A Consensus-Based Framework for Distributed Bundle Adjustment -

Supplementary Material

Theorem 4.1. (Convergence) With f1 and fo as in (17)(18), let {(P®), X))} c R3***™ x R3*" denote a sequence
generated by algorithm 1. Assuming that local minimizers of (1) exists, are unique and that the scene depth d is bounded

from below by d = Pi(;) [Xi'(t)} > din > 0, i € [1,m]. Then there exists a R 3 puyin > 0 such that if p) > puin

(with t > T for some fixed T) then Algorithm 1 is guaranteed to converge and every limit point of {(P®", X))} is a local

minimizer of (1).
Proof. This theorem follows from theorems A.1 and A.2.
A. Proof of Theorem 4.1.
Lete;; : @ x R? — R denote the residual of 3D point j in image 4,
€ij(Pi, Xj) = wijlfuij — 7 (P, X;)| I,
and Gk - Qm % RSX"L
ge(P,X) = > e(Pi, X5).
iccy j=1
Define Py : R3*" — Qlexl ag

P (X) = arg min Z wij||ui; — F(Pi,Xj)H2.
Peglex! 1€ECK

1<j<n
prik(X)7
With Py, (X) = {P;r(X)},c, and Pir(X) = | p2ar(X)” | we can write
' pair(X)7T
9k(X) = gr(Pu(X), X) = Y e (Pi(X), X)) = Y willui; — 7(Pi(X), X;)[[3.
15%n 15%n

Lemma A.1. [fthe scene depth of the resectioning problem (29) is bounded from below by d i,
pain(X)T [)?]) > dmin, j=1,...,n,

and with Py, (X)) unique, then,
(i) the function g, : R3*™ — R is smooth,
(ii) gr. has a locally Lipschitz continuous gradient, that is, ALy > 0 such that

IVxgr(Y1) = Vxge(Y2)|| < Li|[Y1 — Y2,
(iii) the Hessian of gy has eigenvalues that are bounded from below, I\, < oo
VZGe(Y) + Al - 0,
for finite Y, Y1, Yo.
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Proof. The error function €;; (P, X) (27) can be rewritten as

X1 pa[ X1)° + (pof X1 — u¥.pa[ X 24 32
ei;(P, X) = wy; (P1[F] = ufps[X])" + (P2l ] — wdjps[ Y1) :wija ‘|‘2/8 7 (34)
(ps[11]) i
with
o i) —ufps[ ]
B = | pelX]—ugims[ Y] | (35)
v P[]
With the above expressions being linear in X and P respectively, (35) can then be written [« 8 ’Y]T = Axvec(P) =
ApX + ap. In [2] it was shown that the gradient of (27) is given by
o
862‘]‘ o 2 T
D wijﬁAP a§+ﬁ2 , (36)
2t
o
8€ij 2 T
3P = wij?AX a25+[32 . 37)
y
Asy = (pI[X]) > dmin by assumption, it follows that the error function €;; is smooth.
From (29) we have that
99% (py (%), X) = 0. (38)
opr
Differentiating (30) and using (38) yields
— agk opP 8916 agk afi]
X),X)=—=(X)+ = (P(X),X) == j >, @3
V%) = 25 (P3).3) 22 0+ 205 (), 3) = 2(p30.3) = B30 29 (R0, X)) € 0. (39)

i€cy j=1

proving part (i) of the lemma. This result is a special instance of the Envelope theorem, see [ 1] for more. Extending this result
to hold for more specific instances where Q contains additional constraints, such as Euclidean structure, is a straightforward
application of more general forms of this theorem. For (ii), the second part of the lemma, local Lipschitz continuity follows
directly from the smoothness of V x gi.

Differentiating (39) we obtain the Hessian of g as

2¢;
V3gr(X) = Z Z 2 (Pi(X), X;), (40)
iccy j=1
with
62 1 0 _275‘ ]
€ij T 2B
= w;; A 0 1 - Ap. 41)
8X2 j _ 2a 28 oc2+ﬂ/52
v v ¥
It was shown in [2] that
Lo 0 ]
D%e;j 2 b1
Yo —AL ] 0 3 0 Ap. (42)
oxz = gz r ’ 24 g2
min 0 0 30‘ ’;5




Now, for any v € R3, ||v|| = 1 we have

£ 0 0
0% 2 3 6 o+ 32
== > w;j——vl | AL | 0 3 0 A > —w;j————I||Ap|| = 43
v (aXz)'U_wz]d?ninU P 0 8 730124“62 PV =2 w”d?nin 72 || P|| ( )
,),2
6
= _d27-€ij||AP|| > _)\ij > —00. 44)
Then with A, = 3=, -7 Aij statement (iii) follows. O
Using (30) we can write the iterations of algorithm 1 as
Zk(t+1) — prOXf2/p(t) (2Xk(t) o Zk(t)) 4 Zk(t) o Xk(t) (45)
Xk — ProXs~ /5 (ZkE+1) (46)
X;Hl) = )_(f(tﬂ), for any k € [1,] such that u?f =1, 47)
l
P(t+1) — U Pk()_(k(t+1)). (48)

k=1
For convenience we introduce a further latent variable Q € R3*” and visibility matrix W € R3*"*! defined as, W* =
m (@*)T, k =1,...,1 . Then (45)-(48) can be written

l !

