Supplementary material for
ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements

Kuldeep Kulkarni1,2, Suhas Lohit1, Pavan Turaga1,2, Ronan Kerviche3, and Amit Ashok3

1School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ
2School of Arts, Media and Engineering, Arizona State University, Tempe, AZ
3College of Optical Sciences, University of Arizona, Tucson, AZ

Figure 1: The figure shows qualitative results on tracking for 8 videos. The red bounding box is the location for ReconNet+KCF at 0.01 measurement rate, and the blue bounding box is the location for original videos + KCF.

1. More results

Reconstruction from noiseless CS measurements: In table 1 of the main paper, we presented the peak signal-to-noise ratio values for 4 of the 11 test images. Here, the PSNR values (in dB) for the remaining 7 test images for various measurement rates are presented in Table 1.

Real-time high level vision from CS imagers: In the section 6 of the main paper, we showed the variation of average precision for 15 publicly available videos [5] (BlurBody, BlurCar1, BlurCar2, BlurCar4, BlurFace, BlurOwl,
The reconstructed frames do not retain fine-grained information to reliably track medium to large sized targets. This indicates that the performance of ReconNet+KCF at measurement rate of 0.01 and original videos + KCF. Here, in figure 1 we present qualitative results for 8 of those videos by overlaying the reconstructed frames with the original frames. The bounding boxes predicted by ReconNet+KCF (in red) and original videos+KCF (in blue). It can be seen that for the videos where the target object is of reasonably large size, ReconNet+KCF performs nearly as well as original videos + KCF. This indicates that the reconstruction output by ReconNet retain enough semantic information to reliably track medium to large sized targets. However, for very small sized targets, ReconNet+KCF performs poorly indicating that at measurement rate of 0.01, the reconstructed frames do not retain fine-grained information in the images.

References

