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Proof of Proposition 1

For convenience, we restate the energy functions and the proposition in the main paper. Consider the following
two energy functions:
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where g(R(u;,u;)) > 0,and K is a large constant number, i.e., K >> g(R(u;, u;)) and K > sup(D(u;)) Y, u;.
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E(X)=> D)z + Y V(uu;)wiz;. A3)
=1 Ty~

) {g(R(u,-,uj)) if R(ui,u;) < T, @

o if R(u;,u;) > To,

where v = max(|D(u;)|, |D(uj)|) +€; € is a small positive number. For notational simplicity, we denote D(x;) =
D(uz)x@, V(:L‘l', l‘j) = V(ui, Uj)l'il’j, V($i, l‘j) = V(’LLZ', Uj)ZL‘l'ZL‘j, and R(l‘i, l’j) = R(ui, Uj)l'il'j.

Lemma 1. If X* is the global optimum of E(X), R(x;,x;) < Tp,V x; ~ xj, x5, x5 € X*.
Proof. 1f there exists a pair z; ~ zj, z;, x; € X* such that R(z;, ;) > T,, then
E(X*)> 0= E(0) (%)

where 0 is a all-zero vector of length N. This is because V(z;,z;) = K (K > ¢g(R(ui,u;)) and K >
sup(D(u;)) Vu;, uj). This contradicts the fact that X is a global minimizer of F(X). O

Lemma 2. If X* is the global optimum of E(X), R(xi,x;) < Ty,¥ ; ~ xj, 74,2, € X*.



Proof. 1f there exists a pair ; ~ x;,2;, x; € X* such that R(x;,x;) > T,, then construct a solution Z = X*,
except z; = 0 (i.e. Vj # i, zj = x;, 2 = 0). Note that x; = x; = 1 since R(x;, x;) > T,. Consider

E(X*) = E(Z) = D(;) + V(zi, ) + Y V(wi,zp)

Tp~Ty

k#j
= D(x;) + max(ID(x))], ID@))) + ¢+ 3 Vi(wi,ax) > 0. (®)

Therefore E(X*) > F(Z), which contradicts X* is a global minimizer of E(X).
If X* contains a set of pairs £ = {x; ~ x; | ¢ > j, zj,2; € X*, R(x;,x;) > 1o}, let define a solution
Z = X*, except that z; = 0,V x; ~ x; € £, then consider

E(X")-E(Z)= Y Dj)+ Y V@iz)+ Y. V() 7
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As aresult E(X*) > E(Z), which contradicts X* is a global minimizer of E(X).

Lemma 3. Forall X, if ¥ x; ~ xj, 4,25 € X, Rlzi,x;) < T,, E(X) = E(X).
Proof. As R(zi, ;) < T, = V(xi,2;) = V(z;,2;). Therefore E(X) = E(X). O
Lemma 4. If X* is the global optimum of E(X), E(X*) = BE(X*).

Proof. Since X* is the global optimum of E(X), using Lemma 2, we getV x; ~ j, 25, x5 € X*, R(x;, xj) < To.

As aresult, E(X*) = E(X™). O

Proposition 1. If X* is the globally minimal solution of the energy function E (X)), X* is also the global minimizer
of the function E(X), and vice versa.

Proof.

Typically the proposition 1 says that the two energy functions £(X ) and E(X ) admit the same global minimizer
X*. In fact, assume that X* and X* are the global optimum of the energies F(X) and E(X) respectively. Denote
X ={X |V ~zxjz,z; € X,R(x5,2;) < To}. Lemmas | and 2 say that X} € X and X, € X'. Moreover
lemma 3 reveals that E(X) = E(X),¥X € X. Therefore we can conclude that X = X* = X*. O

Proof. (By contradiction)
We start proving the first part of the proposition 1. Suppose that X * is the global optimum of F(X), i.e.,

BE(X*) < E(X), VX, (8)

we want to prove that X * is also a global minimum of E'(X) Assume that X* is not the global optimum of E(X),
then there exists a solution Y such that

E(Y) < E(X*). )

Now we consider the following scenarios:



L Yy ~y,vi.y €Y, R(yi,vyj) < To.

Using Lemma 3, we obtain
E(Y)=E(Y). (10)

Since E(Y) < E(X™) (see (9)), E(Y) < E(Y) and E(X*) = E(X*) (using Lemma 4), we arrive at
E(Y) < E(X™) which contradicts (8).

2. 3y; ~yj,Yi,y; € Y such that R(y;,y;) > To,.

Let define a solution Z = Y, except z; = 0 (i.e. Vj # i, z; = yj,2 = 0). Note that y; = y; = 1 since
R(yi,y;) > T,. Consider

E(Y) = E(Z) =D(y;) +V(wi,y;) + >, V(yius) =Dy) + K+ > Vyiye) > 0. (11)
Ykryi Y~y
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Therefore E(Z) < E(Y),and E(Z) < E(Z) < E(Y) < E(X*). As E(X*) = E(X*) (using Lemma 4),
E(Z) < E(X™), which again contradicts (8).

3. Y contains a set of pairs £ = {y; ~y; | 1 > J, yi,y; €Y, R(ys,y;) > To}.

Similar to the above reasoning, let define a solution Z = Y, except that z; = 0,V y; ~ y; € £, then consider

EY)-E(Z)= Y D)+ > Vlwy)+ Y, Viuu) (12)
Y yiNijS Ye~Yi
Ye~Yi EE

= Y D) +IEIK+ > V() >0,
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where |£] is the number of pairs in €. As aresult E(Z) < E(Y), and E(Z) < E(Z) < E(Y) < E(X*).
As E(X*) = E(X™) (using Lemma 4), F(Z) < E(X™), which again contradicts (8).

It can be seen that the above assumption is always wrong, thus X * is the global optimum of F(X). The second
part of the proposition 1 can be proved similarly. Suppose that X* is the global optimum of F(X), i.e.,

E(X*) < E(X), VX, (13)

we want to prove that X* is also a global minimum of £ (X). Assume that X * is not the global optimum of E (X),
then there exists a solution Y such that

E(Y) < BE(X™).
If Y contains no pairs y; ~ y; such that R(y;,y;) < T,, Lemma 3 says
E(Y)=E(Y). (14)

Since B(Y) < E(X*) and E(X*) < E(X*), we arrive at E(Y') < E(X*) which contradicts (13).



If the solution Y contains a set of pairs £ = {y; ~ y; | i > J, vi,y; € Y, R(yi,y;) > To}, let define a solution
Z =Y, exceptthat z; = 0,V y; ~ y; € £, then consider

EY)-EZ)= Y D)+ >, Vy)+ D>, Vi) (15)
ywyy]jef v e yi’@f’ée
= > D)+ Y, (max(ID)|, D))+ + Y. Vi) >0
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yiny; €EE Yk ~Yi EE
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As aresult E(Z) < E(Y). Moreover since E(Z) = E(Z) (using Lemma 3),

E(Z) < E(Y) < E(X*) < E(X™"). (16)

As aresult, £(Z) < E(X*), which contradicts (13). Consequently X* is the global minimum of E(X).



