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Recall the objective of Block Sparse Dictionary Learning
(BSDL) is

argmin
D,Z
||X −DZ||2F s.t.||Zi||0,α = K, i = 1 : N/β,

(1)
where Zi ∈ RD×β is a submatrix of Z, i.e. Z =[
Z1, ...,ZN/β

]
. Each Zi is divided into M/α blocks of

size α × β and ‖Zi‖0,α counts the number of blocks of
which at least one element is non-zero. α and β need to be
chosen such that D and M are perfectly divisible.

Definition 1. If any valid solution {D̂, Ẑ} to the objec-
tive in Equation 1 is ambiguous only up to a M × M
block permutation matrix Pα and a block-diagonal invert-
ible weighting matrix Λα such that D̂ = DPαΛα, and
Ẑ = Λ−1α P

T
α Z, we sayX has a unique BSDL.

The block permutation matrix is actually defined
as Pα = P ⊗ Iα where P is an arbitrary (M/α)× (M/α)
permutation matrix and Iα is a α × α identity matrix. The
block-diagonal invertible weighting matrix Λα has a α× α
block structure. We now ask the same question: what is
the sufficient and necessary condition for the uniqueness of
BSDL?

Theorem 1. There exist K
(
M/α
K

)2
K-block-sparse vectors

Z1, ...,ZN/β , i.e. N = βK
(
M/α
K

)2
, such that the unique-

ness of BSDL holds if and only if the matrix D satisfies the
block spark condition:

DZ1 = DZ2 for K-block-sparse Z1,Z2 ∈ RM×β

⇒ Z1 = Z2. (2)

Let’s first prove Theorem 1 in the case when β = 1 and
once it is proven, the general case β > 1 is simple to han-
dle: We can split sparse causes Zi into [zi1, . . . , z

i
β ], where

zij ∈ RD×1 and then DZi = D[zi1, . . . , z
i
β ] = D̂Ẑi =

D̂[ẑi1, . . . , ẑ
i
β ] is equivalent to Dzij = D̂zij , which degener-

ates to the situation where β = 1.

A simple case when K = 1: To better understand The-
orem 1 and prepare for the proof in full generality, let us
start from a simple case when K = 1. Denote eLi as a
L-dimensional column vector that has one in its i-th coordi-
nate and zeros elsewhere. For convenience, let L = M/α.
Now let us produce M block vectors

zij = (eLi ⊗ eαj ), i = 1, . . . , L, j = 1, . . . , α, (3)

which denotes that its j-th coordinate in i-th block is one
and zeros elsewhere, and L

(
α
2

)
block vectors zijk = zijk +

zijk, for any i and j 6= k.
Now we claim that the uniqueness of BSDL in this sim-

ple case can be achieved by these M +L
(
α
2

)
block vectors,

which is less than K
(
M/α
K

)2
assuming M � α.

Proof. There exists a matrix D̂ and 1-block-sparse vector
ẑij = (eLπ(i,j) ⊗ Iα)λij , for some mapping π : {1, ..., L} ×
{1, ..., α} → {1, ..., L} and λij ∈ Rα, such that

Dzij = D(eLi ⊗ eαj ) = D̂ẑij = D̂(eLπ(i,j) ⊗ Iα)λij , (4)

We claim that π(i, j) is only dependent on i, not j. From
Equation 4, we know that for any j 6= k, Dzijk = D(zij +

zik) = Dzij + Dzik = D̂ẑij + D̂ẑik = D̂(ẑij + ẑik). Since
zijk is 1-block-sparse, this implies that ẑij + ẑik should also
be 1-block-sparse. Therefore π(i, j) = π(i, k), that is, π :
{1, ..., L} → {1, ..., L}.

D(eLi ⊗ eαj ) = D̂(eLπ(i) ⊗ Iα)λij . (5)

Let us now prove that Λi = [λi1, . . . ,λiα] is invert-
ible. Let Zi = [zi1, . . . , z

i
α] and Ẑi = [ẑi1, . . . , ẑ

i
α].

From Equation 5, it follows that DZi = D[zi1, . . . , z
i
α] =

D[(eLi ⊗ eα1 ), ..., (e
L
i ⊗ eαα)] = D(eLi ⊗ Iα), and DZi =

D̂Ẑi = D̂(eLπ(i) ⊗ Iα)
[
λi1, ...,λiα

]
= D̂(eLπ(i) ⊗ Iα)Λi.

