Figure S1. Here we show an example image from the experiment
in Section 5.1.

A. Anchor Point Permutations

In Section 5.1, we explored how the anchor point local-
ization affected HRF prediction accuracy. In that experi-
ment, we randomly moved the 4 anchor points of a lentic-
ular array by 8 pixels in a random direction. Figure S1
shows the anchor points used in calibrating the HRF as blue
crosses and the random perturbation as green crosses.

B. The Minimum Measurable Angle Change

The angular precision resolvable of a lenticular array in
an image is limited by the color sensitivity of the camera
and color precision of color printing. In this section, we
analyze the theoretical angular limits of a system imaging
a lenticular array using an 8-bit RGB camera. The im-
plemented lenticular arrays have their backplane textures
printed at maximum saturation and value. The satura-
tion/value of the lenticular array’s appearance to the camera,
however, is also determined by the amount of light in the
scene and camera properties such as exposure. We explore
how the amount of light affects the angular measurement
precision in this section.

The set of RGB values corresponding to the hue wheel
for a given saturation/value level lie on a 2d manifold in
RGB space. This manifold represents the set of RGB mea-
surements a camera would take of a lenticular array in any
orientation. In Figure S2, we show two views of these man-
ifolds for various levels of saturation and value. The man-
ifolds create a cycle along the sides of a cube aligned with
RGB space. Interestingly, as the amount of light (saturation
and value) goes down, the set of RGB values corresponding
to the hue wheel gets smaller.

On the left of Figure S3, we show the number of
unique 8-bit RGB triplets for each manifold, or each satura-
tion/value level. The set of 1-to-1 view points of the lentic-
ular array (76 degree range of incident angles) is mapped to
the hue wheel and therefore to the RGB manifold. Thus, our
angular precision is 76 / the number of unique rgb values.
On the right of Figure S3, we show this angular precision
for each level of saturation/value. In the best possible case

Figure S2. The space of hues with a constant saturation and value
lies on a manifold in RGB space. This manifold is along a cycle
around a few edges of a cube. Above we show 2 views of the
same plot to show the shape of the manifolds. As the amount of
light reduces, or the saturation and value of HSV measurements
reduces, the measurable space in RGB gets smaller as well.

Figure S3. As the amount of light in a scene decreases, so too
does the space of possible measurements of the color of a lentic-
ular array. On the left, we show the number of unique RGB mea-
surements for an 8-bit camera. On the right, we show how this
translates to angular precision. An 8-bit camera has a maximum
theoretical precision of 0.05 degrees, but would more realistically
be limited to 0.1 degrees for moderately illuminated scenes.

with maximum saturation and value, an 8-bit RGB camera
is able to resolve the angle of a lenticular array at a pre-
cision of 0.05 degrees. However, at 0.3 saturation/value,
the precision drops to 0.55 degrees. For the experiments
in Section 5.1, we note that the hue measurements have a
mean saturation and value of ~ 0.7 and ranged from ~ 0.5
to ~ 0.9. Therefore, we do not believe that the angular error
of 0.25 degrees induced by moving anchor points is due to
the inherent precision limitations of the 8-bit RGB camera
imagine the lenticular arrays.

The angular precision achievable by a camera can be
greatly improved by moving to a larger color representation.
In Figure S4, we show the same experiment as before, but
for a 12-bit camera. With 16 times more possible values for
a single color channel versus an 8-bit camera, the number
of unique RGB values for the color wheel and the angular
precision both improve by an order of magnitude. There-
fore, in future work, we plan to explore camera calibration
and pose estimation using higher bit precision cameras.



Figure S4. We repeated the experiment depicted in Figure S3, but
for a camera that can capture 12-bit RGB images. As the camera
can now measure color with 16 times more values, we achieve
an order of magnitude more of uniquely measurable hues in RGB
space (left) and therefore an order of magnitude smaller angular
precision.

C. Additional Augmented Reality Video

We demonstrate our approach with a second AR video
where the camera is static with a varying zoom, and the cal-
ibration object is being rotated randomly. In this video the
zoom is achieved via a zoom lens, in contrast to the digi-
tal zoom performed in Section 5.3. In the supplementary
material, we include 2 additional videos. In the first video,
we overlay the wire-mesh of a box to compare dynamic fo-
cal length estimation versus static focal length estimation
(just like in Section 5.3). In the second video, instead of
a box wire-mesh, we overlay a 3D model of a parrot over
the frames of the image. In Figure S5, we show frames of
this video. Just like in the previous results, our dynamic fo-
cal length estimation ensures that the 3D model is rendered
with the correct perspective, no matter the zoom level.



Figure S5. We use our focal length, rotation, and translation estimates to overlay a 3D model of a parrot onto the image. Because we
estimation the focal length at each image, the parrot is rendered with the appropriate perspective despite very different zooms throught the
video.



