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In this supplementary material, we present the proofs of Theorems (1-3), the algorithm for learning the transition matrix
of LDSST, and the reconstruction error approach for classification in LDS-SC, LDSST-SC and covLDSST-SC. In addition,
we describe the details of the benchmark datasets that are applied in our experiments. Our dictionary learning algorithm for
anormaly detection is also explored in this supplementary material.

1. Proofs
Theorem 1. Suppose V1, Va,--- V€ S(n,00), and y1,y2, - ,ym € R, we have
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where VIV, = Li_lO;FOj Lj_T. OFO; can be computed with the Lyapunov equation defined in Equation (2), L; and L;
are Cholesky decomposition matrices for OF O; and O}Oj, respectively.

Proof. We denote the sub-matrix of the extended observability matrix O; as O;(t) = [CT, (C;A;)T, -+, (C;AH]T by

taking the first t rows. We suppose that the Cholesky decomposition matrix for O; is L; and denote that V;(t) = O, (¢)L;
Then, we derive
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where the limitation value O;; = lim;_, O;(t)70;(t) = O} O; can be computed by solving the Lyapunov equation
similar to Equation (2). O

The Frobenius distance || II(V1) — II(V2) ||% in Corollary (1) can be computed by setting y; = 1 and y» = —1 in
Theorem (1).

As demonstrated in [7], the embedding II(V) from the finite Grassmannian G(n, d) to the space of the symmetric matrices
is proven to be diffeomorphism (a one-to-one, continuous, and differentiable mapping with a continuous and differentiable
inverse); The Frobenius distance between the two points V; and V5 in the embedding space can be rewritten as

| ViV = VoV] [[7=2 sin® oy, (14)
k=1

where o, is the k-th principal angle of the subspaces between V; and V.

We denote the space of the finite observability subspaces as S(n, d) by taking the first d rows from the extended observ-
ability matrix. Clearly, S(n,d) is a closed subset of G(n, d). Hence S(n, d) maintain the relation in Equation (14); and the
embedding II(V) from S(n, d) to the space of the symmetric matrices is diffeomorphism.

For our case, S(n, 00) = limg_, o, S(n, d). In Theorem (1), the Frobenius distance defined in the embedding I1(S(n, 0o))
is proven to be convergent. Thus, we can obtain the relation between the Frobenius distance and the subspace angles in
Corollary (1), and prove that the embedding I1(S(n, 00)) is diffeomorphism in Corollary (2), by extending the conclusions
of S(n, d) with d approaching to the infinity.

In Section 4, we derive the dictionary learning problem by adding the symmetric constraints to the transition matrices of
the data and dictionary LDSs. Here we give the details. The tuple (A’, C’) is regarded to be equivalent to the tuple (A, C)
if and only if there exists an orthonormal square matrix P satisfying A’ = P"1AP and C’ = CP. Clearly, the equivalent
tuples derive the same target I'(r) defined in Equation (6). We have the following conclusion:

Lemma 1. If the transition matrix A, is symmetric, then any equivalent transformation of the tuple (AT, (_JT) is equivalent
to the same standard form given by (©,., C,.), where the matrix ©,. is diagonal with the elements being the eigenvalues of
the matrix A, the matrix C, = C, P71, and P, is the orthonormal square matrix.

Proof. If the matrix A, is symmetric, there exists an orthonormal square matrix P,. satisfying

A, = P! P,

= P;'O,P, (15)

where 0_,,71, cee ér,n are the eigenvalues of matrix A,
The equivalent transformation of the tuple (A, C,.) has the form (P~!A,P,C,P), where P is an orthonormal square
matrix. By denoting the equivalence relation as the symbol ”~”, we obtain

(PilA"rP) C’I”P) ~ (AT) (_j’l”)
= (P;'©,P,,C,)
~ ((:)r; CTPr_l)
= (0,,C,). (16)
Thus we conclude the proof. O

For consistency and unequivocalness, we ignore the difference between (AJT and C,, and denote (AJT as C, in the fgllmying
context. Lemma (1) shows that minimizing F(?:) can be equivalently performed on the space of the standard tuple (0,,C,).
We denote that the eigenvalues of the matrix A ; and 1}1 are 0; = [Hj,l, - ,0;,]and 0; = [6i1, - ,0;.] respectively.

