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Recall the objective of Block Sparse Dictionary Learning
(BSDL) is

S.'[.||Zi||()7a:[(7 iZlZN/ﬁ,

(1)
where Z; € RP*# is a submatrix of Z, ie. Z =
[Zl, . ZN/ﬁ}. Each Z; is divided into M /« blocks of
size o x § and || Z;||p,o counts the number of blocks of
which at least one element is non-zero. « and 3 need to be
chosen such that D and M are perfectly divisible.

in||X -DZ||3
argmin | 17

Definition 1. If any valid solution {D,Z} to the objec-
tive in Equation [ is ambiguous only up to a M x M
block permutation matrix P, and a block-diagonal invert-
ible weighting matrix A,, such that D = DP,A,, and
Z= ALY PT Z, we say X has a unique BSDL.

The block permutation matrix is actually defined
as P, = P® I, where P is an arbitrary (M /a) x (M/«)
permutation matrix and I, is a o X « identity matrix. The
block-diagonal invertible weighting matrix A, has a a X «
block structure. We now ask the same question: what is
the sufficient and necessary condition for the uniqueness of
BSDL?

Theorem 1. There exist K (Mié‘*)2 K-block-sparse vectors

Zy,...ZN ie. N = BK(M,é“)Q, such that the unique-
ness of BSDL holds if and only if the matrix D satisfies the
block spark condition:

DZ, =DZ, for K-block-sparse Z1,Z5 € RMxS
= 71 = 2Z>. 2

Let’s first prove Theorem 1 in the case when 8 = 1 and
once it is proven, the general case 8 > 1 is simple to han-
dle: We can split sparse causes Z' into [z, ...,z 5] where

z; € RP*! and then DZ' = Dl[zi,..., B] =DZ =
Dzi,... , 23] is equivalent to Dz} = f)zg», which degener-
ates to the situation where 8 = 1.
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A simple case when K = 1: To better understand The-
orem 1 and prepare for the proof in full generality, let us
start from a simple case when K = 1. Denote el as a
L-dimensional column vector that has one in its ¢-th coordi-
nate and zeros elsewhere. For convenience, let L = M/c.
Now let us produce M block vectors

z; =(ef @e}), i=1,...,L, j=1....0a (@)
which denotes that its j-th coordinate in i-th block is one
and zeros elsewhere, and L (5) block vectors z/;, = 2%, +
2y, for any i and j # k.

Now we claim that the uniqueness of BSDL in this sim-

ple case can be achieved by these M + L (%) block vectors,
which is less than K(”Z”)Q assuming M > a.

Proof. There exists a matrix D and 1-block-sparse vector
7l = (eTLr(m) ® I,)A;j, for some mapping 7 : {1,...,L} x
{1,...,a} = {1,...,L} and A;; € R?, such that

Dz} = D(e} ® €}) = D2} = D(ek(, ; ® In)Aij, (4)

We claim that 7 (3, j) is only dependent on ¢, not j. From
Equation 4, we know that for any j # k, Dz, = D(z} +
z;) = Dz} + Dz, = ]f)i; + Dz = ]f)(i; + 2%). Since
2y, is 1-block-sparse, this implies that 2} + 2j, should also
be 1-block-sparse. Therefore 7(i,7) = n(i, k), that is, 7 :
{1,...,L} = {1,....L}.

D(ef ® e?) = lj(eﬁ(,) ® Ia)>\ij- (5)

Let us now prove that A; = [A;1,...,Nq] is invert-
ible. Let Z' = [z{,...,2}] and Z° = [2],...,2}].
From Equatlon 5, it follows that DZ ' =Dlzj,...,z,] =
D|(ef ®e1) - (ef ®e})] = D(ef ) and DZZ =

DZl — D( 7r(7,) ®I ) [Ail,...,
Therefore,

A’La] = D( T{'(Z) ® IQ)AZ‘.



Due to the fact that D satisfies the block spark con-
dition, rank(D(ef ® I,)) = «. From Equation 6,
rank(]j(eﬁ(i) ®I,)A;) = a. We know that rank(XY") <
min(rank(X),rank(Y)), for any matrix X,Y. So
rank(A;) > a. As A; € R¥* rank(A;) = a.

Now, let us show 7 is necessarily injective. Suppose
7(i) = mw(j), with i # 7, then from Equation 6, D(el ®
L) = D(ef;) ® L)A; = D(ef;) ® L)A;AT'A; =
D(ef®I,)A; ' A;. Since D satisfies the block spark condi-
tion, which implies D can never map two different 1-block-
sparse vectors to the same measurement, this is possible
only if ¢ = 7. Thus, 7 is injective.

Let P, and D be generated by

_ L
Pr = e

@)
Since 7 is injective, Py is a permutation matrix. Let us stack
Equation 6 from left-to-right on both sides, and it follows
that on left sides,

[D(ef®Ia)7'~-aD(e£®Ia)] :D7 (®)

and on right sides,

[D(ely®I.)Ay,. .., D(ek ,®I.)AL] = f)(Pﬂ®Ia2;X).
Hence, we proved Theorem 1 for the simple case, where
K =1. O

Preparation: We use the same notation reported in [2]:
Denote [L] as the set {1,...,L} and (') as the K-
element subset of [L]. Moreover, let the dictionary D =
[Dy,...,Dz] with D; € RP** and denote span{Dys} as
a subspace expanded by D;, i € S.

