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Overview
In this supplemental material, we analyze the proposed kernel estimation method and demonstrate why it is able to estimate

blur kernels from blurred images with outliers in Section 1. We further show that the proposed algorithm can be applied to
improve existing methods in Section 2. We discuss the limitations of the proposed method in Section 3. We quantitatively
evaluate the proposed method on the dataset with outliers and images with random noise in Sections 4 and 5, respectively.
We further evaluate the proposed method on natural image deblurring datasets [12] and [10], and show that it performs well
against the state-of-the-art deblurring methods in Section 6. Section 7 presents some challenging examples with comparisons
of state-of-the-art deblurring methods. The code and dataset are available at our project website.

1. Effectiveness of Proposed Method
As mentioned in Section 4.1 of the manuscript, most state-of-the-art deblurring algorithms fail to generate blur kernels

when blurred images contain outliers. Thus, we propose an effective outlier detection method to remove outliers from
extracted salient edges. Figure 1 shows an example which illustrates how the proposed method generates blur kernels from
blurred images with significant outliers.

To further understand the proposed algorithm, we generate a synthetic example as shown in Figure 2(a) and show some
intermediate results in Figure 2. The detected outliers are refined over iterations.

Difference from Outlier Handling Methods [2, 18]: As discussed in the manuscript, the outlier handling methods [2, 18]
mainly focus on the non-blind image deblurring, and both approaches use the blind deblurring method [1] to estimate blur
kernels on the image patches without outliers. However, it is difficult to select a good image patch when the outliers are
uniformly distributed in a blurred image (e.g., impulse noise). Without good kernel estimates, clear latent images cannot be
recovered well [2, 18]. In the manuscript, we show that our method improves kernel estimation of [1], which accordingly
improves the performance of [2, 18]. We note that [2] involves an outlier detection step as an EM approach is developed. To
further clarify the difference, we use our kernel estimates together with the outlier detection result of [2] for fair comparisons.
The results are shown in Figure 3. As the proposed outlier detection method is gradually refined in a coarse-to-fine framework
(See Figure 2), it is able to detect the outliers and more robust than [2]. In contrast, method [2] is not able to detect some
saturated regions as shown in Figure 3(b).

Effectiveness of Proposed Final Latent Image Estimation: The proposed final latent image estimation is in spirit similar
to the proposed outlier detection method. We note that the weight of the first term in (16) in the manuscript is the outlier
detection function. Therefore, it is able to detect outliers and facilitates the latent image restoration (See Figure 4).
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(a) Blurred image (b) Salient edges∇S extracted by (9) (c) Our detectedM (d) Results ofM∗R(k)

(e) Salient edges without usingM (f) Salient edges by applying (d) (g) Our results without usingM (h) Our results usingM

Figure 1. Effectiveness of the proposed method. The proposed method first extracts salient edges from intermediate latent images.
However, as saturated areas in the blurred image are salient (e.g., the white blobs), these areas are likely to be selected as shown in (b).
The proposed outlier detection method is able to detect the outliers and remove them from (b). Thus, only the edges without outliers, i.e.,
(f), are used for kernel estimation. As mentioned in the manuscript, the positions of dark regions inM do not always correspond to the
positions of outliers in an intermediate edge extracted by (9) due to the influences of blur. The use of (M ∗ R(k)) (i.e., (d)) makes the
positions of dark regions inM cover the positions of outliers in intermediate edges, and thus remove outliers from (b) (See (f)). The results
shown in (g) and (h) demonstrate that the proposed method is able to estimate blur kernels from blurred images with significant outliers.
The results shown in (c) and (d) are visualized by binary images of original results for better visual comparisons.

2. Improving Existing Deblurring Methods
In image deblurring literatures, there are three well known approaches based on edge predictions (e.g., [1, 20]), MAP

estimations (e.g., [16, 11, 21]), and variational Bayesian inference (e.g., [4, 13, 12]). Since the former two approaches involve
the intermediate latent image estimation step, we evaluate the proposed algorithm against the corresponding state-of-the-art
methods. As mentioned in the manuscript, the proposed outlier detection method can be used to improve the performance of
existing edge prediction based deblurring methods (e.g., [1]). In this supplemental material, we choose one state-of-the-art
MAP based method [21] to demonstrate that the proposed method can also be used to improve the performance of existing
MAP based deblurring methods to handle images with outliers.

