
Appendices

A. Minimal Filtering Algorithms

In this supplemental material we will first illustrate how
minimal filtering algorithms are derived, using F (4, 3) as an
example, which is more complex than the typical textbook
example. The polynomial math gets fairly tedious for large
filters, so we used Mathematica to perform the symbolic
math.

Then in the following sections, we give transforms for
the algorithms that were mentioned in the paper but not ex-
plicitly detailed due to space limitations.

A.1. F(4,3)

Recall the minimal filtering algorithm F (4 ⇥ 4, 3 ⇥ 3)

is created by nesting 1D algorithm F (4, 3) with itself. In
this section we derive F (4, 3) using the Chinese Remainder
Theorem technique pioneered by Winograd, using a nota-
tion similar to [2, p. 155].

The 3 element filter g and 4 element signal d can be rep-
resented as polynomials,

g(x) = g2x
2
+ g1x+ g0

d(x) = d3x
3
+ d2x

2
+ d1x+ d0

(24)

and the linear convolution g ⇤ d is equal to the coefficients
of the polynomial product

y(x) = g(x)d(x) (25)

For polynomial m(x) of degree 6, this is equal to

y(x) = g(x)d(x) mod m(x) (26)

If instead m(x) is of degree 5, we can write

y(x) = g(x)d(x) mod m(x) +Rm(x)[y(x)] (27)

where Rm(x)[y(x)] is the remainder of y(x) divided by
m(x).

We choose

m(x) = m(0)
(x)m(1)

(x)m(2)
(x)m(3)

(x)m(4)
(x)m(5)

(x)

= x(x� 1)(x+ 1)(x� 2)(x+ 2)(x�1)

(28)

which uses the popular convention of writing x�1 in place
of Rm(x)[y(x)].

The residues of g(x) and d(x) with respect to m(i)
(x)

are

g(0)(x) = g(x) mod m(0)
= g0

g(1)(x) = g(x) mod m(1)
= g0 + g1 + g2

g(2)(x) = g(x) mod m(2)
= g0 � g1 + g2

g(3)(x) = g(x) mod m(3)
= g0 + 2g1 + 4g2

g(4)(x) = g(x) mod m(4)
= g0 � 2g1 + 4g2

g(5)(x) = g(x) mod m(5)
= g2

(29)

and

d(0)(x) = d(x) mod m(0)
= d0

d(1)(x) = d(x) mod m(1)
= d0 + d1 + d2 + d3

d(2)(x) = d(x) mod m(2)
= d0 � d1 + d2 � d3

d(3)(x) = d(x) mod m(3)
= d0 + 2d1 + 4d2 + 8d3

d(4)(x) = d(x) mod m(4)
= d0 � 2d1 + 4d2 � 8d3

d(5)(x) = d(x) mod m(5)
= d3

(30)

We can represent the residues d(i)(x) in matrix form as

A =

2

6666664

1 0 0 0

1 1 1 1

1 �1 1 �1

1 2 4 8

1 �2 4 �8

0 0 0 1

3

7777775
(31)

Define M (i)
(x) = m(x)/m(i)

(x), yielding:

M (0)
(x) = x4 � 5x2

+ 4

M (1)
(x) = x4

+ x3 � 4x2 � 4x

M (2)
(x) = x4 � x3 � 4x2

+ 4x

M (3)
(x) = x4

+ 2x3 � x2 � 2x

M (4)
(x) = x4 � 2x3 � x2

+ 2x

m(x) = x5 � 5x3
+ 4x

(32)

Construct the matrix B such that column Bi is the coeffi-
cients of M (i�1) and column B6 is the coefficients of m,
yielding:

B =

2

6666664

4 0 0 0 0 0

0 �4 4 �2 2 4

�5 �4 �4 �1 �1 0

0 1 �1 2 �2 �5

1 1 1 1 1 0

0 0 0 0 0 1

3

7777775
(33)

In order to apply the Chinese Remainder Theorem, we
must solve for n(i)

(x), N (i)
(x), such that

n(i)
(x)m(i)

(x) + n(i)
(x)M (i)

