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1. Supplement Experiment 1 - Plot of Filter Weights for RFNiN-Scale 3rd-order
To show that there is no substantial difference between 3rd and 4th order basis networks with and without scale, below

we show a plot 1 of the weights from RFNiN-Scale 3rd-order as listed in Table 1 in the submission. It shows, that filter
weights are similarly distributed for a basis of order 3 as for order 4. Furthermore it can be observed that higher scales have
highest weights for first and second order filters, indicating that higher orders are mainly important for the lowest layer and
scale. Comparing figure 4 in the submission with this plot, we see that 3rd and 4th order basis weights after being trained on
ILSVRC2012-100 don’t show substantial differences, which was expected from their similar performance.
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Figure 1: Mean of filter weights and variances per layer for 10 basis filters in 4 scales, as trained on the ILSVRC2012-100
subset and listed in Table 1 as RFNiN-Scale 3rd-order. X and Y denote order of derivative in direction X and Y. The number
denotes the sigma for the corresponding Gaussian derivative filter. Higher layers have the highest activation in zero order
filters, indicating features being passed on from earlier layers. Whereas in the first layer most filters have high weights, in
higher layers only first and second order have high weights. The higher scales have the highest energy in first order filters.



2. Supplement Experiment 2 - Full Result Table MNIST

(%) Accuracy on Subset Scattering [1] RFNN (ours) CNN-A [5] CNN-B [6]

60000 99.57 99.55+−0.02 99.47 99.58+−0.02
40000 99.47 99.52+−0.04 99.35 99.50+−0.06
20000 99.42 99.39+−0.05 99.24 99.34+−0.03
10000 99.12 99.22+−0.09 99.15 99.17+−0.09
5000 98.97 99.06+−0.03 98.48 98.73+−0.12
2000 98.70 98.35+−0.09 97.47 97.84+−0.20
1000 97.70 97.69+−0.22 96.79 96.31+−0.42
300 95.30 96.32+−0.43 92.82 92.32+−0.77

Table 1: Results when training on various random subsets of MNIST: The table shows performance of the Scattering
network [1] and a published CNN [5]. We perform on par with Scattering for all subsets and thus outperform both CNNs
when training set size is small. As expected the performance gap between CNNs and Scattering/RFNN increases with lower
training set sizes.
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Figure 2: Corresponding figure to table 1 for side by side comparison.

Table 1 shows the full result table underlying figure 5 in experiment 2. The results for the Scattering network are taken
from [1] and the CNN-A results from [5]. These are compared to our RFNN based on the network in [6] and the identical
CNN-B architecture without structured RFs to illustrate, that our performance is not due to the architecture, but due to
structured receptive fields. The results for RFNN and CNN-B are averaged over 3 runs and include standard deviations.
Scattering is the state of the art method for small subsets of MNIST, while CNN-A is the best published CNN on this
problem. The Scattering network and RFNN perform on par and show clear superiority over the CNNs for small dataset
sizes.



3. Supplement Experiment 4 - Alzheimer’s Classification Data Details

Figure 3: As an example, two 2D slices of a pre-processed 3D brain scan from the ADNI cohort as used in experiment 4. The
steps performed were: 1) Re-orientation to standard MNI orientation. 2) Automatic cropping of empty border. 3) Bias-field
correction. 4) Linear registration to standard MNI space. 5) Brain extraction.

The data used in experiment 4, classification of Alzheimer’s diseased vs. cognititve normal subjects, were obtained
from the cohort of the Alzheimer’s disease Neuroimaging Intitiative (ADNI) [4]. The dataset is a standard benchmark for
neuroimaging classification methods [2]. We follow the experimental procedure outlined in the extensive review paper of
Cuingnet et al. [2] and use the exact same criteria for including subjects into the dataset, which results in the identical subset
of 150 training (81 cognitive normal, 69 Alzheimer’s diseased) and 149 testing images (81 coginitive normal, 68 Alzheimer’s
diseased). The criteria for including subjects into the train and test set are according to the ADNI protocol, the exact list of
subjects can be found in the supplementary material of [2]. We selected the raw scans and performed standard pre-processing
with the FSL library in default settings [3]. Specifically we applied the FSL anatomical pre-processing script to all brain
scans with no non-linear registration and no segmentation applied. Subsequently we applied the brain extraction tool of the
FSL library in default settings. An example of a pre-processed T1 MRI scan as used in the experiment can be seen in figure
3.

4. Deriving Independence between Parameters and Basis Layer
Here we show, that from RFNN backpropagation derivation directly follows separability of basis and weight layer. As

mentioned in the paper, a 2D filter kernel function F (x, y) in all layers, is a linear combination of m unique (non-symmetric)
Gaussian derivative basis functions φ

F (x, y) = α1φ1 + · · ·+ αnφm, (1)

where α1, ..., αm are the parameters being learned.
We learn the filter weights α by mini-batch stochastic gradient descent. We compute the derivatives of the loss function

E with respect to the parameters α by applying the chain rule
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where αl
ij are the parameters at layer l between the input feature map i and the output feature map j indexed by neuron n.

And tljn is the weighted sum of outputs of previous neurons. oljn is the nth neural value of output feature map j in the layer
l by applying the activation function to tljn(i.e. oljn = ψ(tljn)). ψ is the activation function (i.e. sigmod function in this
derivation). E = Loss(y, y∗) is the loss function, y is ground truth label and y∗ is the prediction.

For clarity, we split 2 into two parts, δljn and the derivative of the convolutional function Dl
ij .

The first part contain the first two term of 2 which is

δljn =
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, (3)



It is trivial to solve 3 if l is the last layer since oljn = y∗ in this case and the second term is the derivative of the activation
function (ψ′). For the inner layers, by applying the chain rule, δljn =

(
∑
k

∑
q

δl+1
kq (αij1 · φ1 + ...+ αijM · φM ))ψ′(tljn) (4)

Here, k is the feature map index of the layer l+ 1 and q is the neural index of feature map k on the layer l+ 1. ψ′(tljn) is
the derivative of the activation function.

The second part of equation 2 is only dependent on the parameters αij . Let ol−1i denote the output feature map of layer
l − 1 (which is also the output feature of layer l), the second part of the equation can be calculated as:
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∂αij
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ol−1i · ...
ol−1i · φM

 (5)

where φm ∈ {1, 2, 3, ...,M} denotes the basis functions up to the order M. By substituting the two terms in 2 with 4, we
have the derivative of the error with respect to all parameters in the network. The result is:
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wrt. δljn =

{
a if l is the last layer
b if l is an inner layer

(6)

where
a = (y − t)φ′(tljn)

b =
∑
k

∑
q

δl+1
kq (αij1 · φ1 + ...+ αijM · φM ))φ′(tljn)

(7)

Thus we can separate the basis and basis weights into two distinct layers. One is a fixed basis layer and the other is a 1x1
convolution layer, linearly recombining the basis outputs and learning the basis function weights.
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