A. Appendix

We use the same notations as in the main paper. We also use the notation (z); = max{0,z}, and )\f(A) (resp. )\}(A))
for the i-th largest (resp. the j-th smallest) eigenvalue of A.

A.1. “Worst-case empirical risk'' definition

We give here the definition of “worst-case empirical risk” since the term is not standard. By using the formulation of [17,
Section 3.1], if we consider that the prediction rule fy; (Xi) = argmaxs cr (C, X;MX,") is always a singleton, then

the empirical risk of our relaxed problem is defined as (we omit the usual scale factor - which is a constant):

RA(f) =Y A(Ci,Cy) where C; € fyy pni (X) (22)
i=1
If there are multiple solutions (i.e. if f), o (X;) is not always a singleton), the empirical risk is not well-defined. An open

question is how to select C; from multiple possible solutions. Since we are more interested in learning M than predicting C;
in our paper, we leave that question aside. We then take into account the fact that the prediction rule may not be a singleton
and consider what we call the “worst-case empirical risk”:
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Z max (A(Cj, Cy) + 1i(M; Cy)) (23)
Pt (Xi) = i eﬁ"l

where ¢; is defined in Eq. (14). Among all the possible predictions in f), cr i (X;), we then consider the prediction C; that
returns the largest (i.e. worst) possible A value.

We note that Eq. (22) and Eq. (23) are equivalent if f), cri is always a singleton.

Eq. (13) then optimizes M > 0 to minimize this “worst-case empirical risk”.

A.2. Convex upper bound of our problem

We show here that the convex surrogate in Eq. (10) is an upper bound of Eq. (13).
Since R(M) = ||M]||2, we have VM = 0,¥A > 0, \R(M) > 0. Eq. (10) is then an upper bound of
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ince argmax s - »n; 5D'¢ 1Y = n (X;) C LY and C; € L7, we have by the definition o ni (X;):
Si Geeri{Co XiMXT) = foy pri (Xi) © L} and G € L}, we have by the defi f Fag en (X

VB € fu omi(Xa), (B, X;MX]") > (C;, X;MX]") & (B—-C;, X;MX,") >0. (25)

‘We then have for all 7 and for all M > 0:

max (A(Cy, Ci) 4 1i(M; Cy)) = max A(Cy,Cy)

CieLy éiEfM,LZ?" (Xi)

£;(M;Cy)

< max  (A(C;,Cy) + (Ci — Cy, XiM X)) see Eq. (25)
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This completes the argument that Eq. (10) is an upper bound of Eq. (13).



A.3. Proof of Theorem 3.1

Proof. First recall that in problem (13) we use
A(C,0) = [IC = C|I* = |C|* = 2(C,C) +||C*.

Recall the partition matrix set £} in (7), we can rewrite (13) equivalently as:

max X min (C,CY, (26)
M»0,tr(M)=1 Gcargmax(A,XMXT)
AeLy

where we have used the fact that for all C € L} we have ||C||> = tr(C?) = tr(C) = k, which is a constant that can be
dropped (i.e. we have A(C, C) = ||C||> 4+ k — 2(C, C)).

Let U € R™ * be a matrix with orthonormal columns such that Px = X X' = UU " (we note that s = rank(X)), and
V € R™"*("=%) a matrix with orthonormal columns that contains the orthogonal complement of the column space of U (to
simplify the discussion, we say that V' is the orthogonal complement of U).

We recall that we note = min{k, rank(PxCPx)}.

e Suppose first rank(Px CPx) = rank(U "CU) > k (i.e. r = k), then obviously rank(U) = s > k. Since

C € argmax (A, XMXT), 27)
AeLy

the column space of C must be included in the column space of X. Indeed, we have:
(C,XMXT) = (XXTCXXT, XMXT)=(UUTCUUT, XMXT) (28)
We can then write the rank-% orthogonal projection matrix C=HH" =H (HTH)'HT € L7, where H = UQ and

rank(H) = k for some matrix with orthonormal columns Q € R**F (e. QQT € L3). Thus, the objective value in (26) is
upper bounded by:

k
A _ T T < T _ J, T )
(€,C) = (QQT,UTCU) < max(A,UTCU) ;MU cU) (29)
Now if M oc XT(PxCPx)(XT)T, we have
XMXT o XXT(PxCPx)uy(X)TXT =(UUTCUU )y =U(UTCU) 1)U, (30)

Since rank(XMX ") =k, far.c(X) is a singleton. By decomposing X M X T U(UTCU)%Q(UTCU)%QUT, we can
write:

Fue(X)={C}, C=UWTcv) J(wTeu)juTuwT ey HtwTeu)uT 31)