(x) = 1

(34)



yielding:

n(0)
(x) =

1

4

�
5x� x3

�

n(1)
(x) =

1

6

�
x3

+ 2x2 � 2x� 6

�

n(2)
(x) =

1

6

�
x3 � 2x2 � 2x+ 6

�

n(3)
(x) =

1

24

�
�x3 � 4x2 � 7x� 12

�

n(4)
(x) =

1

24

�
�x3

+ 4x2 � 7x+ 12

�

N (0)
(x) =

1

4

N (1)
(x) = �1

6

N (2)
(x) = �1

6

N (3)
(x) =

1

24

N (4)
(x) =

1

24

(35)

Matrix G is constructed by setting row Gi equal to the
coefficients of g(i�1) multiplied by N (i�1):

G =

2

6666664

1
4 0 0

� 1
6 � 1

6 � 1
6

� 1
6

1
6 � 1

6
1
24

1
12

1
6

1
24 � 1

12
1
6

0 0 1

3

7777775
(36)

A.2. F(3x3,3x3)

A minimal algorithm for F (3, 3) uses the matrices:

BT
=

2

66664

2 �1 �2 1 0

0 �2 �1 1 0

0 2 �3 1 0

0 �1 0 1 0

0 2 �1 �2 1

3

77775

G =

2

66664

1
2 0 0

� 1
2 � 1

2 � 1
2

� 1
6

1
6 � 1

6
1
6

1
3

2
3

0 0 1

3

77775

AT
=

2

4
1 1 1 1 0

0 1 �1 2 0

0 1 1 4 1

3

5

(37)

The algorithm uses 5 multiplications, while standard al-
gorithm uses 3⇥ 3 = 9. The data transform uses 9 floating
point instructions, the filter transform uses 7, and the inverse
transform uses 7.

Applying the nesting formula (8) yields a minimal algo-
rithm for F (3⇥ 3, 3⇥ 3) using 5⇥ 5 = 25 multiplies. The
standard algorithm uses 3⇥ 3⇥ 3⇥ 3 = 81 multiplies. This
is an arithmetic complexity reduction of 3.24X .

The data transform for the 2D algorithm uses 9(5+5) =

90 floating point instructions, the filter transform uses 7(5+
3) = 56, and the inverse transform uses 7(5 + 3) = 56.

A.3. F(6x6,3x3)

F (6⇥ 6, 3⇥ 3), has quite large coefficients.

BT
=

2

66666666664

�36 0 49 0 �14 0 1 0

0 36 36 �13 �13 1 1 0

0 �36 36 13 �13 �1 1 0

0 18 9 �20 �10 2 1 0

0 �18 9 20 �10 �2 1 0

0 12 4 �15 �5 3 1 0

0 �12 4 15 �5 �3 1 0

0 �36 0 49 0 �14 0 1

3

77777777775

G =

2

66666666664

� 1
36 0 0

1
48

1
48

1
48

1
48 � 1

48
1
48

� 1
120 � 1

60 � 1
30

� 1
120

1
60 � 1

30
1

720
1

240
1
80

1
720 � 1

240
1
80

0 0 1

3

77777777775

AT
=

2

6666664

1 1 1 1 1 1 1 0

0 1 �1 2 �2 3 �3 0

0 1 1 4 4 9 9 0

0 1 �1 8 �8 27 �27 0

0 1 1 16 16 81 81 0

0 1 �1 32 �32 243 �243 1

3

7777775

(38)

This minimal algorithm for F (6, 3) uses 8 multiplies.
The data transform uses 26 floating point instructions, the
filter transform uses 13, and the inverse transform uses 20.

By nesting, F (6⇥ 6, 3⇥ 3) uses 8⇥ 8 = 64 multiplies,
while the standard algorithm uses 6⇥6⇥3⇥3 = 324. This
is an arithmetic complexity reduction of 5.06X .

The 2D data transform uses 26(8 + 8) = 416 floating
point instructions, the filter transform uses 13(3+8) = 143,
and the inverse transform uses 20(8 + 6) = 280.


