Supplementary Material – Learning from the Mistakes of Others: Matching Errors in Cross-Dataset Learning ## Viktoriia Sharmanska and Novi Quadrianto SMiLe CLiNiC, University of Sussex, Brighton, UK sharmanska.v@gmail.com; n.quadrianto@sussex.ac.uk #### 1. Learning from the mistakes in 3D models | | SVM | | SVM | SVM [2] | SVM (ours) | |-------------------|--------|------------------|------------------|------------------|------------------| | | | Images | Combined | Adaptive | MMD | | airplane v. back | pack | 98.87 ± 0.05 | 98.63 ± 0.05 | 98.18 ± 0.22 | 98.93 ± 0.03 | | airplane v. bicyc | le | 97.22 ± 0.14 | 97.20 ± 0.15 | 96.99 ± 0.22 | 97.44 ± 0.13 | | airplane v. boat | | 92.97 ± 0.27 | 92.73 ± 0.25 | 93.06 ± 0.15 | 93.74 ± 0.16 | | airplane v. car | | 95.62 ± 0.13 | 95.58 ± 0.11 | 95.40 ± 0.11 | 95.84 ± 0.10 | | airplane v. chair | | 96.74 ± 0.15 | 96.80 ± 0.14 | 96.89 ± 0.10 | 96.72 ± 0.17 | | airplane v. coucl | h | 98.24 ± 0.09 | 98.05 ± 0.09 | 97.73 ± 0.15 | 98.45 ± 0.07 | | airplane v. helic | opter | 81.86 ± 0.43 | 83.38 ± 0.34 | 83.53 ± 0.39 | 81.99 ± 0.46 | | airplane v. lapto | p | 98.64 ± 0.07 | 98.34 ± 0.07 | 98.15 ± 0.12 | 98.72 ± 0.06 | | backpack v. bicy | cle | 97.76 ± 0.05 | 97.67 ± 0.07 | 97.52 ± 0.11 | 97.86 ± 0.06 | | backpack v. boa | t | 98.22 ± 0.08 | 98.00 ± 0.07 | 97.64 ± 0.15 | 98.25 ± 0.07 | | backpack v. car | | 97.33 ± 0.08 | 96.51 ± 0.10 | 96.31 ± 0.17 | 97.47 ± 0.07 | | backpack v. cha | ir ! | 94.44 ± 0.24 | 93.92 ± 0.18 | 94.36 ± 0.14 | 94.26 ± 0.23 | | backpack v. cou | ch | 95.94 ± 0.13 | 95.62 ± 0.14 | 95.53 ± 0.22 | 96.10 ± 0.10 | | backpack v. heli | copter | 98.72 ± 0.05 | 98.37 ± 0.07 | 98.26 ± 0.12 | 98.72 ± 0.03 | | backpack v. lapt | ор | 96.51 ± 0.16 | 96.32 ± 0.10 | 96.28 ± 0.13 | 96.63 ± 0.11 | | bicycle v. boat | - | 96.64 ± 0.12 | 96.77 ± 0.11 | 96.74 ± 0.10 | 96.77 ± 0.10 | | bicycle v. car | | 96.69 ± 0.13 | 96.68 ± 0.13 | 96.48 ± 0.10 | 97.06 ± 0.08 | | bicycle v. chair | | 94.43 ± 0.14 | 94.64 ± 0.15 | 94.86 ± 0.14 | 94.72 ± 0.15 | | bicycle v. couch | | 98.16 ± 0.11 | 98.09 ± 0.11 | 97.89 ± 0.14 | 98.42 ± 0.07 | | bicycle v. helico | pter | 96.08 ± 0.15 | 96.19 ± 0.11 | 96.03 ± 0.18 | 96.11 ± 0.15 | | bicycle v. laptor | , | 98.30 ± 0.07 | 98.15 ± 0.07 | 97.95 ± 0.19 | 98.34 ± 0.05 | | boat v. car | | 94.00 ± 0.12 | 94.07 ± 0.16 | 93.91 ± 0.17 | 94.27 ± 0.12 | | boat v. chair | | 94.20 ± 0.15 | 94.31 ± 0.10 | 94.63 ± 0.10 | 94.48 ± 0.15 | | boat v. couch | | 97.00 ± 0.10 | 96.89 ± 0.11 | 96.71 ± 0.14 | 97.16 ± 0.07 | | boat v. helicopte | er | 92.52 ± 0.26 | 91.87 ± 0.24 | 92.07 ± 0.32 | 92.66 ± 0.26 | | boat v. laptop | | 98.05 ± 0.07 | 97.75 ± 0.12 | 97.80 ± 0.14 | 98.11 ± 0.06 | | car v. chair | | 95.88 ± 0.12 | 95.73 ± 0.13 | 95.99 ± 0.11 | 96.03 ± 0.13 | | car v. couch | | 97.07 ± 0.09 | 96.70 ± 0.10 | 96.56 ± 0.16 | 97.29 ± 0.08 | | car v. helicopter | | 94.97 ± 0.16 | 95.12 ± 0.13 | 95.02 ± 0.16 | 95.15 ± 0.14 | | car v. laptop | | 96.99 ± 0.08 | 96.92 ± 0.09 | 96.76 ± 0.11 | 97.20 ± 0.07 | | chair v. couch | | 86.09 ± 0.31 | 85.63 ± 0.34 | 86.31 ± 0.31 | 86.45 ± 0.27 | | chair v. helicopt | er | 96.99 ± 0.18 | 97.17 ± 0.20 | 97.39 ± 0.16 | 96.81 ± 0.16 | | chair v. laptop | | 93.64 ± 0.25 | 93.78 ± 0.20 | 93.86 ± 0.19 | 94.08 ± 0.20 | | couch v. helicop | ter | 98.65 ± 0.08 | 98.45 ± 0.07 | 98.33 ± 0.12 | 98.71 ± 0.05 | | couch v. laptop | 9 | 93.73 ± 0.19 | 93.60 ± 0.21 | 93.56 ± 0.28 | 93.69 ± 0.22 | | helicopter v. lap | top ! | 98.80 ± 0.05 | 98.48 ± 0.07 | 98.41 ± 0.13 | 98.72 ± 0.05 | | average acc | uracy | 95.78 | 95.67 | 95.64 | 95.93 | Table 1. Learning image classifiers with the mistakes of 3D model classifiers. The best result is highlighted in **boldface** and an extra blue for our SVM MMD. # 2. Learning from the mistakes in abstract images (instance-level setting) | | ı | 1 | | | | | |---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---| | | SVM | SVM | SVM [2] | SVM+[1] | SVM (ours) | ı | | | Images | Combined | Adaptive | 0=00 + 0 40 | MMD | _ | | carrying | 96.79 ± 0.38 | 95.71 ± 0.55 | 96.57 ± 0.51 | 97.00 ± 0.48 | 97.00 ± 0.36 | | | catching | 84.77 ± 0.94 | 82.16 ± 1.04 | 82.27 ± 0.96 | 85.80 ± 0.91 | 85.91 ± 1.10 | 1 | | pushing | 78.55 ± 1.49 | 77.98 ± 1.21 | 78.06 ± 1.32 | 79.27 ± 0.98 | 79.19 ± 1.17 | ı | | pulling
reaching for | 69.52 ± 1.16
65.08 ± 1.43 | 65.73 ± 1.33 | 66.45 ± 1.39 | 67.58 ± 1.69 | 66.85 ± 1.62
68.92 ± 1.49 | 1 | | jumping over | 90.67 ± 0.92 | 68.83 ± 0.95
91.25 ± 0.85 | 65.50 ± 0.92
92.31 ± 0.72 | 65.08 ± 1.43
90.29 ± 0.94 | 90.67 ± 1.02 | ı | | hitting | 84.07 ± 0.92
84.07 ± 0.88 | 82.50 ± 0.83 | 82.41 ± 0.72
82.41 ± 0.95 | 83.98 ± 0.91 | 84.17 ± 0.88 | ı | | kicking | 91.08 ± 0.66 | 90.92 ± 0.75 | 90.33 ± 0.93 | 91.25 ± 0.69 | 92.33 ± 0.68 | ı | | elbowing | 85.91 ± 1.11 | 84.77 ± 1.31 | 85.45 ± 1.15 | 84.89 ± 1.28 | 86.02 ± 1.01 | ı | | tripping | 85.53 ± 0.96 | 85.23 ± 1.05 | 85.83 ± 0.80 | 86.29 ± 0.92 | 86.74 ± 0.88 | ı | | wavingat | 68.04 ± 1.44 | 69.13 ± 1.62 | 68.48 ± 1.59 | 68.04 ± 1.54 | 68.15 ± 1.66 | ı | | pointing at | 73.45 ± 1.63 | 77.24 ± 1.25 | 74.14 ± 1.64 | 73.71 ± 1.10 | 74.74 ± 1.06 | ı | | pointing away from | 66.62 ± 1.62 | 65.00 ± 1.53 | 63.62 ± 1.86 | 65.88 ± 1.72 | 68.50 ± 1.97 | ı | | looking at | 64.44 ± 1.32 | 65.48 ± 1.29 | 64.03 ± 1.05 | 66.69 ± 0.95 | 66.45 ± 1.05 | ı | | looking away from | 69.22 ± 1.01 | 69.45 ± 1.17 | 68.52 ± 1.07 | 71.64 ± 1.13 | 73.05 ± 0.96 | ı | | laughing at | 71.95 ± 1.14 | 71.56 ± 1.63 | 72.19 ± 1.37 | 73.05 ± 1.14 | 74.30 ± 0.95 | ı | | laughing with | 81.77 ± 1.37 | 81.35 ± 1.42 | 80.94 ± 1.24 | 80.73 ± 1.21 | 79.38 ± 1.20 | ı | | hugging | 87.19 ± 1.04 | 87.97 ± 0.95 | 87.27 ± 0.83 | 87.89 ± 1.12 | 87.97 ± 0.97 | ı | | wrestling with | 90.68 ± 0.70 | 89.55 ± 0.65 | 91.02 ± 0.84 | 90.91 ± 0.70 | 90.45 ± 0.61 | ı | | dancing with | 83.53 ± 0.75 | 83.46 ± 0.94 | 82.87 ± 1.05 | 83.53 ± 0.69 | 84.41 ± 0.60 | ı | | holding hand swith | 85.56 ± 0.98 | 86.37 ± 0.81 | 84.52 ± 0.90 | 86.69 ± 1.08 | 86.45 ± 0.80 | ı | | shaking hands with | 96.72 ± 0.38 | 93.36 ± 0.77 | 94.74 ± 0.74 | 96.55 ± 0.37 | 96.55 ± 0.47 | ı | | talking with | 80.00 ± 1.09 | 77.87 ± 0.87 | 78.68 ± 1.12 | 79.34 ± 1.21 | 81.91 ± 0.91 | ı | | arguing with | 83.97 ± 1.00 | 85.09 ± 0.83 | 84.22 ± 0.98 | 84.74 ± 0.89 | 85.00 ± 0.75 | ı | | walking with | 92.95 ± 0.77 | 92.05 ± 0.69 | 90.11 ± 1.22 | 93.30 ± 0.69 | 93.75 ± 0.75 | ı | | running with | 90.75 ± 0.79 | 90.25 ± 0.70 | 88.92 ± 0.81 | 91.25 ± 0.88 | 91.08 ± 0.64 | ı | | crawling with | 83.57 ± 1.54 | 83.69 ± 1.30 | 84.05 ± 1.46 | 82.50 ± 1.36 | 84.76 ± 1.51 | 1 | | jumping with | 82.88 ± 1.45 | 81.54 ± 1.48 | 81.54 ± 1.23 | 81.54 ± 1.58 | 82.88 ± 1.40 | ı | | walking to | 80.09 ± 1.00 | 80.00 ± 1.33 | 77.77 ± 1.28 | 80.09 ± 1.17 | 81.52 ± 0.92 | | | running to | 77.03 ± 1.00 | 78.12 ± 0.98 | 76.48 ± 1.17 | 77.66 ± 1.23 | 77.66 ± 1.03 | | | crawling to | 80.80 ± 0.94 | 76.96 ± 1.18 | 77.68 ± 1.28 | 82.50 ± 0.85 | 82.41 ± 0.79 | ı | | jumping to | 81.21 ± 0.92 | 81.03 ± 0.92 | 81.38 ± 0.95 | 81.38 ± 1.11 | 81.81 ± 1.04 | | | walking away from | 77.18 ± 1.12 | 76.05 ± 1.35 | 74.19 ± 1.12 | 78.15 ± 1.10 | 77.98 ± 0.97 | 1 | | running away from
crawling away from | 85.89 ± 0.85 | 83.12 ± 1.55 | 82.68 ± 1.15 | 85.54 ± 0.75 | 85.71 ± 0.92 | ı | | jumping away from | 77.61 ± 0.97
83.91 ± 0.83 | 75.11 ± 1.52
80.23 ± 1.02 | 75.68 ± 1.37
82.34 ± 0.84 | 77.84 ± 1.12
84.30 ± 0.87 | $80.11 \pm 0.91 \ 85.23 \pm 0.93$ | ı | | walking after | 84.20 ± 0.97 | 84.10 ± 0.98 | 82.80 ± 1.22 | 85.10 ± 1.00 | 86.50 ± 0.85 | i | | running after | 81.44 ± 1.07 | 82.12 ± 1.17 | 80.53 ± 1.05 | 82.35 ± 1.14 | 83.56 ± 0.81 | ı | | crawling after | 85.24 ± 1.16 | 85.36 ± 1.23 | 84.88 ± 1.06 | 86.31 ± 1.14 | 85.12 ± 1.18 | ı | | jumping after | 83.50 ± 0.79 | 84.58 ± 0.89 | 83.92 ± 0.73 | 84.17 ± 1.03 | 85.58 ± 0.68 | ı | | walking past | 80.07 ± 0.89 | 76.91 ± 1.12 | 75.51 ± 1.06 | 80.00 ± 1.01 | 80.59 ± 1.05 | ı | | running past | 74.22 ± 1.08 | 75.00 ± 1.01 | 74.61 ± 1.07 | 74.22 ± 1.05 | 75.62 ± 0.81 | ı | | crawling past | 77.86 ± 1.35 | 77.50 ± 1.10 | 76.90 ± 1.36 | 77.74 ± 1.33 | 78.10 ± 0.95 | ı | | jumping past | 77.96 ± 1.57 | 75.46 ± 1.61 | 76.67 ± 1.64 | 78.24 ± 1.57 | 78.61 ± 1.50 | ı | | standing next to | 85.33 ± 0.96 | 85.11 ± 1.07 | 83.15 ± 1.06 | 84.24 ± 0.99 | 86.63 ± 1.03 | ı | | sitting next to | 82.97 ± 1.04 | 82.50 ± 1.07 | 82.66 ± 1.02 | 83.59 ± 1.13 | 83.98 ± 1.07 | ı | | lying next to | 70.43 ± 1.50 | 74.83 ± 0.99 | 71.64 ± 0.84 | 73.19 ± 1.16 | 74.66 ± 1.05 | ı | | crouching next to | 79.22 ± 1.38 | 76.72 ± 1.52 | 75.62 ± 1.26 | 80.00 ± 1.05 | 80.62 ± 0.93 | ı | | standing in front of | 71.43 ± 0.97 | 69.57 ± 1.11 | 69.86 ± 1.53 | 71.00 ± 1.17 | 71.43 ± 0.92 | ı | | sitting in front of | 77.35 ± 0.98 | 77.20 ± 1.06 | 76.97 ± 0.94 | 78.41 ± 1.02 | 78.64 ± 1.08 | ı | | lying in front of | 81.64 ± 0.97 | 80.26 ± 1.42 | 80.86 ± 1.07 | 82.07 ± 1.01 | 81.64 ± 1.10 | 1 | | crouching in front of | 86.59 ± 0.96 | 79.55 ± 1.53 | 82.50 ± 1.29 | 86.36 ± 1.02 | 86.70 ± 1.16 | ı | | standing behind | 70.86 ± 1.41 | 68.19 ± 1.44 | 69.74 ± 1.08 | 72.07 ± 1.38 | 72.33 ± 1.11 | ı | | sitting behind | 88.63 ± 0.63 | 87.18 ± 0.68 | 86.45 ± 0.69 | 88.63 ± 0.50 | 88.87 ± 0.61 | 1 | | lying behind | 81.82 ± 0.97 | 83.33 ± 1.15 | 83.11 ± 0.91 | 82.80 ± 0.81 | 83.33 ± 1.10 | | | crouching behind | 77.13 ± 0.73 | 75.46 ± 1.01 | 74.44 ± 1.18 | 77.13 ± 0.66 | 78.15 ± 0.61 | ı | | standing with | 77.58 ± 1.15 | 79.60 ± 1.36 | 76.21 ± 1.28 | 78.55 ± 0.95 | 80.48 ± 1.24 | 1 | | sitting with | 81.07 ± 1.07 | 80.71 ± 1.43 | 77.98 ± 1.19 | 79.76 ± 1.10 | 80.36 ± 1.18 | | | lying with | 69.67 ± 1.30 | 71.58 ± 1.35 | 69.83 ± 1.48 | 71.67 ± 1.33 | 71.42 ± 1.31 | ı | | crouching with | 81.52 ± 1.16 | 82.72 ± 1.05
80.03 | 81.30 ± 1.02 | 81.30 ± 0.99 | 81.74 ± 1.17 81.58 | | | avg. acc. | 80.61 | 00.03
-1:1:C | 79.52 | 80.93 | 01.08 | | Table 2. Learning image classifiers with the mistakes of clip art classifiers (**instance-level setting**). In this setting of cross-dataset learning, we pair one clip art illustration with each training image as privileged information. The best result is highlighted in **boldface** with an extra blue for our SVM MMD. ## References - V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. *Neural Networks*, pages 544– 557, 2009. - [2] J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept detection using adaptive SVMs. In *ACM MM*, 2007. 1, 2