t) − X̄k(t), (50)

X̄k(t+1) = prox∑
k ḡk/ρ

(t)(Zk(t+1)), (51)

X
(t+1)
j = X̄

k(t+1)
j , for any k ∈ [1, l] such that w̄kj = 1, (52)

P (t+1) =

l⋃
k=1

Pk(X̄k(t+1)). (53)

From the necessary conditions for optimality of (49) and (51) we have

0 = W̄ ◦
(
Qk(t+1) − 2X̄k(t) + Zk(t)

)
, (54)

0 = ∇Xgk(X̄k(t+1)) + ρW̄ ◦
(
X̄k(t+1) − Zk(t+1)

)
, (55)

with W̄ =
∑l
k=1 W̄

k.
Next define the auxiliary function F : Rl×3×n × R3×n × Rl×3×n 7→ R+ as

F ({X̄k}, Q, {Y k}) =

l∑
k=1

(
gk(X̄k) +

ρ

2
||W̄ k ◦

(
Q− X̄k + Y k

)
||2F −

ρ

2
||W̄ k ◦ Y k||2F

)
. (56)

We now show that the change in function value of F between iterations is bounded.1

Lemma A.2. Let {X̄(t), Q(t), Z(t))} denote a sequence generated by (49)-(51). If the conditions of Lemma A.1 hold, we
have

F ({X̄k(t)}, Q(t),{Zk(t) − X̄k(t)})− F ({X̄k(t+1)}, Qk(t+1), {Zk(t+1) − X̄k(t+1)}) ≥
l∑

k=1

((
ρ− λ

2
− L2

ρ

)
||
(
X̄k(t+1) − X̄k(t)

)
||2F +

ρ

2
||
(
Q(t+1) −Q(t)

)
||2F
)
. (57)

1In order to simplify notation for the remainder of this appendix we assume that W̄k
j = 1, ∀k, j, extending this proof to general visibility matrices is

entirely straightforward, however resulting in a substantially more cluttered notation.



With Q ∈ R3×4, L = maxi Li and λ = maxi λi.

Proof.

F
(
{X̄k(t)}, Q(t), {Zk(t) − X̄k(t)}

)
− F ({X̄k(t+1)}, Q(t+1), {Zk(t+1) − X̄k(t+1)}) = (58)

= F
(
{X̄k(t)}, Q(t), {Zk(t) − X̄k(t)}

)
− F

(
{X̄k(t)}, Q(t+1), {Zk(t) − X̄k(t)}

)
+ (59)

+ F
(
{X̄k(t)}, Q(t+1), {Zk(t) − X̄k(t)}

)
− F

(
{X̄k(t+1)}, Q(t+1), {Zk(t) − X̄k(t)}

)
+ (60)

+ F
(
{X̄k(t+1)}, Q(t+1), {Zk(t) − X̄k(t)}

)
− F

(
{X̄k(t+1)}, Q(t+1), {Zk(t+1) − X̄k(t+1)}

)
≥ (61)

≥
l∑

k=1

−ρ < Q(t+1) − X̄k(t) + Zk(t) − X̄k(t), Q(t+1) −Q(t) > +
ρ

2
||Qk(t+1) −Q(t)||2F+ (62)

− ρ < ∇X̄kF (X̄k(t+1), Q(t+1), Zk(t) − X̄k(t)), X̄k(t+1) − X̄k(t) > +
ρ− λ

2
||X̄k(t+1) − X̄k(t)||2F+ (63)

− ρ < Zk(t+1) − X̄k(t+1) − Zk(t) + X̄k(t), Q(t+1) − X̄k(t+1) >= (64)

=

l∑
k=1

−ρ < Q(t+1) − (2X̄k(t) − Zk(t)), Q(t+1) −Q(t) > +
ρ

2
||Q(t+1) −Q(t)||2F+ (65)

− ρ < ∇Xgk(X̄k(t+1)) + ρ(Q(t+1) − X̄k(t+1) + Zk(t) − X̄k(t)), X̄k(t+1) − X̄k(t) > +
ρ− λ