2.1. Synthetic Images

We use the same datasets as mentioned in the manuscript for evaluation. Since the intermediate latent image restoration
step of [21] adopts the L0-regularized gradient prior, the recovered intermediate latent image I only contains large structures.
That is, the result of I ∗ k is significantly different from the blurred image B. To apply our algorithm, we use the non-blind
deconvolution method [13] to generate an intermediate latent image with the estimated kernel from [21], and then use (12)
of the manuscript to computeM. The results shown in Figure 5(b) demonstrate the merits of the proposed method. Figure 6



(a) (b)

(c) Kernel estimation results

(d) Outlier detection results

Coarse to fine

Figure 2. Coarse-to-fine outlier detection results from a synthetic example. (a) Blurred image and kernel. (b) Our results. (c)-(d) Estimated
kernels andM over iterations.

(a) Blurred image (b) Outliers detected by [2] (c) Our detected result

Figure 3. Difference from outlier handling method [2]. As discussed in the manuscript, the outlier handling method [2] mainly focuses on
the non-blind image deblurring. We note that [2] involves an outlier detection step as an EM approach is developed. To further clarify the
difference of outlier detection method, we use our kernel estimate as the input of [2]. Method [2] is not able to detect some saturated regions
as shown in (b). In contrast, as the proposed outlier detection method is gradually refined in a coarse-to-fine framework (See Figure 2), it
is able to detect the saturated areas and more robust than [2].

shows the estimated kernels by the state-of-the-art methods with and withoutM.



(a) Blurred image & estimated kernel (b) TV-`1 [20] (c) Whyte et al. [18] Cho et al. [2] Ours

Figure 4. Effectiveness of the proposed final latent image estimation. The proposed final latent image estimation is in spirit similar to
the proposed outlier detection method. We note that the weight of the first term in (16) in the manuscript is the outlier detection function.
Therefore, it is able to detect outliers and facilitates the latent image restoration. The recovered image by the proposed method contains
much clearer characters.
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(a) Improvement of Cho and Lee [1] (b) Improvement of Xu et al. [21]
Figure 5. Improvement of existing deblurring methods on synthetic datasets. The edge prediction based deblurring method [1] and the
state-of-the-art MAP based method [21] fail to generate blur kernels from blurred images due to the influence of outliers. The generated
kernel estimates have high SSD values. However, the performance of these two methods is greatly improved using the proposed outlier
detection method.

2.2. Real Images

We also use real images to evaluate the proposed method. Figure 7(a) shows a real blurred image which is obtained
from [18]. Due to saturated areas, the deblurring methods [1, 21] do not estimate kernels well. However, the performance of
these methods is greatly improved with the mask from the proposed algorithm (See Figure 7(d) and (f)).

3. Limitations of the Proposed Method
Our method has the same limitations as state-of-the-art edge-based deblurring methods and is likely to fail when edges are

not extracted. Figure 8 shows an example, where the proposed method fails to extract useful edges for kernel estimation.

4. Quantitative Evaluation on Datasets with Outliers
Datasets with Saturated Areas: We create a dataset containing 10 ground truth images with saturated regions and 8 kernels
from [12]. The size of the saturated regions in this dataset is from 5 × 5 to 400 × 400 pixels. Similar to [8], we stretch
the intensity histogram range of each image into [0, 2] and apply 8 different blur kernels to generate blurred images where
the pixel intensities are clipped into the range of [0, 1]. Finally, we add 1% random noise on each blurred image. For fair
comparison, we use the non-blind deblurring method [8] to generate the final deblurred results. Figure 9 shows that the
proposed algorithm achieves favorable results compared to state-of-the-arts.

