Efficient Point Process Inference for Large-Scale Object Detection Supplemental Material

Trung T. Pham, Seyed Hamid Rezatofighi, Ian Reid and Tat-Jun Chin School of Computer Science The University of Adelaide

{trung.pham, hamid.rezatofighi, ian.reid, tjchin}@adelaide.edu.au

Proof of Proposition 1

For convenience, we restate the energy functions and the proposition in the main paper. Consider the following two energy functions:

$$E(X) = \sum_{i=1}^{N} D(u_i)x_i + \sum_{x_i \sim x_j} V(u_i, u_j)x_i x_j.$$
 (1)

$$V(u_i, u_j) = \begin{cases} g(\mathcal{R}(u_i, u_j)) & \text{if } \mathcal{R}(u_i, u_j) < T_o \\ K & \text{if } \mathcal{R}(u_i, u_j) \ge T_o, \end{cases}$$
 (2)

where $g(\mathcal{R}(u_i,u_j)) \geq 0$, and K is a large constant number, i.e., $K \gg g(\mathcal{R}(u_i,u_j))$ and $K \gg \sup(D(u_i)) \ \forall u_i,u_j$.

$$\hat{E}(X) = \sum_{i=1}^{N} D(u_i)x_i + \sum_{x_i \sim x_j} \hat{V}(u_i, u_j)x_i x_j.$$
(3)

$$\hat{V}(u_i, u_j) = \begin{cases} g(\mathcal{R}(u_i, u_j)) & \text{if } \mathcal{R}(u_i, u_j) < T_o \\ \alpha & \text{if } \mathcal{R}(u_i, u_j) \ge T_o, \end{cases}$$
(4)

where $\alpha = \max(|D(u_i)|, |D(u_j)|) + \epsilon$; ϵ is a small positive number. For notational simplicity, we denote $D(x_i) = D(u_i)x_i, V(x_i, x_j) = V(u_i, u_j)x_ix_j, \hat{V}(x_i, x_j) = \hat{V}(u_i, u_j)x_ix_j$, and $\mathcal{R}(x_i, x_j) = \mathcal{R}(u_i, u_j)x_ix_j$.

Lemma 1. If X^* is the global optimum of E(X), $\mathcal{R}(x_i, x_j) < T_o, \forall x_i \sim x_j, x_i, x_j \in X^*$.

Proof. If there exists a pair $x_i \sim x_j, x_i, x_j \in X^*$ such that $\mathcal{R}(x_i, x_j) \geq T_o$, then

$$E(X^*) > 0 = E(\mathbf{0}) \tag{5}$$

where **0** is a all-zero vector of length N. This is because $V(x_i, x_j) = K$ ($K \gg g(\mathcal{R}(u_i, u_j))$) and $K \gg \sup(D(u_i)) \forall u_i, u_j$). This contradicts the fact that X^* is a global minimizer of E(X).

Lemma 2. If X^* is the global optimum of $\hat{E}(X)$, $\mathcal{R}(x_i, x_j) < T_o, \forall x_i \sim x_j, x_i, x_j \in X^*$.

Proof. If there exists a pair $x_i \sim x_j, x_i, x_j \in X^*$ such that $\mathcal{R}(x_i, x_j) \geq T_o$, then construct a solution $Z = X^*$, except $z_i = 0$ (i.e. $\forall j \neq i, \ z_j = x_j, z_i = 0$). Note that $x_i = x_j = 1$ since $\mathcal{R}(x_i, x_j) \geq T_o$. Consider

$$\hat{E}(X^*) - \hat{E}(Z) = D(x_j) + \hat{V}(x_i, x_j) + \sum_{\substack{x_k \sim x_i \\ k \neq j}} \hat{V}(x_i, x_k)
= D(x_j) + \max(|D(x_i)|, |D(x_j)|) + \epsilon + \sum_{\substack{x_k \sim x_i \\ k \neq j}} \hat{V}(x_i, x_k) > 0.$$
(6)

Therefore $\hat{E}(X^*) > \hat{E}(Z)$, which contradicts X^* is a global minimizer of $\hat{E}(X)$.

