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Proof of Proposition 1. The proof follows from a direct cal-
culation. We start with the definition of the biconjugate:

p(u) = sup (u,v)— (lrgiigk pi(“)) "

vERFK

sup (v, v) — max pj(u).

This shows the first equation inside the proposition. For
the individual p; we again start with the definition of the
convex conjugate:

pi(v)= sup (al;+(1—a)l;_1,v)—
ael0,1]

playipr + (1 —a)y) @

= sup (1;_1,v) +av; — p(7;).
agl0,1]

Applying the substitution 7% = avy;41 + (1 — a)7; and

_ ’Y?_’Yz : .
consequently o = P— yields:
. Vi =
pi(v) = sup (1;1,v) + ——v; — p(7{")
i€l Yi+1 — Vi
Y
=(Li—1,v) = ————v; + sup 7 ———— —p(7{")
Yi+1 — Vi yoer; Yi+1 — Vi
. v,
=1 1,0) — — v, + (p+ br,)" (>
Yi+1 — Vi Yi+1l — Vi

3)
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Proof of Proposition 2. It is easy to see that

i—1
R e (Z " PM) |

=1

To compute the biconjugate, we write any input argument

u = Zle 1;1;41, and use o** = p** to obtain

1—1
p™(u) = sup(u,v) - max (Z v — p(%))

=1
k i ie1
= supZ/,Li Zvl - EglaxL} <Z v, — p(%)) .
Yvoi=1 =1 T =1

Instead of taking the supremum of all v, we might as well
take the supremum over all vectors p with p, = 23:1 ;.
Care has to be taken of the first summand in the second term

of the above formulation. We obtain

k i i—1
sgpzui Zvl B ie{rnlf.l.}fL} (Z v = p(%)) '

i=1 =1 =1

k
=sup ) jup; — _max max(p; = p(is1), —p(n));
Poim ’

ie{l,....,k}
k
ZZM p(Yi+1)
i=1
k
+ su iP; — max max(p;, — )
ppZup emax, max(p;, —p(1))

i=1



Note that for any p; being negative, the supremum imme-
diately yields infinity by taking p, — —oo. Similarly,
if Y8 > 1 yields inﬁnity by taking all p, — oco.
For p; > 0 for all 4, and Z _1 M < 1, we know that

Zi:l pip; < (max;p;) Zi:l M-
obtained by choosing p; = max; p, for all /, we can reduce

Since equality can be

the above supremum to
k
sup ( Z/“ — max(z, —p() ) (1 — Zm)
Z =1

where we used that the supremum over z is attained at z =
—p(7y1) (still assuming that Zf=1 i < 1). Let us now undo
our change of variable. It is easy to see that uy = u, and

i = uw; —u;yq fore =1, ...,k — 1. The latter leads to

k k
Zﬂi p(is1) + (1 - Zm) p(n)
P(Ve+1)ur, + Z

= P('Yl) + (u,r},

—uiy1) p(Yip1) + (1 —w1)p(71)

forr; = p(vit1) — p(7i)- Considering the aforementioned

constraints of y; > 0, and Z _1 i < 1, we finally find

o)+ (u,r)y if 1>wup > ...

0, else.

Zuk207

p(u) =

O

Proof of Proposition 3. For the special case k£ = 1 the bi-
conjugate from (1) is just:

() = supuv — pi(v) = pi*(w). @)

veR

Now using the first line in (3), p7™ becomes:

*%

p1"(u) = sup uv — sup 1o
veER ~yel Y2 — N1

v —p(7)

zsupv(u—i— > —sup vy —p(7)
veER T2 M yelT 72— TN
supv(u+ n >p*< Y )

veER Y2 =M T2 =N
= sup B(y +u(y2 —m)) — p* (D)

ve
=p"(n +uly2 —m)),

(5)

where we used dom(p) = I as well as the substitution v =

(2 —m)v. O

Proof of Proposition 4. We compute the individual conju-

gate as:
®;(q)= sup (9,q) — ®i;(q)
geRka
= s 5 10 —17 S B Y
sup sup <q7( ) > Yi "Yj |V|2

a,B€[0,1] veRE

= sup sup (q' (17 —17),0) — |42 = ]| vl

a,B€[0,1] vERE

= sup sup (¢ (1F — 1), v) — |72 = ]| Ivl2.
a,B€(0,1] veRY
(6)

The inner maximum over v is the Conjugate of the /5-

norm scaled by ‘% - ‘ evaluated at g (1“ —17 ) This

o (i) <
2

oo, else.

yields:

Ve =y
Va, 5 € [0,1],

)

For the overall biconjugate we have:

o** = g — max P,
(9) qe§£d<q79> e (@)
(8)
= sup (q, 9g).
qeR

Since we have the max over all 1 < 7,7 < k conjugates,
the set /C is given as the intersection of the sets described by
the individual indicator functions ®; ;:

IC:{qE REXd |
g (12 = 1)) <o =) ©)
V1<i<j<k Va,ﬁe[o,l]}.
0

Proof of Proposition 5. First we rewrite (9) by expanding

the matrix-vector product into sums:

) (10)

V1<j<i<k, VYa,B€0,1].

Since the other cases for 1 < i < 7 < kin (9) are equivalent
to (10), it is enough to consider (10) instead of (9).

Lety; <7 < ...
the equivalences:

< 7. In the following, we will show



(10)
~
Zqz <Yig1 =, V1< j<i <k 1)
=i |,
=
lgil2 < vig1 — v, V1 <i<k. (12)

The direction “(10) = (11)” follows by setting o = 1 and
B = 01in (10), and “(11) = (12)” follows by setting i = j
in (11).

The direction “(12) = (11)” can be proven by a quick
calculation:

Yoa| <D el <D v — =i = (13)
1= 1= 1=

2

It remains to show “(11) = (10)”. We start with the case
j =1

laq; = Bayl2 = |a = Bllgil2
< o= Bl(vig1 — 1)
= (i1 — i) — (Vit1 — %) B|
= [(a = B) (vt — W) = 1 = 7|

(14)

Now let j < 4. Since y; < -; it also holds that fyf <7,
thus it is equivalent to show (10) without the absolute value
on the right hand side.

First we show that “(11) = (10)” for 8 € {0,1} and
ac[0,1]:

Z q +ag; +

l=j+1

(1P,

2

Y g+ (1-B)g;| +algl (15)

I=j+1 )
for =0 or =1 8
< Yi = oY1 — )

=75 =

Using a similar argument we show that, using the above,

“(11) = (10)” for all o, 8 € [0, 1].

Z q +aqz 1_ﬁ)

l=7+1 9
Z a +aq;| +(1-0)lg;l2 (16)
I=j+1

usmg(?ﬁ—l . - -
< Y =1+ (1= B)(Vit1 —v5)

=7 =