Datasets with Salt and Pepper Noise: We also evaluate the proposed method on the dataset with salt and pepper noise as
it is one of the most common outliers. We add the salt and pepper noise on each image in the dataset by Levin et al. [12],
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Cho and Lee [1] withoutM

Xu et al. [21] withoutM

Cho and Lee [1] withM

Xu et al. [21] withM

Figure 6. Improvement of existing deblurring methods on synthetic datasets. The edge prediction based deblurring method [1] and the
state-of-the-art MAP based method [21] fail to generate blur kernels from blurred images as shown in the second and third rows due to the
influence of outliers. However, the performance of these two methods is greatly improved using the proposed outlier detection method.

where the noise density is set to be 0.01. The error ratio metric [12] is used for quantitative evaluations. Figure 10 shows that
the proposed algorithm achieves favorable results.

Robustness to Outliers: We further evaluate the proposed method on the images with different noise densities. Figure 11
shows that the proposed algorithm performs well even when the noise density is high.

5. Robustness to Different Kinds of Noise
In the manuscript, we show that the proposed method is robust to salt and pepper noise. To evaluate the performance of

the proposed algorithm with respect to random/Gaussian noise presented in [22], we collect 5 images and add the random
noise with the levels from 1% to 5%. Using the test dataset with 25 images, we evaluate the proposed algorithm against the
state-of-the-art deblurring methods [1, 11] and noisy image deblurring method [22]. For fair comparisons of kernel estimates,
we use the non-blind deconvolution method [22] to generate the final deblurred results. The results in Figure 12 show that the
proposed algorithm performs favorably against the state-of-the-art noisy image deblurring method [22] with higher PSNR
values.

6. Quantitative Evaluation on the Natural Image Deblurring Datasets [10], [12], and [17]
We evaluate our method on the natural image deblurring datasets [12] and [10]. The natural image deblurring datasets [12]

contains 4 ground truth images and 8 blur kernels. Figure 13(a) shows the cumulative histogram of the deconvolution error
ratio across test examples. The proposed method achieves 96.78% of the results under error ratio 2.

Similar to [10], we employ PSNR to evaluate the results on the dataset [10]. Figure 13(b) demonstrates that the proposed
algorithm performs favorably against the state-of-the-art methods. Figure 14 shows one example from the dataset [10].



(a) Blurred image (b) Hu et al. [8]

(c) Cho and Lee [1] (d) Cho and Lee [1] withM

(e) Xu et al. [21] (f) Xu et al. [21] withM
Figure 7. Improvement of existing deblurring methods on real challenging images. The edge prediction based deblurring method [1] and
the state-of-the-art MAP based method [21] fail to generate blur kernels from blurred images as shown in (c) and (e) due to the influence
of outliers. However, the performance of these two methods is greatly improved using the proposed outlier detection method.



(a) Blurred image (b) Intermediate extracted salient edges (c) Ours

Figure 8. The proposed method is likely to fail when edges are not extracted from intermediate latent images.

im1 im2 im3 im4 im5 im6 im7 im8 im9 im10
0

5

10

15

20

25

30

A
ve

ra
ge

 P
SN

R
 V

al
ue

s

 

 

Blurred images
Cho and Lee
Xu and Jia
Krishnan et al.
Zhong et al.
Xu et al.
Hu et al.
Pan et al.
Ours

Figure 9. Quantitative evaluation on the dataset with saturated regions. The dataset contains 10 ground truth images with saturated regions
and 8 kernels from [12]. The size of the saturated regions in this dataset is from 5× 5 to 400× 400 pixels. we use the non-blind deblurring
method [8] to generate the final deblurred results for fair comparisons. The proposed algorithm achieves favorable results compared to the
state-of-the-art methods.
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Figure 10. Quantitative evaluation on the dataset with salt and pepper noise. We add the salt and pepper noise (which is one of the most
common outliers) on each image in the dataset by Levin et al. [12], where the noise density is set to be 0.01. The kernel similarity metric [9]
is used for quantitative evaluations. The proposed algorithm achieves favorable results with higher kernel similarity values.
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Figure 11. Robustness to outliers. As the proposed method is able to deal with outliers, we evaluate it on the images with noise density of
salt and pepper noise from 1% to 10%. The results show that the proposed algorithm performs well even when the noise density is high.
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Figure 12. Robustness to the random noise. Although the proposed method is designed for outliers, it is able to deal with random noise
to a certain extent. To evaluate the performance of the proposed algorithm with respect to random/Gaussian noise presented in [22], we
collect 5 images and add the random noise with the levels from 1% to 5%. Using the test dataset with 25 images, we evaluate the proposed
algorithm against the state-of-the-art deblurring methods [1, 11] and noisy image deblurring method [22]. For fair comparisons of kernel
estimates, we use the non-blind deconvolution method [22] to generate the final deblurred results. The results show that the proposed
algorithm performs well even when the noise level is high.
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(a) Results on dataset by Köhler et al. [10]
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(b) Results on dataset by Levin et al. [12]
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(c) Results on dataset by Sun et al. [17]