Therefore,

D(eLi ⊗ Iα) = D̂(eLπ(i) ⊗ Iα)Λi. (6)
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Due to the fact that D satisfies the block spark con-
dition, rank(D(eLi ⊗ Iα)) = α. From Equation 6,
rank(D̂(eLπ(i)⊗ Iα)Λi) = α. We know that rank(XY ) ≤
min(rank(X), rank(Y )), for any matrix X,Y . So
rank(Λi) ≥ α. As Λi ∈ Rα×α, rank(Λi) = α.

Now, let us show π is necessarily injective. Suppose
π(i) = π(j), with i 6= j, then from Equation 6, D(eLi ⊗
Iα) = D̂(eLπ(i) ⊗ Iα)Λi = D̂(eLπ(j) ⊗ Iα)ΛjΛ

−1
j Λi =

D(eLj ⊗Iα)Λ
−1
j Λi. Since D satisfies the block spark condi-

tion, which implies D can never map two different 1-block-
sparse vectors to the same measurement, this is possible
only if i = j. Thus, π is injective.

Let Pπ and D be generated by

Pπ =
[
eLπ(1) . . . eLπ(K)

]
,Λ =

Λ1 · · · 0
...

. . .
...

0 · · · ΛL

 .
(7)

Since π is injective,Pπ is a permutation matrix. Let us stack
Equation 6 from left-to-right on both sides, and it follows
that on left sides,

[D(eL1 ⊗ Iα), . . . ,D(eLL ⊗ Iα)] = D, (8)

and on right sides,

[D̂(eLπ(1)⊗Iα)Λ1, . . . , D̂(eLπ(L)⊗Iα)ΛL] = D̂(Pπ⊗Iα)Λ.
(9)

Hence, we proved Theorem 1 for the simple case, where
K = 1.

Preparation: We use the same notation reported in [2]:
Denote [L] as the set {1, . . . , L} and

(
[L]
K

)
as the K-

element subset of [L]. Moreover, let the dictionary D =
[D1, . . . ,DL] with Di ∈ RD×α, and denote span{DS} as
a subspace expanded by Di, i ∈ S.

To prove Theorem 1 in general situations, we offer a
lemma at first.

Lemma 1. Suppose that D satisfies the block spark condi-
tion and

κ :

(
[L]
K

)
→
(
[L]
K

)
(10)

is a mapping with the following property: for all S ∈
(
[L]
K

)
,

span{DS} = span{D̂κ(S)}. (11)

Then, there exist a permutation matrix Pκ ∈ RL×L and
an invertible block diagonal matrix Λ ∈ RM×M such that
D = D̂(Pκ ⊗ Iα)Λ.

Proof. Here we demonstrate, through induction, that if our
K = 1 case holds, therefore, K > 1 case should also
hold. First, let us show function κ is injective. Suppose

that S,S ′ ∈
(
[L]
K

)
are different and κ(S) = κ(S ′) holds.

Then by Equation 11, span{DS} = span{D̂κ(S)} =

span{D̂κ(S′)} = span{DS′}. As D satisfies the block
spark condition, every K + 1 block columns of D are lin-
early independent. From Lemma 2 (see below), it turns out
that S = S ′, which implies κ is injective.

Denote η = κ−1 as the inverse of κ. Fix S =
{i1, ..., iK−1} ∈

(
[L]

K − 1

)
, and set S1 = S ∪ {p} and

S2 = S ∪ {q} for some fixed p, q 6∈ S with p 6= q. Since
K < L, L− (K− 1) > 1, thus, it is always possible to find
such p and q. From Equation 11, we obtain:

span{Dη(S1)} = span{D̂S1}, (12)

span{Dη(S2)} = span{D̂S2}. (13)