2
||X̄k(t+1) − X̄k(t)||2F+

(66)

− ρ||{Z(t+1) − X̄k(t+1) − (Zk(t) − X̄k(t))}||2F = (67)

=

l∑
k=1

ρ

2
||Q(t+1) −Q(t)||2F +

ρ− λ
2
||X̄k(t+1) − X̄k(t)||2F −

1

ρ
||∇Xgk(X̄k(t+1))−∇X̄kgk(X̄k(t))||2F ≥ (68)

≥
l∑

k=1

ρ

2
||Q(t+1) −Q(t)||2F +

(
ρ− λ

2
− L2

ρ

)
||X̄k(t+1) − X̄k(t)||2F . (69)

Here the first inequality follows from the strong convexity of F for ρ > λ. The simplification of (64) follows from (50),
expression (65) becomes (68) through (54) and (66) is simplified using (50) and (54). The final inequality follows directly
from applying Lemma A.1.

Theorem A.1. With conditions as in Lemma A.2 for all t. If

ρ− λ
2
− L2

ρ
> 0, (70)

then the sequences
{
X̄(t)

}∞
t=1

,
{
Q(t)

}∞
t=1

and
{
Z(t)

}∞
t=1

are convergent. That is,

lim
t→∞

||X̄k(t+1) − X̄k(t)||2F = 0, (71)

lim
t→∞

||Q(t+1) −Q(t)||2F = 0. (72)

lim
t→∞

||Zk(t+1) − Zk(t)||2F = 0. (73)



Proof. First we show that the sequence F ({X̄k(t)}, Q(t), {Zk(t) − X̄k(t)}) is non-negative.

F ({X̄k(t)}, Q(t), {Zk(t) − X̄k(t)}) = (74)

=

l∑
k=1

(
ḡk(X̄k(t)) +

ρ

2
||Q(t) − X̄k(t) + Zk(t) − X̄k(t)||2F −

ρ

2
||Zk(t) − X̄k(t)||2F

)
= (75)

=

l∑
k=1

(
ḡk(X̄k(t)) +

ρ

2
||Q(t) − X̄k(t) +

1

ρ
∇X ḡk(X̄k(t))||2F −

ρ

2
||1
ρ
∇X ḡk(X̄k(t))||2F

)
= (76)

=

l∑
k=1

(
ḡk(X̄k)+ < ∇X ḡk(X̄k(t)), Q(t) − X̄k > +

ρ

2
||Qk(t) − X̄k||2F

)
≥

l∑
k=1

ḡk(X̄k) ≥ 0. (77)

The equality succeeding (75) follows from (55). The second-to-last inequality is a result of the strong convexity of (51)
for ρ > λ, according to Lemma A.1 (iii). To see that (70) implies that ρ > λ let ρ1 and ρ2 denote the two roots of
ρ2 − λρ − 2L2 = 0. Since the discriminant of this quadratic equation, ∆ = λ2 + 8L2 is nonnegative, ρ1, ρ2 must be real.
Choosing ρ1 ≥ ρ2, from Vieta’s formulas we have that

ρ1ρ2 = −2L2 < 0, (78)
ρ1 + ρ2 = λ > 0. (79)

Since (78) implies that ρ1 > 0 and ρ2 < 0 then from (79) it follows that ρ1 > ρ1 + ρ2 = λ.
Summing first the left hand side of (57) over all t from 1 to T yields the telescopic series,

T∑
t=1

[
F ({X̄k(t)}, Q(t), {Zk(t) − X̄k(t)})− F ({X̄k(t+1)}, Q(t+1), {Zk(t+1) − X̄k(t+1)})

]
= (80)

F ({X̄k(1)}, Q(1), {Zk(1) − X̄k(1)})− F ({X̄k(T )}, Q(T ), {Zk(T ) − X̄k(T )}). (81)

By applying (77) and (81) to (57) and letting T →∞ we can bound the infinite sum of the right hand side of (57) as follows,

F ({X̄k(1)}, Q(1),{Zk(1) − X̄k(1)}) ≥ (82)

≥
∞∑
t=1

[
l∑

k=1

((
ρ− λ

2
− L2

ρ

)
||X̄k(t+1) − X̄k(t)||2F +

ρ

2
||Q(t+1) −Q(t)||2F .