= U(UTCU) R (UTCU)w) U Cu)uT (32)

We then find (C, C) = Zle /\f(UTCU ), i.e. the upper bound is achieved, proving the optimality of M for this case.
Even if the approximation (P xCP x) ) is not unique in some cases, all the approximations written in this form return the
same optimal objective value (i.e. Eq. (29)).

o If, on the other hand, rank(P x CPx) = rank(U " CU) < k (i.e. r = rank(Px CP x)), then we can choose C=HHT,
where H = [UQ,VZ], and Q € R**% and Z € R(=$)x(k=$)+ are matrices with orthonormal columns. As already
mentioned, V € R™*("~%) is the orthogonal complement of U, the choice of Z then does not depend on M (because the
column space of X M X T is included in the column space of U which is orthogonal to the column space of 1, and C depends



on M only through the matrix X M X ). With this choice we see that the objective value in (26) is upper bounded by:

(C,C)=(QQT,UTCU)+ (zZzT,vTCV) (33)
(k—s)+
<te(UTCU)+ Y A(vTev). (34)
j=1

(ZZT, VTCV) = minAel:E:ﬂ; (A, VTOV) = Zg’;s)* /\JT-(VTCV) comes from the fact that we try to minimize (C, C)
=3,

in (26) and Z does not depend on M. Actually, since Zlgl:ls” )\}(VTC’ V') is a constant that does not depend on the learned
variable M, it can be dropped from the problem along with the submatrix V Z in H (i.e. we can equivalently consider that
H = UQ since it is the only part that depends on the variable M that we optimize, the submatrix V' Z is necessary only to
satisfy the constraint rank(C') = rank(H) = k).

By noting that (PxCP X)(rank(chpx)) = PxCPx, a similar argument as in the previous case shows again the choice

M o XT(PxCPx)(XT)T = XTC(XT)T achieves the upper bound in Eq. (34) and is thus optimal. [J
A 4. Proof of Theorem 3.2

Proof. If rank(C) < k, then obviously rank(PxCPyx) < rank(C) < k, hence r = rank(PxCPx). Therefore,
XJf(PXCPX)(r)(X‘L)—r = XTPxCPx (X" T = XTC(xHT. O

A.5. Similarity with linear regression

It is worth noting that Theorem 3.1 also covers cases where the solution is not equivalent to an intuitive linear regression
problem, hence is more general. Moreover, we derived our solution from the large-margin structured output SVM framework
by choosing a special loss ¢;. In particular, the prediction rule (see Eq. (12)) equipped with the learned metric can be used on
test sets (see Eq. (18)), while it is not clear from the linear regression formulation (see Eq. (16)) how one can use the learned
metric on test sets to perform clustering. Therefore, we regard the similarity to linear regression as a delightful coincidence,
which sheds new light on this classical approach from the perspective of large-margin prediction.

A.6. Technical details and complexity
A.6.1 Training the metric

We explain why the complexity to compute the matrix L = W = XT.J € R¥™* where M = LLT, X € R"*%and J € R"**
is O(ndmin{n, d}).

e The complexity of computing the pseudoinverse X € R?*™ is O(nd min{n, d}) (this complexity can be improved if
X is low-rank or sparse).

e The calculation of J € R™** such that JJT = Y'Y can be done efficiently from a labeled assignment matrix Y €
{0,1}™** with Y1 = 1. By noting y, € {0,1}" the c-th column of Y, the c-th column of J can be written j, =
y./ max{1,|y.l|} =y./ max{1,/y] 1}. The complexity of computing J is then in O(n) due to the sparsity of Y.

e J € R™*F has the same number of nonzero elements as Y € R™*F, i.e. (at most) one per row, and thus (at most)
n in total. J is then sparse. Once the matrix X1 € R?*" has been computed, the matrix multiplication Xt.J would
require a complexity of O(ndk) in a naive implementation. Let us note g. = ), Y;. the number of observations in the
c-th cluster, the complexity to compute the c-th column of X .J is O(dg.) due to the sparsity of .J. The complexity to
compute all the columns of X T.J is then O(Zf:1 dg.) =0(d 25:1 qc) = O(nd).

The computation of M = LLT = WWT is not necessary (see Section 3.4). The training complexity is then
O(ndmin{n, d}) and does not depend on k.

A.6.2 Complexity of combining all the data together

The complexity of our training algorithm is O(nd min{n, d}) where d is the space dimensionality and n = »_." | n; where
n; is the number of observations in the i-th training dataset. The complexity of combining all the data together is linear in
n (and thus in each n;) if n > d (and quadratic if n < d), i.e. linear in the size of the problem. Moreover, since d is fixed,
combining more and more data increases the chances to have n > d.