Figure 13. Quantitative evaluations on natural image deblurring datasets without outliers. As mentioned in the manuscript, the algorithm can
be applied to deblur natural images without outliers. We quantitatively evaluate the proposed method on benchmark datasets [12, 10, 17].
The results show that the proposed algorithm performs well on both datasets against the state-of-the-art deblurring methods.



(a) Blurred image (b) Fergus et al. [4] (c) Shan et al. [16]

(d) Cho and Lee [1] (e) Xu and Jia [21] (f) Krishnan et al. [11]

(g) Hirsch et al. [7] (h) Whyte et al. [19] (i) Ours

Figure 14. Deblurred results using one example from natural image dataset [10]. Our method generates much clearer results. All the
deblurred results are included in the attached “code” folder.



7. More Experimental Results
In this section, we show more deblurred results by the proposed algorithm and the state-of-the-art methods.

(a) Blurred image (b) Cho and Lee [1] (c) Krishnan et al. [11]

(d) Levin et al. [13] (e) Xu et al. [21] (f) Zhong et al. [22]

(g) Goldstein and Fattal [5] (h) Cho et al. [2] (i) Whyte et al. [18]

(j) Pan et al. [15] (k) Hu et al. [8] (l) Ours
Figure 15. Deblurred results on one blurred image with numerous saturated areas and noise. Although methods [2, 19] is able to handle
outliers, they mainly focus on the non-blind image deblurring. The results show that these methods fail to generate clear images due to the
imperfect blur kernels.



(a) Blurred image (b) Cho and Lee [1]

(c) Xu et al. [21] (d) Krishnan et al. [11]

(e) Levin et al. [13] (f) Pan et al. [15]

(g) Hu et al. [13] (h) Ours

Figure 16. Deblurred results on one blurred image with saturated regions and impulse noise from [2]. Our method generates a clear image
with fine details.



(a) Blurred image (b) Cho and Lee [1]

(c) Xu et al. [21] (d) Krishnan et al. [11]

(e) Levin et al. [13] (f) Zhong et al. [22]

(g) Hu et al. [8] (h) Ours
Figure 17. Deblurred results on one blurred image with large noise from [2]. Our method generates a much clearer image.



(a) Blurred image (b) Shan et al. [16] (c) Cho and Lee [1]

(d) Xu and Jia [20] (e) Krishnan et al. [11] (f) Levin et al. [13]

(g) Goldstein and Fattal [5] (h) Zhong et al. [22] (i) Xu et al. [21]

(j) Pan et al. [15] (k) Hu et al. [8] (l) Ours

Figure 18. Deblurred results on one blurred image with large saturated areas (e.g., light blobs) and noise. State-of-the-art deblurring
algorithms [16, 1, 20, 11, 13, 5, 22, 21, 15, 8] fail to generate clear images. In contrast, our method generates a clear image with fine
details.



(a) Blurred image (b) Cho and Lee [1] (c) Xu and Jia [20]

(d) Krishnan et al. [11] (e) Levin et al. [13] (f) Xu et al. [21]

(g) Pan et al. [15] (h) Hu et al. [8] (i) Ours

Figure 19. Deblurred results on one blurred image with saturated areas from [2]. State-of-the-art deblurring algorithms [1, 20, 11, 13, 21,
15, 8] fail to generate clear images. In contrast, our method generates a clear image with fine details.