)]
≥ 0. (83)

This then implies,

lim
t→∞

||X̄k(t+1) − X̄k(t)||2F = 0, (84)

lim
t→∞

||Q(t+1) −Q(t)||2F = 0. (85)

To show that
{
Z(t)

}∞
t=1

is also convergent we use (55) to write,

||Zk(t+1) − Zk(t)||2F = ||1
ρ

(
∇X ḡk(X̄k(t+1))−∇X ḡk(X̄k(t))

)
+
(
X̄k(t+1) − X̄k(t)

)
||2F ≤ (86)

1

ρ2
||∇X ḡk(X̄k(t+1))−∇X ḡk(X̄k(t))||2F + ||X̄k(t+1) − X̄k(t)||2F ≤ (

L2

ρ2
+ 1)||X̄k(t+1) − X̄k(t)||2F . (87)

Letting t→∞ and using (84) we obtain

lim
t→∞

||Zk(t+1) − Zk(t)||2F = 0, (88)

Theorem A.2. With conditions as in Lemma A.2 for all t. Let (P (∗), X(∗)) be a limit point of the sequence {(P (t), X(t))}
generated by Algorithm 1. If ρ > ρmin then (P (∗), X(∗)) will be a local minima of (1).



Proof. From (50) we have that

||Zk(t+1) − Zk(t)||2F = ||Q(t+1) − X̄k(t)||2F , ∀k. (89)

Thus limt→∞ X̄k(t) = Q(∗) and we have that X(∗) = X̄k(∗) = Q(∗) ,∀k. Inserting this in (55), using (50) and (54), yields

0 = ∇X ḡk(X(∗)) + ρ
(
X(∗) − Zk(∗)

)
= ∇X ḡk(X(∗)) + ρ

(
X(∗) − (Q(∗) + Zk(∗) −X(∗))

)
= (90)

= ∇X ḡk(X(∗)) + ρ
(
X(∗) − (2Xk(∗) − Zk(∗) + Zk(∗) −X(∗))

)
= ∇X ḡk(X(∗)). (91)

Finally, from (39) and (38) we have that

∇Xf(P (∗), X(∗)) =

l∑
k=1

∇Xgk(P (∗), X(∗)) =

l∑
k=1

∇Xgk(P (X(∗)), X(∗)) =

l∑
k=1

∇X ḡk(X(∗)) = 0, (92)

∇P f(P (∗), X(∗)) =

l∑
k=1

∇P gk(P (X(∗)), X(∗)) = 0. (93)

Identifying (92) and (93) as the necessary conditions for local optimality of (1) completes the proof.

Finally, a brief comment on certain critical configurations related to solving (29). The above results are based on the
existence of ∂Pk

∂X for all {X̄(t)}∞t=1. However, there are certain configurations X ∈ R3×n for which (29) does not have a
unique solution and hence Pk is not guaranteed to have partial derivatives. Collapsing all the n entries in X to a single point
is one example of such a configuration.

Here we handle such instances by adding a small regularizing term to (29) when an iterate X(t) does not permit a unique
solution,

P εk(X) = arg min
P∈Q|ck|

∑
i∈ck

1≤j≤n

wij ||uij − π(Pi, Xj)||2 + ε||Pi||2F . (94)

With ε > 0 it can be shown ([1]) that ∂P
ε
k

∂X then exist for all X̄(t) and bounded scene depths. By deriving the equivalent of
theorems A.1 and A.2 for this reformulation and modifying algorithm 1 accordingly it holds that the function values of F
will still decrease, even if such critical configurations are encountered. By our initial assumption on the uniqueness of local
minimizers it can then be shown that, with ε sufficiently small, critical configurations will never occur after a finite number
of iterations. Consequently ∂Pk

∂X will exist for all subsequent iterations and theorem 4.1 can then be applied directly.
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