To prove Theorem 1 in general situations, we offer a
lemma at first.

Lemma 1. Suppose that D satisfies the block spark condi-

tion and
(@)

is a mapping with the following property: for all S € ([;'2]),

span{Dgs} = span{]A),ﬁ(S)}. an

Then, there exist a permutation matrix P, € REXL gnd

an invertible block diagonal matrix A € RM*M such that
D=D(P,®1,)A.

Proof. Here we demonstrate, through induction, that if our
K = 1 case holds, therefore, X > 1 case should also
hold. First, let us show function « is injective. Suppose

that S,8" € () are different and £(S) = x(S’) holds.
Then by Equation 11, span{Ds} = span{]j,{(g)} =
span{]f),,i(sl)} = span{Dgs/}. As D satisfies the block
spark condition, every K + 1 block columns of D are lin-
early independent. From Lemma 2 (see below), it turns out
that S = &', which implies & is injective.

Denote = k™! as the inverse of k. Fix S =
{i1,.i_1} € (K[L_]l), and set & = S U {p} and
Sy = S U {q} for some fixed p,q ¢ S with p # ¢. Since
K < L,L— (K —1) > 1, thus, it is always possible to find
such p and g. From Equation 11, we obtain:

span{D,s,)} = span{Ds, }, (12)

span{D,(s,)} = span{Ds, }. (13)
Let us intersect Equation 12 and Equation 13, and from
Lemma 3 (see below) it follows that span{Dgs,} N
span{Ds, } = span{D,(s,)nn(s,)}- Since span{Ds} C
span{Ds, } N span{Dsg, }, it follows that span{Ds} C
span{D,(s,)n(s,)}- The number of the elements in
1(S1) Nn(S2) is K — 1, since 1)(p) # n(q), with p # ¢, by
injectivity of 1. Moreover the number of the elements in S
is also K — 1, which implies that

Span{]f)g} = span{Dy,(s,)nn(s,) }- (14)

The association S — 1(S;) N n(S2) from Equation 14 de-
fines a function o : ( e 1) — ( e 1), with property that
span{Ds} = span{D(s)}.

Finally, let’s show that o is injective. Suppose S,S’ €
("), and o(S) = o(&), it follows that span{Dg} =
span{Dgs)} = span{Dy s/} = sparl{]js/}. As ev-
ery K block columns of D are linear independent, and & is
injective, every K block columns of D are also linear in-
dependent. From Lemma 2, it follows that S = &’, which
implies o is injective. Hence, let £ = o1, with properties:
forall S € (), span{Ds} = span{Dg(s)}. O

Lemma 2. If any set of K + 1 block columns of matrix
D = [Dq,...,Dy] arelinear independent, then for S, S’ €
)

span{Ds} = span{Ds/} = S=8". (15)

Proof. Suppose that S # & € () satisfying
span{Ds} = span{Ds }. Then without loss of generality,
there is an i € S with ¢ ¢ S’, but atoms D; € span{Dg-},
which implies that the K + 1 block columns indexed by
&' U {i} are not linear independent, a contradiction to the
assumption. O

Lemma 3. If matrix D satisfies the block spark condition,
then for S, 8" € (%),

span{Dgsns'} = span{Ds} Nspan{Dg}. (16)



Proof. The inclusion “C” is trivial, so let us prove “2”.
Suppose a block vector x € span{Dgs} Nspan{Dg, }. Ex-
press x as a linear combination of K atoms of D indexed
by S and, separately, as a combination of K atoms of D
indexed by S’. By the block spark condition, these linear
combinations must be identical. In particular, x was ex-
pressed as a linear combination of atoms of D indexed by
SN, and thus is in span{Dsns } O

Proof of Theorem 1 when 3 = 1: First, we produce a set of
N=K (Mlé")Q vectors s; € R*X in general linear position
(i.e. any subset of K of them are linearly independent). One
possible strategy is to produce a “Vandermonde” matrix [3].
Next, we form K -block-sparse vectors z1, ..., zy by taking
s; for the support value of z; where each possible support
set is represented K (Mlé“) times. We claim that these z;
always guarantee the uniqueness of BSDL.

Proof. Suppose there exists an alternate dictionary Danda
set of K -block-sparse vectors Zi, ..., 2y such that Dz, =
x; = Dz;. As there are K (/%) x; for each support
indexed by S, the “pigeon-hole principle”' implies that
there are at least K vectors Z;, , ..., Z;, using the same sup-
port 8. Thus, span{x;,,...,x;.} C span{Ds}. By
the general linear position and the block spark condition,
span{x;, , ..., X;, } = span{Dg}. Therefore span{Ds} C
span{Ds }. As the dimension of span{Dg} is less and
equal to K, span{Ds} = span{Dg}.

By Lemma 1, Theorem 1 is proved. O

Discussion: A lower N = (K + 1)(%) is offered by
Hillar et al.’s probabilistic theorems in [2] saying that if
K + 1 K-sparse vector z; are randomly drawn from each
support set, and D satisfies the spark condition, then X has
a unique SDL with probability one. We hypothesize that a
lower N = (K +1)("/*) is also enough for the uniqueness
of BSDL to hold with probability one, which will be a focus
of future work.
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'The pigeon-hole principle states that if 7 items are put into m con-
tainers, with n > m, then at least one container must contain more than
one item [1].