Z Wk o Q(t+1) = prox (Z Wk o (QXk(t) _ Zk(t))) ; (49)

k=1 k=1
Zk(t+1) _ Q(t+1) 4 Zk®) _ Xk(t)7 50)
XD — ProXs~ o /o) (ZFE+1)y, (S1)
Xj(.t“) = XJl_c(t+1)7 for any k € [1,1] such that w} = 1, (52)

1

pt+D) — U Py (X)), (53)

k=1

From the necessary conditions for optimality of (49) and (51) we have
0= o (Qk<t+1> _oXk®) 4 Zic(t)) ’ (54)
0= ngk(Xk(tJrl)) +oWo (Xk(tJrl) _ Zk(t+1)) 7 (55)

with W = Y%, Wk,
Next define the auxiliary function £ : RIX3X7 x R3Xn7 x RIX3xn y R+ a5

l
FUXLQ,{YF)) = g (9 (X" + L) 0 (@ = X* 4+ Y¥) |} = L)W o Y I3 (56)

We now show that the change in function value of F' between iterations is bounded.'

Lemma A.2. Let { X QW Z")} denote a sequence generated by (49)-(51). If the conditions of Lemma A.1 hold, we
have

F({Xk(t)}, Q(t),{Zk(t) o Xk(t)}) _ F({Xk(tJrl)}, Qk(tJrl), {Zk(tJrl) _ Xk(t+1)}) >

l
p—A_ L? Ck(t+1) _ k1)) 2, L P (t+1) ©) 2
S (557 5 XY fi (@ @) IE). e

k=1

n order to simplify notation for the remainder of this appendix we assume that VT/JIc = 1, Vk, j, extending this proof to general visibility matrices is
entirely straightforward, however resulting in a substantially more cluttered notation.



With Q € R3*4, L = max; L; and A = max; \;.

Proof.
F ({Xk(t)}7Q(t)’ {Zk(t) _ X—k(t)}) _ F({)_(’“(t+1)},Q(t+1)7 {Zk(t-H) _ Xk(t-i—l)}) = (58)
—F <{Xk<t>}’Q<t>,{Zk<t> - ka}) _F <{Xk<t>}’Q(t+1>,{Zk<t) - X—k(t)}) n (59)
+F ({Xvk(t)}’Q(t—o—l)’ {Zk(t) _ Xk(t)}) _F ({Xk(t—i—l)}’Q(t—&-l)’ {Zk(t) _ Xk(t)}) 4 (60)
i F ({Xk(t—i—l)}’Q(t-&-l)’ {Zk(t) -~ Xk(t)}) _F ({Xk(t—i—l)}’Q(t—&-l)’ {Zk(t—i-l) _ Xk(t-‘,—l)}) > 61)
!
> Z Cp < QWD L XR®) 4 Zk(®) _ kM) o) _ o®) 5 +g||Qk<t+1> — QW2+ (62)
k=1
—p< VXkF(Xk(Hl),Q(Hl), Zk(t) _ X-k(t))’X—k(tJrl) Xk + HXk(t«H ch(t)”%Jr (63)
—p < Zk(t+1) _ Xk(t+1) _ Zk(t) +Xk:(t)’Q(t+1) _ Xk(t+l) >= (64)
l
=Y —p < QY — (2XM0 - ZH0), QD — Q) > 1 BYIQUH ) — QU3+ (65)
k=1
—p< Vng(Xk(t+l)) + p(Q(t—i-l) _ Xk(t+1) + Zk(t) _ Xk(t)),)?k(t—i-l) Xk(t) > _|_ ||Xk(t+1) Xk(t)H%—l-
(66)
— pI{ZHD = XA — (ZH0 — XEO = (©7
l
p P—A 5 _ 1 _ _
Z QY = QUIE + Z5 IR - XFOIE - IV ge(XMHY) = Viengn (KO 2 (68)
! 2
P p—X L - _
> Z QU — QU + (2 - p) [ — RO (69)

Here the first inequality follows from the strong convexity of F' for p > A. The simplification of (64) follows from (50),
expression (65) becomes (68) through (54) and (66) is simplified using (50) and (54). The final inequality follows directly
from applying Lemma A.1. O

Theorem A.1. With conditions as in Lemma A.2 for all t. If

A L2
07_7>0’ (70)

then the sequences { X () }toil, {Q(t)}zl and {Z(‘f)}toi1 are convergent. That is,

Jim [| XD - XEONE =0, (71)
— 00
lim [|QUY — QW||% = 0. (72)
t—o0
lim ||ZFE+D — ZE®))2, =, (73)

t—o0



Proof. First we show that the sequence F({X* "}, Q®) {Z*k®) — X*k(")1) is non-negative.