Let us intersect Equation 12 and Equation 13, and from
Lemma 3 (see below) it follows that span{D̂S1} ∩
span{D̂S2} = span{Dη(S1)∩η(S2)}. Since span{D̂S} ⊆
span{D̂S1} ∩ span{D̂S2}, it follows that span{D̂S} ⊆
span{Dη(S1)∩η(S2)}. The number of the elements in
η(S1) ∩ η(S2) is K − 1, since η(p) 6= η(q), with p 6= q, by
injectivity of η. Moreover the number of the elements in S
is also K − 1, which implies that

span{D̂S} = span{Dη(S1)∩η(S2)}. (14)

The association S → η(S1) ∩ η(S2) from Equation 14 de-
fines a function σ :

(
[L]

K − 1

)
→
(

[L]
K − 1

)
, with property that

span{D̂S} = span{Dσ(S)}.
Finally, let’s show that σ is injective. Suppose S,S ′ ∈(

[L]
K − 1

)
, and σ(S) = σ(S ′), it follows that span{D̂S} =

span{Dσ(S)} = span{Dσ(S′)} = span{D̂S′}. As ev-
ery K block columns of D are linear independent, and κ is
injective, every K block columns of D̂ are also linear in-
dependent. From Lemma 2, it follows that S = S ′, which
implies σ is injective. Hence, let ξ = σ−1, with properties:
for all S ∈

(
[L]

K − 1

)
, span{DS} = span{D̂ξ(S)}.

Lemma 2. If any set of K + 1 block columns of matrix
D = [D1, . . . ,DL] are linear independent, then for S,S ′ ∈(
[L]
K

)
,

span{DS} = span{DS′} ⇒ S = S ′. (15)

Proof. Suppose that S 6= S ′ ∈
(
[L]
K

)
satisfying

span{DS} = span{DS′}. Then without loss of generality,
there is an i ∈ S with i 6∈ S ′, but atoms Di ∈ span{DS′},
which implies that the K + 1 block columns indexed by
S ′ ∪ {i} are not linear independent, a contradiction to the
assumption.

Lemma 3. If matrix D satisfies the block spark condition,
then for S,S ′ ∈

(
[L]
K

)
,

span{DS∩S′} = span{DS} ∩ span{DS′}. (16)



Proof. The inclusion “⊆” is trivial, so let us prove “⊇”.
Suppose a block vector x ∈ span{DS} ∩ span{DS2}. Ex-
press x as a linear combination of K atoms of D indexed
by S and, separately, as a combination of K atoms of D
indexed by S ′. By the block spark condition, these linear
combinations must be identical. In particular, x was ex-
pressed as a linear combination of atoms of D indexed by
S ∩ S ′, and thus is in span{DS∩S′}

Proof of Theorem 1 when β = 1: First, we produce a set of
N = K

(
M/α
K

)2
vectors si ∈ RαK in general linear position

(i.e. any subset ofK of them are linearly independent). One
possible strategy is to produce a “Vandermonde” matrix [3].
Next, we form K-block-sparse vectors z1, ..., zN by taking
si for the support value of zi where each possible support
set is represented K

(
M/α
K

)
times. We claim that these zi

always guarantee the uniqueness of BSDL.

Proof. Suppose there exists an alternate dictionary D̂ and a
set of K-block-sparse vectors ẑ1, ..., ẑN such that Dzi =
xi = D̂ẑi. As there are K

(
M/α
K

)
xi for each support

indexed by S, the “pigeon-hole principle”1 implies that
there are at least K vectors ẑi1 , ..., ẑiK using the same sup-
port S ′. Thus, span{xi1 , ...,xiK} ⊆ span{D̂S′}. By
the general linear position and the block spark condition,
span{xi1 , ...,xiK} = span{DS}. Therefore span{DS} ⊆
span{D̂S′}. As the dimension of span{D̂S′} is less and
equal to K, span{DS} = span{D̂S′}.

By Lemma 1, Theorem 1 is proved.

Discussion: A lower N = (K + 1)
(
M
K

)
is offered by

Hillar et al.’s probabilistic theorems in [2] saying that if
K + 1 K-sparse vector zi are randomly drawn from each
support set, and D satisfies the spark condition, thenX has
a unique SDL with probability one. We hypothesize that a
lowerN = (K+1)

(
M/α
K

)
is also enough for the uniqueness

of BSDL to hold with probability one, which will be a focus
of future work.
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1The pigeon-hole principle states that if n items are put into m con-
tainers, with n > m, then at least one container must contain more than
one item [1].