The notation [C, ] denotes the k-th column of matrix C,..



Theorem 2. If the transition matrices of dictionary atoms and the data systems are all symmetric, then Equation (7) is
equivalent to

min C.1ES(r, k)[C, ]k
D CHEIEICE .
st. CIC,=1,; —1<0,,<1,1<k<n.
Here, S(rk) = Yo, S8 2.,2,,C;E(rjkCl — YV Z.,CF(rik)Cl; E(rjk) and
) —62 —62 —62 —62
F(r,i,k) are diagonal matrices: E(r,j k) = diag([%,-~ ,%D, and F(r,i k) =
o (1=62,)(1-62 ) (1-62,)(1-62 ,) o o
dlag([ (1*97)i,k9i,1)2 P (1*élj~,k91‘,n)2 ])

Proof. According to Lemma (1), we can replace the dictionary tuples {(A;, (_Jj)}jK:1 and the data tuples {(A;, C;)}¥, in

Equation (6) with the equivalent standard forms {(®;, C;)}/<, and {(©;, C;)}},, respectively. Therefore, the objective

function I'(r) is rewritten as
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The minimization problem defined in Equation (7) is equivalently transformed to the following form

min T'(r), st. CrC,=1,, —1<0,,<1,1<k<n, (19)

We denote the Cholesky matrices of the dictionary tuple (©;,C,) and the data tuple (©;, C;) as L; and L;, respectively.
Since L; L;r = @E ©;, the Cholesky matrix can be derived as

1
~ 1
(1_932',1)2

and similar calculation can be applied to derive L;.
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Similarly,
1LY eLCrCeL; " |7 = Y [CJICFE(ri,k)C[Clk, Q1)
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where F(r, 4, k) = diag(| (1—51:»,;661-,1)21 e (1—62,,601,71)2 D).

By substituting Equation (20) and Equation (21) into Equation (18), we obtain the objective function in Theorem (2). [J

Theorem 3. We denote [C,]_; € R™*(=1) gs the sub-matrix of C, by removing the column [Clk, ie. [Crlp =
[Crl1, -, [Colrt1, [Crlists -+ [Crlnl, and define W = [w, - -+, W _ni1] € R™¥(m=24D) g the orthonormal basis
of the orthonormal complement of [C,]_x. If u € RU"="+UX1 g the eigenvector of WS (r, k)W corresponding to the
smallest eigenvalue, then W is the optimal solution of [C,., for Equation (9).

Proof. Since [C,|]TC,, =0forall 1 <o < n,o # k, then [C,];, lies in the orthonormal complement of the space spanned
by the columns of [C,]_. Thus, there exists a vector u € R~ "+Ux1 gatisfying [C,]p = Wu and u™u = 1. The
objective function in Equation (9) becomes u™ (W7TS(r, k)W )u. Obviously, the optimal u for minimizing this function is
the eigenvector of the matrix WTS(r, k)W corresponding to the smallest eigenvalue. O

2. The Algorithm for Learning the Symmetric Transition Matrix of LDSST

As for LDSs, given the observed sequence, several methods [13, 12] have been proposed to learn the optimal solutions of
the system parameters, while the method presented in [3] is widely used. In this approach, the measurement matrix and the
hidden states can be estimated as C = U and X = SV by performing the singular value decomposition of the centered
matrix Y = [y; — ¥, -+ ,yr — ¥] = USV?T. Using the least-square method on the hidden state, the transition matrix
A is then computed as A = X1X:5, where Xy = [x17 . xT 1] X1 = [x2,---,x7], and T denotes the pseudo-inverse.
The state covariance is given by Q = BBT = T T Zt | Vie(v't)T where v/; = Bv; = x;41 — Ax;. By computing the

singular value decomposition Q = U’S’V'T, we obtain B = U’S""/2,

In our dictionary learning algorithm presented in Section 4, we constrain the transition matrices of the data systems to
be symmetric, meaning that we should use the LDS model with Symmetric Transition matrix (LDSST) to model the spatio-
temporal data. For LDSSTs, learning the measurement matrix C is identical with that of LDSs, while learning the transition