(a) Blurred image (b) Fergus et al. [4] (c) Cho and Lee [1]

(d) Xu and Jia [20] (e) Krishnan et al. [11] (f) Levin et al. [13]

(g) Xu et al. [21] (h) Zhong et al. [22] (i) Pan et al. [15]

(j) Hu et al. [8] (k) Ours withoutM (l) Ours

Figure 20. Deblurred results on one real captured blurred image with numerous saturated pixels and large blur. State-of-the-art deblurring
algorithms [4, 1, 20, 11, 13, 21, 22, 15, 8] fail to generate clear images. In contrast, our method generates a clear image with fine details.
Moreover, the comparison results shown in (k) and (l) demonstrate that the proposed algorithm withM is able to remove outliers in the
kernel estimation. The kernel size is estimated at 77× 77 pixels.



(a) Blurred image (b) Fergus et al. [4] (c) Cho and Lee [1] (d) Xu and Jia [20]

(e) Krishnan et al. [11] (f) Levin et al. [13] (g) Xu et al. [21] (h) Zhong et al. [22]

(i) Pan et al. [15] (j) Hu et al. [8] (k) Ours withoutM (l) Ours

Figure 21. Deblurred results on one real example with numerous saturated regions (e.g., the light blobs). State-of-the-art deblurring
algorithms [4, 1, 20, 11, 13, 21, 22, 15, 8] fail to generate clear images. In contrast, our method generates a clear image with fine details.
Moreover, the comparison results shown in (k) and (l) demonstrate that the proposed algorithm withM is able to remove outliers in the
kernel estimation. The kernel size is estimated at 45× 45 pixels.



(a) Blurred image (b) Fergus et al. [4] (c) Cho and Lee [1]

(d) Xu and Jia [20] (e) Krishnan et al. [11] (f) Levin et al. [13]

(g) Xu et al. [21] (h) Hu et al. [8] (i) Ours

Figure 22. Deblurred results on one real example with several light streaks. State-of-the-art deblurring algorithms [4, 1, 20, 11, 13, 21, 8]
fail to generate clear images. In contrast, our method generates a clear image with fine details. The kernel size is estimated at 79 × 79
pixels.



(a) Blurred image (b) Shan et al. [16] (c) Cho and Lee [1]

(d) Xu and Jia [20] (e) Krishnan et al. [11] (f) Levin et al. [13]

(g) Cho et al. [3] (h) Goldstein and Fattal [5] (f) Xu et al. [21]

(g) Pan et al. [15] (h) Hu et al. [8] (i) Ours

Figure 23. Deblurred results on one real example from [1]. Our method generates a much clearer image. The kernel size is estimated at
45× 45 pixels.



(a) Blurred image (b) Fergus et al. [4] (c) Ours

(a) Blurred image (b) Xu and Jia [20] (c) Ours

(a) Blurred image (b) Xu and Jia [20] (c) Ours

(a) Blurred image (b) Xu et al. [21] (c) Ours

Figure 24. Comparisons with state-of-the-art deblurring methods. In addition to detect outliers, the proposed algorithm performs well
against the state-of-the-art methods on images without significant noise.



(a) Blurred image (b) Xu and Jia [20] (c) Ours

(a) Blurred image (b) Xu et al. [21] (c) Ours

(a) Blurred image (b) Xu and Jia [20] (c) Ours

Figure 25. Comparisons with state-of-the-art deblurring methods. In addition to detect outliers, the proposed algorithm performs well
against the state-of-the-art methods on images without significant noise.



(a) Blurred image (b) Pan et al. [15] (c) Our kernel + non-blind deconvolution [15]

(a) Blurred image (b) Zhong et al. [22] (c) Ours

(a) Blurred image (b) Hu et al. [8] (c) Ours

Figure 26. Comparisons with state-of-the-art deblurring methods. In addition to detect outliers, the proposed algorithm performs well
against the state-of-the-art methods on images without significant noise.



(a) Blurred image (b) Pan et al. [14] (c) Ours

(a) Blurred image (b) Gupta et al. [6] (c) Ours

(a) Blurred image (b) Whyte et al. [19] (c) Ours

Figure 27. Comparisons with state-of-the-art deblurring methods. In addition to detect outliers, the proposed algorithm performs well
against the state-of-the-art methods on images without significant noise.
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