If X^* contains a set of pairs $\mathcal{E} = \{x_i \sim x_j \mid i > j, \ x_i, x_j \in X^*, \ \mathcal{R}(x_i, x_j) \geq T_o\}$, let define a solution $Z = X^*$, except that $z_i = 0, \forall \ x_i \sim x_j \in \mathcal{E}$, then consider

$$\hat{E}(X^*) - \hat{E}(Z) = \sum_{\substack{x_j \\ x_i \sim x_j \in \mathcal{E}}} D(x_j) + \sum_{\substack{x_i \sim x_j \in \mathcal{E}}} \hat{V}(x_i, x_j) + \sum_{\substack{x_k \sim x_i \\ x_k \sim x_i \notin \mathcal{E}}} \hat{V}(x_k, x_i)$$

$$= \sum_{\substack{x_j \\ x_i \sim x_j \in \mathcal{E}}} D(x_j) + \sum_{\substack{x_i \sim x_j \in \mathcal{E}}} (\max(|D(x_i)|, |D(x_j)|) + \epsilon) + \sum_{\substack{x_k \sim x_i \\ x_k \sim x_i \notin \mathcal{E}}} \hat{V}(x_k, x_i) > 0.$$

$$(7)$$

As a result $\hat{E}(X^*) > \hat{E}(Z)$, which contradicts X^* is a global minimizer of $\hat{E}(X)$.

Lemma 3. For all X, if $\forall x_i \sim x_j, x_i, x_j \in X$, $\mathcal{R}(x_i, x_j) < T_o$, $\hat{E}(X) = E(X)$.

Proof. As
$$\mathcal{R}(x_i, x_i) < T_o \Rightarrow \hat{V}(x_i, x_i) = V(x_i, x_i)$$
. Therefore $\hat{E}(X) = E(X)$.

Lemma 4. If X^* is the global optimum of $\hat{E}(X)$, $\hat{E}(X^*) = E(X^*)$.

Proof. Since X^* is the global optimum of $\hat{E}(X)$, using Lemma 2, we get $\forall x_i \sim x_j, x_i, x_j \in X^*$, $\mathcal{R}(x_i, x_j) < T_o$. As a result, $E(X^*) = \hat{E}(X^*)$.

Proposition 1. If X^* is the globally minimal solution of the energy function $\hat{E}(X)$, X^* is also the global minimizer of the function E(X), and vice versa.

Proof.

Typically the proposition 1 says that the two energy functions E(X) and $\hat{E}(X)$ admit the same global minimizer X^* . In fact, assume that X_o^* and X_n^* are the global optimum of the energies E(X) and $\hat{E}(X)$ respectively. Denote $\mathcal{X} = \{X \mid \forall \ x_i \sim x_j, x_i, x_j \in X, \mathcal{R}(x_i, x_j) < T_o\}$. Lemmas 1 and 2 say that $X_o^* \in \mathcal{X}$ and $X_n^* \in \mathcal{X}$. Moreover lemma 3 reveals that $E(X) = \hat{E}(X), \forall X \in \mathcal{X}$. Therefore we can conclude that $X_o^* = X_n^* = X^*$.

Proof. (By contradiction)

We start proving the first part of the proposition 1. Suppose that X^* is the global optimum of $\hat{E}(X)$, i.e.,

$$\hat{E}(X^*) \le \hat{E}(X), \ \forall \ X, \tag{8}$$

we want to prove that X^* is also a global minimum of E(X) Assume that X^* is not the global optimum of E(X), then there exists a solution Y such that

$$E(Y) < E(X^*). (9)$$

Now we consider the following scenarios:

1. $\forall y_i \sim y_j, y_i, y_j \in Y, \mathcal{R}(y_i, y_j) < T_o$.

Using Lemma 3, we obtain

$$E(Y) = \hat{E}(Y). \tag{10}$$

Since $E(Y) \leq E(X^*)$ (see (9)), $\hat{E}(Y) \leq E(Y)$ and $\hat{E}(X^*) = E(X^*)$ (using Lemma 4), we arrive at $\hat{E}(Y) < \hat{E}(X^*)$ which contradicts (8).

2. $\exists y_i \sim y_i, y_i, y_j \in Y$ such that $\mathcal{R}(y_i, y_j) \geq T_o$.

Let define a solution Z=Y, except $z_i=0$ (i.e. $\forall j\neq i,\ z_j=y_j, z_i=0$). Note that $y_i=y_j=1$ since $\mathcal{R}(y_i,y_j)\geq T_o$. Consider

$$E(Y) - E(Z) = D(y_j) + V(y_i, y_j) + \sum_{\substack{y_k \sim y_i \\ k \neq j}} V(y_i, y_k) = D(y_j) + K + \sum_{\substack{y_k \sim y_i \\ k \neq j}} V(y_i, y_k) > 0.$$
 (11)

Therefore E(Z) < E(Y), and $\hat{E}(Z) \le E(Z) < E(Y) < E(X^*)$. As $\hat{E}(X^*) = E(X^*)$ (using Lemma 4), $\hat{E}(Z) < \hat{E}(X^*)$, which again contradicts (8).