matrix A is different due to the imposed symmetric constraint. Recalling that, A is learned by solving the least-square
problem in the hidden space of LDS, we can derive A in LDSST as follows

min || X; — AX, %, st. AT = A, (22)

where Xg = [x1, -+ ,x7r-1], X1 = [X2, -+ ,X7]. Since A is symmetric, there exists an orthonormal square matrix P
satisfying A = POPT, where the matrix © is diagonal with the elements being the eigenvalues of the matrix A. Then
Equation (22) is reduced to

min || X, — POP'X, |7, st.PTP=1,. (23)

We first reduce the objective function in Equation (23) as follows

| X1 —POP X, |%
= Tr((X; —POP"X()(X] — X;POPT))
Tr (X;X] - POPTX X! — X; X POPT + POP XX POPT)
= Tr(X;X]) - 2Tr(POPTXXT) + Tr(POPTX X POP)T
Tr(X;X7T) — 2Tr(@PTX XTP) + Tr(@PTXOXTPQ)

= Tr(X,X{) -2 ([PIFX,X][P] 0k+z P} X, X{ [P]x)67, (24)

where 6}, is the k-th diagonal element of the matrix ©.
Ignoring the term Tr(X; X}“) that is irrelevant to both P and ©, Equation (23) is further reduced to

n

min P} XX [P)x)0; — 2 P X, XTI [P))0k,
P.® ’;([ Je Xo Z 0 PJ1.)0% (25)

st. PTP=1,.

We can break the minimization problem in Equation (25) into n sub-problems by updating the pair ([P]x, 8}) once at a
time with the values of other pairs {([P],, 6,)};_; . fixed. However, once the values of other columns {[P],};_; , ., are
given , the value of the column [P]y, is determined due to the orthonormal constraint of the matrix P. It means that no update
of [P]; can be performed if we break the problem in Equation (25) into sub-problems in this way.

Instead, we can find the locally-optimal solution of the minimization problem in the recursive process: we first update the
pair ([P]1,61) by relaxing the orthonormal constraint of the matrix P; once we obtain the optimal values of the next pair
([P]1, 01), we keep updating the values of the pair ([P]z2, 82) by imposing the constraint that the column [P] needs to lie
in the orthonormal complement of the updated column, i.e [P];. This process does not halt until we obtain the values of the
final pair ([P],, 0,,).

Given the updated pairs {([P],,8,)}*=1 where 2 < k < n, finding the optimal ([P], 8) in Equation (25) formulates
the sub-problem

min ([P XoXg [P]x)607 — ([P]; X1Xg [P]r)6k,
[Pk,0k (26)
st. [P[Ple=1, [Pl{[Pl,=0,1<o0<k-1

An efficient approach for solving this problem is to alternately update P, and 6. Since the objective function is a quadratic
function with respect to 8y, the optimal 6, is obtained by the following equation with Py, fixed

[PIEX XT [P
(7] = — 27
b PIX XD [P @7

Reversely, the optimal Py, can be easily derived in a similar way as the proof of Theorem (3), when the value of 6y, is
given. Specifically,

[Pl = Wy, - SE(W] (67X X] — 6, X1X( )Wy), (28)



Algorithm 2 Learning the symmetric transition of LDSST
Input: X, X,
Initialize the transition matrix A = X1X(T)
Perform the singular value decomposition A = USVT
Initialize Pand @ asP =Uand ® = S
Set the number of the iterations for optimizing each pair as I = nlters
for k =1tondo
if £ = 1 then
W, =1
else
Assign the value of the matrix W, with the orthonormal complement of [[P]y, - - - , [P]x_1]
end if
for:=1to I do

[PT; X1 Xg [Pk

0, = kT O0L %
g 2[P| XX} [Pls
[Plp = Wi -SE(WL(0:XoX{ — 0, X, XT)W})
end for
end for
A =POPT

where SF(e) denotes the function to find the smallest eigenvector of the input matrix; and Wy, consists of the orthonormal
basis of the orthonormal complement of the updated vectors {[P],}"*=1. When k& = 1, we can update [P]; with Equation
(28) by setting W, = 1.

