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1. Introduction
First, we provide the proof of Lemma 2 from the main

text. Then we give additional experimental evaluation
which did not fit into the main text of the paper: the addi-
tional experiments are shown for semantic 3D reconstruc-
tion as well as for classic 3D reconstruction. Afterwards,
we give an intuition why the convex formulation, which was
introduced in Section 3.2 of the main text, provides a very
weak solution. Eventually, we show convergence experi-
ments for our algorithm.

2. Proof of Lemma 2
Proof. For readability we drop the iteration index (n). First
we note the following. If we fix k and s each (z`ms )k only
appears in two linear equation systems with L equations.

x`s =
∑
m

(
z`ms

)
k
, x`s+ek

=
∑
m

(
zm`
s

)
k
∀`∈L (1)

Hence, this constraints can be written in the form Awk
s = b

for each k and s, where wk
s is a vector containing the vari-

ables (zm`
s )k ∀`,m. b contains the values of x`s and x`s+ek

.
The variables z̃ are initialized by projecting the variables z
to the affine space defined by the equation systemAwk

s = b
for each s,k combination individually. To also ensure that
the non-negativity constraints on the z`ms are fulfilled, the
following substitution is applied until there are no more
negative z̃`ms . Assuming z̃`

′,m′

s < 0, from x`s ≥ 0 it fol-
lows that there are z̃`

′,m′′

s > 0 and z̃`
′′,m′

s > 0. Hence, we
update
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′,m′

s ← z̃`
′,m′

s + ε z̃`
′′,m′′

s ← z̃`
′′,m′′

s + ε (2)
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′,m′′

s ← z̃`
′,m′′

s − ε z̃`
′′,m′

s ← z̃`
′′,m′

s − ε. (3)

Note that this substitution does not affect the original con-
straints if we choose ε such that non-negative variables stay
non-negative. The above substitution is iteratively applied
until no more non-negative variables are left. By always
choosing ε as big as possible, meaning such that either the
non-positive variable z̃`

′,m′

s or one of the positive variables

gets 0, the number of iterations of the algorithm is bounded
by O(L2). This holds because for each negative variable
there is a maximum of O(L) steps that can be made to in-
crease it.

3. Semantic 3D Reconstruction: Additional
Results

Additional reconstructions are shown in Fig. 1. We refer
the reader to the supplementary video where renderings of
our models can be found.

4. Dataset ”Head”
We test our algorithm on a challenging specular ”Head”

dataset from [1]. It was shown in that paper that the re-
sults of traditional dense 3D reconstruction methods can be
improved by utilizing the silhouette information. This in-
formation was included in their formulation as energy over
rays. We show even more improvement by using our non-
convex ray potential formulation in Fig. 2.

5. Middlebury: Additional Analysis
We provide accuracy (Acc) and completeness (Comp)

plots for Dino Ring dataset in Fig. 3. We also show ad-
ditional renderings of reconstructions in Fig. 4.

Overall, besides being accurate (as shown in the paper),
our algorithm produces reconstructions with very high com-
pleteness: for 5 out of 6 datasets our reconstructions have
completeness above 99.5%.

6. Why is Convex Formulation so Weak?
In this section we give a small intuitive example why the

convex relaxation gives a solution which is far from binary.
We give this example for a 2-label problem without regu-
larization and use the following notation for the labels: o
means occupied, f means free-space. Consider one ray of
the length N = 3 with costs co0 = −2, co1 = −3, co2 = −2
and the rest of the costs are 0. This is a realistic example
since it corresponds to allowing the uncertainty around the
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estimated depth position i = 1 (for example, camera sees
the wall and stereo matching provides an estimate of depth,
but this estimate is noisy in practice, so the uncertainty win-
dow along the ray is very desirable). Since we only consider
single ray, the ray index r is omitted and the voxel space in-
dexing function si simplifies to just position i along the ray.
The exact problem, which we are solving, would be (as a
reminder, yf−1 is always set to be 1):

ψ =− 2yo0 − 3yo1 − 2yo2 → min
x,y

(4)

s.t. yoi ≤ y
f
i−1, y

f
i ≤ y

f
i−1,

yoi ≤ xoi , y
f
i ≤ 1− xoi ,

xoi ∈ [0, 1], ∀i.

The desired solution to this problem would be

xo0 = 0, xo1 = 1, xo2 = 0, (5)
yo0 = 0, yo1 = 1, yo2 = 0,

yf0 = 1, yf1 = 0, yf2 = 0.

This means taking the best position in the uncertainty win-
dow. This solution has the cost cbinary = −3. Unfortu-
nately, the solution where all the variables above take value
0.5 has a better cost: c0.5 = −3.5.

Our preliminary investigations indicate that the ”all-0.5”
solution will always be the optimal solution to the convex
relaxation as long as the best cost comin = min

i
coi is larger

than the sum of other occupied costs (as it is the case in the
example above, −3 versus −4).

7. Convergence Analysis
In this section we analyze the convergence behavior of

our method.
First, we evaluate how fast the algorithm converges using

different minimization intervals in between the majorization
steps. In Fig. 5 we can see that a frequent execution of the
majorization step has a very beneficial effect on the conver-
gence. Additionally, we see that for a broad range of values
we reach similar (in energy) critical points of our cost func-
tion. This is a strong indication that our method is robust
against bad solutions.

Second, we analyze tie handling in eq. 14 of the main
text. As a reminder, this equation describes linear majorizer
as

g(xfsi , y
f
i−1|x

f,(n)
si , y

f,(n)
i−1 )

=

{
0 if yf,(n)i−1 ≤ x

f,(n)
si

yfi−1 − xfsi if yf,(n)i−1 > x
f,(n)
si

(6)

In that equation the tie case is yf,(n)i−1 = x
f,(n)
si and it is pos-

sible to choose any of the two branches in this case: 0 or

yfi−1 − xfsi . Our experiment in Fig. 6 shows that the dif-
ference in final energies between these two choices is very
small, 0.25% of their values.
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Input Image Häne et al. 2013 [2] Savinov et al. 2015 [5] Proposed Method

Figure 1: Semantic 3D Reconstructions.

Original Images [7] [3], [4] [1] Our Method

Figure 2: Rendering of the results on the ”Head” dataset. The columns from two to four are reported by [1]. It has been
shown in [1] that ray information can help in reconstructing the thin pole on which the head is mounted. Our algorithm
successfully reconstructs this pole as well.



Figure 3: Acc vs. Ratio (lower curve better) and Comp vs. Error (higher curve better) plots for the Dino Ring dataset of the
Middlebury benchmark (for details on these plots see [6]).

Dino Full Dino Sparse Temple Full Temple Sparse

Figure 4: Rendering of Middlebury results.
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Figure 5: Evolution of the energy over time for different numbers of iterations the convex minimization algorithm is run in
between the execution of the majorization step.

Figure 6: Evolution of the energy over iterations for two different re-majorization strategies. ”Linear” means that the tie case
is handled with the linear branch, ”zero” means that constant branch with 0 value is taken.