3. Y contains a set of pairs $\mathcal{E} = \{y_i \sim y_j \mid i > j, \ y_i, y_j \in Y, \ \mathcal{R}(y_i, y_i) \geq T_o\}.$

Similar to the above reasoning, let define a solution Z = Y, except that $z_i = 0, \forall y_i \sim y_j \in \mathcal{E}$, then consider

$$E(Y) - E(Z) = \sum_{\substack{y_j \\ y_i \sim y_j \in \mathcal{E}}} D(y_j) + \sum_{\substack{y_i \sim y_j \in \mathcal{E}}} V(y_i, y_j) + \sum_{\substack{y_k \sim y_i \\ y_k \sim y_i \notin \mathcal{E}}} V(y_k, y_i)$$

$$= \sum_{\substack{y_j \\ y_i \sim y_j \in \mathcal{E}}} D(y_j) + |\mathcal{E}|K + \sum_{\substack{y_k \sim y_i \\ y_k \sim y_i \notin \mathcal{E}}} V(y_k, y_i) > 0,$$

$$(12)$$

where $|\mathcal{E}|$ is the number of pairs in \mathcal{E} . As a result E(Z) < E(Y), and $\hat{E}(Z) \le E(Z) < E(Y) < E(X^*)$. As $\hat{E}(X^*) = E(X^*)$ (using Lemma 4), $\hat{E}(Z) < \hat{E}(X^*)$, which again contradicts (8).

It can be seen that the above assumption is always wrong, thus X^* is the global optimum of E(X). The second part of the proposition 1 can be proved similarly. Suppose that X^* is the global optimum of E(X), i.e.,

$$E(X^*) \le E(X), \ \forall \ X, \tag{13}$$

we want to prove that X^* is also a global minimum of $\hat{E}(X)$. Assume that X^* is not the global optimum of $\hat{E}(X)$, then there exists a solution Y such that

$$\hat{E}(Y) < \hat{E}(X^*).$$

If Y contains no pairs $y_i \sim y_j$ such that $\mathcal{R}(y_i, y_j) < T_o$, Lemma 3 says

$$E(Y) = \hat{E}(Y). \tag{14}$$

Since $\hat{E}(Y) < \hat{E}(X^*)$ and $\hat{E}(X^*) \le E(X^*)$, we arrive at $E(Y) < E(X^*)$ which contradicts (13).

If the solution Y contains a set of pairs $\mathcal{E} = \{y_i \sim y_j \mid i > j, \ y_i, y_j \in Y, \ \mathcal{R}(y_i, y_j) \geq T_o\}$, let define a solution Z = Y, except that $z_i = 0, \forall \ y_i \sim y_j \in \mathcal{E}$, then consider

$$\hat{E}(Y) - \hat{E}(Z) = \sum_{\substack{y_j \\ y_i \sim y_j \in \mathcal{E}}} D(y_j) + \sum_{\substack{y_i \sim y_j \in \mathcal{E}}} \hat{V}(y_i, y_j) + \sum_{\substack{y_k \sim y_i \\ y_k \sim y_i \notin \mathcal{E}}} \hat{V}(y_k, y_i)$$

$$= \sum_{\substack{y_j \\ y_i \sim y_j \in \mathcal{E}}} D(y_j) + \sum_{\substack{y_i \sim y_j \in \mathcal{E}}} (\max(|D(y_i)|, |D(y_j)|) + \epsilon) + \sum_{\substack{y_k \sim y_i \\ y_k \sim y_i \notin \mathcal{E}}} \hat{V}(y_k, y_i) > 0.$$

$$(15)$$

As a result $\hat{E}(Z) < \hat{E}(Y)$. Moreover since $E(Z) = \hat{E}(Z)$ (using Lemma 3),

$$E(Z) < \hat{E}(Y) < \hat{E}(X^*) < E(X^*).$$
 (16)

As a result, $E(Z) < E(X^*)$, which contradicts (13). Consequently X^* is the global minimum of $\hat{E}(X)$.

4