For reader’s convenience, we list the procedures in Algorithm (2). Since updating each pair scales O(I(T — 1)n?), the
computational complexity of this algorithm is O(I(T — 1)n?). It is comparable with the complexity of learning parameters
in LDS, which scales O((T — 1)n? + n?).

Usually, the transition matrix A in LDSST (also in LDS) learned from the data sequences is not assured to be stable. A
practical but not deliberate method to guarantee A to be stable is to divide A with a factor, i.e. A’ = pA, where p > 1.
Practically, p € {1.1,1.2,1.3}. We can also add the stable constraint to Equation (23) to formulate a new delicate problem,
which is interesting but beyond the scope of the paper.

3. The Reconstruction Error Approach

The learned codes from sparse coding defined Equation (4) can be adopted as features for classification by computing the
reconstruction error of the dictionary atoms for each class, if the dictionary atoms are labeled. Denoting the dictionary atoms
labeled as class c to be {D,(f)}fz”l, where K, is the total number of the dictionary atoms, the reconstruction error of V is
defined as

K.
ee(V) = [ VVT -3 2D (D)T |3, (29)
j=1

where ZS:) is the coefficient associated with atom D,(:). The label of V is then determined as the class that yields the minimal
reconstruction error.
Equation (29) can be easily extended for the models that considering the state covariance by adding the reconstructed

errors of the covariance terms, i.e.

KC Kc
ee(V) = BIVVT -3 2D D) |3 +1-8) | 2-> 2707 |3, (30)

=1 j=1



where € and Q,(CC) denote the one-step covariances of the data and the k(°)-th dictionary, respectively; 3 is the weight
parameter.

Table 1. The specification of the benchmark datasets.

Datasets | #Sequences | Spatial size | #Frames | #Classes
Cambridge 900 320 x 240 | 37-119 9
UcsSD 254 48 x 48 42-52 3
CK+ 327 640 x 480 | 10-60 7
DynTex++ 3600 50 x 50 50 36
SD 100 27 x 18 | 325-526 10
SPR 97 8 x 16 |503-549 10
BDH 100 8x9 203-486 2

4. Benchmark Datasets

In this section, we give the detailed information of the benchmark datasets: Cambridge, UCSD, CK+, DynTex++, SD,
SPR, and BDH. For reader’s convenience, we provide the specification of the datasets in Table 1.

4.1. Cambridge

The Cambridge hand gesture dataset [8] consists of 900 images sequences of 9 gesture classes generated by 3 primitive
hand shapes and 3 primitive motions. Each class contains 100 image sequences performed by 2 subjects, with 10 arbitrary
camera motions and under 5 illumination conditions. Samples of the images are demonstrated in Figure 1. The spatial size
of each original image is 320 x 240. Similar to [6], we resize all images to be 20 x 20, and adopt the first 80 images of each
class for testing while the remaining for training.

Leftward Rightwa rd Contract

Figure 1. Examples of Cambridge. The image sequences are performed by 3 primitive hand shapes with 3 primitive motions.

4.2. UCSD

The experiment of scene analysis is performed on UCSD traffic dataset [2], which consists of 254 video sequences of
highway traffic with a variety of traffic patterns in various weather conditions. Each video is recoded with a resolution of
320 x 240 pixels for a duration between 42 and 52 frames. The clipped version that has been resized to the scale of 48 x 48
is applied in this experiment. The dataset is labeled into three classes with respect to the severity of traffic congestion in each
video. The total numbers of the sequences of heavy traffic, medium traffic and light traffic are 44, 45 and 165, respectively.
Four random divisions of this dataset have been performed by the authors in [2]. In each division, 75% of the sequences are
used for training and the rest 25% for testing.

4.3. CK+

The extended Cohn-Kanade (CK+) database is a development for research in automatic facial image analysis and synthesis
[9]. There are 593 sequences of 7 basic emotions (Anger, Contempt, Disgust, Fear, Happiness, Sadness and Surprise) across



Light Traffic Medium Traffic Heavy Traffic

Figure 2. Representative examples of the three classes in UCSD traffic dataset.