FUX Y, QW {740 _ k®Y) = (74)

_ Z( (xR0 1 gIIQ(“ - CONLON O gI\Z’““) _ )‘(’“(”H%) - (75)

= Z ( (X*0) HQ“ XKD 4 %ngk()_(k(t)m% - glivxgk()_(’““))lﬁ) = (76)

= Z (91 (X)+ < Vxgu(XE0), Q0 = X* > +21QH0) — XH|I3) > igko‘m > 0. (77)
k=1 —

The equality succeeding (75) follows from (55). The second-to-last inequality is a result of the strong convexity of (51)
for p > ), according to Lemma A.l (iii). To see that (70) implies that p > A let p; and p2 denote the two roots of
p? — A\p — 2L? = 0. Since the discriminant of this quadratic equation, A = \? + 8L? is nonnegative, p;, p» must be real.
Choosing p; > pa, from Vieta’s formulas we have that

pips = —2L* <0, (78)
p1+p2=A>0. (79)

Since (78) implies that p; > 0 and p2 < 0 then from (79) it follows that p; > p1 + p2 = A.
Summing first the left hand side of (57) over all ¢ from 1 to T yields the telescopic series,

T
S [FUXH0},QU, {240 — XHOY) — PRI}, QU {ZH0+D — FHeHD )] (80
t=1
F({Xk(l)}a Q(l)v {Zk(l) - Xk(l)}) - F({Xk(T)}7 Q(T)v {Zk(T) - Xk(T)}) (81)

By applying (77) and (81) to (57) and letting 7' — oo we can bound the infinite sum of the right hand side of (57) as follows,

PUX*}, QW {zF) — XFWY) > (82)
) l p A L2 0
— = vik(t+1l)  wvk(t))2 L (t+1) _ ()2
22[2((2 p>lX 0N+ 21U - @ ||F.>] >0, (83)
t=1 Lk=1
This then implies,
Jim [| XD — RO — g, (84)
— 00
lim ||QU+Y — QW2 =o. (85)
t—o0

To show that {Z ®) }zl is also convergent we use (55) to write,

| ZRE+D _ Zk®)2, = H% (ngk(Xk(tJrl)) _ Vng(Xk(t))) i (Xk(tJrl) _ Xk(t)) 12 < (86)
. f f 12 f f
||Vng(Xk(t+l)) Vg (XFO)[[F 4 || XD — KR < (F + DX - XHO (87)
Letting t — oo and using (84) we obtain
lim [| 2400 — 22O 3 < o, (88)

O

Theorem A.2. With conditions as in Lemma A.2 for all t. Let (P*), X(*)) be a limit point of the sequence {(P®), X))}
generated by Algorithm 1. If p > pmin then (P(*)7 X(*)) will be a local minima of (1).



Proof. From (50) we have that
128D — ZFO|3 = 1QUD — XFO3, k. (89)
Thus limy_, oo X*® = Q) and we have that X*) = X*() = Q(*) VL. Inserting this in (55), using (50) and (54), yields
0= Vagu(X) 4+ p (X = 250) = Vg (XD) 4 p (X0 = QW + 20 - X)) = o)
= Vxgu(X™) +p (X<*> — (2X k0 — ZRC) o ZkG) X<*>)) = Vxgr(X™). (91)

Finally, from (39) and (38) we have that

l
Vi (P, X)) vagk (P, X)) vagk @), X =3 Vxgx) =0, 92
el k=1
Ve f(P®, X vagk (X)), x™) =0. 93)
Identifying (92) and (93) as the necessary conditions for local optimality of (1) completes the proof. O

Finally, a brief comment on certain critical configurations related to solving (29). The above results are based on the
existence of BP ax for all {X®)}9°,. However, there are certain configurations X € R**™ for which (29) does not have a
unique solutlon and hence P, is not guaranteed to have partial derivatives. Collapsing all the n entries in X to a single point
is one example of such a configuration.

Here we handle such instances by adding a small regularizing term to (29) when an iterate X (*) does not permit a unique
solution,

PE(X) = arg min Y wyllusy = 7(Pe )12+ el P 3- o4
PeQlekl iccn
1<j<n
BPk

With € > 0 it can be shown ([1]) that then exist for all X(*) and bounded scene depths. By deriving the equivalent of
theorems A.1 and A.2 for this reformulatlon and modifying algorithm 1 accordingly it holds that the function values of F'
will still decrease, even if such critical configurations are encountered. By our initial assumption on the uniqueness of local
minimizers it can then be shown that, with e sufficiently small, critical configurations will never occur after a finite number
of iterations. Consequently % will exist for all subsequent iterations and theorem 4.1 can then be applied directly.
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