123 subjects. Each sequence begins with a neutral expression and proceeds to a peak expression. All sequences are AAM
tracked with 68-point landmarks for each image. Suggested by [4], we only use the 327 image sequences that have emotion
patterns for experiments. Besides, we utilize the extracted 68-point landmarks of each image as the input features.

Contempt Fear Sadness Anger Disgust Happiness Surprise

Figure 3. Examples of CK+. There are 7 basic emotions: Contempt, Fear, Sadness, Anger, Disgust, Happiness and Surprise.

4.4. DynTex++

Dynamic textures are video sequences of complex scenes that exhibit certain stationary properties in the time domain, such
as water on the surface of a lake, a flag fluttering in the wind, swarms of birds, humans in crowds, etc. The constant change
in the geometry of the these objects poses a challenge for applying traditional vision algorithms to these video sequences.
The dataset DynTex++ [5] is a variant of the original DynTex [11]. It contains 3600 videos of 36 classes each of which is
comprised of 100 videos with a fixed size of 50 x 50 x 50. In this paper, we apply the same test protocol as [5], namely, half
of the videos are applied as the training set and the other half as the testing set.

A
T

|

Figure 4. Representative classes of DynTex: Flowers, Sea, Naked trees, Foliage, Escalator, Calm water, Flags, Grass, Traffic, and Fountains.

4.5. Tactile Datasets

Recognizing the object that the robot grasps via the tactile series is an active research area in robotics [10]. The tactile
series obtained from the force sensors can be used to determine some properties of the object like shape and softness. For
our experiments, the recognition tasks are evaluated on three datasets: SD [14], SPR [10] and BDH [10]. SD contains 100



tactile series of 10 household objects grasped by the 3-finger Schunk Dextrous Hand (SDH). The SPR dataset composed
of 97 sequences has the same object classes as SD, but is generated with the 3-finger Schunk Dextrous Hand (SDH). BDH
consists of 100 tactile sequences generated by controlling the BH8-280 Hand to grasp 5 different bottles with water or without
water, as illustrated in Figure 5. The task is to predict whether the bottle is empty or is filled with water based on the tactile
sequences.

[

(al) (a2) (a3) (b1) (b2) (b3)

Figure 5. The used robot hands and the grasping objects in SD, SPR and BDH. (al) The 3-finger Schunk Dextrous Hand (SDH); (a2) The
2-finger Schunk Parallel Hand (SPH); (a3) Objects in SD and SPR: Rubber ball, Balsam bottle, Rubber duck, Empty bottle, Full bottle,
Bad orange, Fresh orange, Joggling ball, Tape, and Wood block. (b1) The BH8-280 Hand; (b2) Bottles without water; (b3) Bottles with
water.

5. Online dictionary learning for anormaly detection

We also explore our dictionary learning algorithm for anormaly detection of dynamical scene. To this end, we perform
experiments on the subset of the coastal surveillance dataset PETS2005 [1], i.e. ZOD4, which consists of 5100 images
collected by thermal cameras with a resolution of 640 x 480. These images record the dynamical waves of the sea and the
movement of a very small shipping container. There are some people on shore moving back and forth. ZOD4 is originally
employed for object tracking. Here we apply it for anormaly detection of the dynamical scene, such as the case when the
people move and obscure the view. We take 300 images numbered from 0200 to 0500 for analysis. These images are further
resized to 160 x 120. In this task, we adopt covLDSST-DL in an online-learning manner. Every 20 consecutive images
without overlap formulate a video. We split the current video into 100 sub-blocks with a spatial size of 16 x 12 and then learn
the dictionary of the sub-blocks. When the next video comes, we reconstruct it with the learned dictionary. The reconstructed
error defined in Equation (12), i.e. SLmean + (1 — B)Lcow, is utilized for evaluation. A sudden large error implies an obvious
anormaly condition. Then, we retrain the dictionary with the coming video until the last video arrives. Figure 6 shows that
covLDSST-DL can successfully detect the anormaly condition when the people emerge in the scene.

e e e
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Reconstructed Errors
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Figure 6. The errors of reconstructing each video with the online-learned dictionary on ZOD4. (n, 3,n,) = (5,0.8,4).
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