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This supplementary material clarifies some technical as-

pects of convex duality in the projective setting, and com-
pletes two proofs that were only sketched in the main body
of the paper.

1. Convex cones and polarity
Before discussing convexity in projective spaces we need

to recall some basic definitions about convex cones. More
details can be found in [1, 2]

A set C in a real vector space V is a cone if x ∈ C
implies λx ∈ C for all λ ≥ 0. A cone C is pointed if it
contains no line, i.e., if x ∈ C and −x ∈ C then x = 0.
Finally, a cone C is solid if it has a non-empty interior.

For any coneC ⊆ V , we can define the polar coneC◦ ⊆
V ∗ (we denote by V ∗ the space of linear functionals on V ):

C◦ = {ϕ ∈ V ∗ |φ(x) ≤ 0, ∀x ∈ C} (1)

We should note that many authors only consider V = RN

and identify RN and (RN )∗ by using the standard scalar
product; for our purposes it is useful to keep the two spaces
distinct.

For any cone C, the polar cone C◦ is closed and convex.
Moreover, the following properties hold (see [1]):

• If C is solid, then C◦ is pointed.

• If the closure of C is pointed, then C◦ is solid.

• C◦◦ is the closure of the convex hull of C. In particu-
lar, if C is convex and closed, C◦◦ = C.

2. Convex sets in projective space
Let us first recall that an affine chart in projective space

Pn is simply the complement of any hyperplane A =
Pn \ H: in practice, A may be seen as a copy of affine
space in Pn. In fact, any affine chart can described as
A = {[x] ∈ Pn |ϕ(x) = 1} for some ϕ ∈ (Rn+1)∗ (this
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is the complement of the set H = {[x] |ϕ(x) = 0}), so
this provides an identification with the affine hyperplane
{x ∈ Rn+1 |ϕ(x) = 1} in Rn+1. In general, it will be
convenient to say that a set T ⊆ Pn is finite if its closure is
contained in some affine chart (i.e., if the closure of T does
not intersect all hyperplanes).

For any set S ⊆ RN+1, we can consider the projectiviza-
tion PS = {[x] ∈ Pn |x ∈ S} ⊆ Pn, consisting of all
classes of vectors up to scale that contain elements of S.
Conversely, if T ⊆ Pn is connected and finite, there are
exactly two pointed cones C1, C2 such that PCi = T , and
these are such that C1 = −C2. We will say that Ci is a cone
over T . We now give the following definition:

Definition 1. A closed finite set K ⊆ Pn is convex if there
exists a closed pointed convex cone C ⊆ Rn+1 such that
K = PC.

As stated in the paper, the following fact holds.

Proposition 1. A finite set K ⊆ Pn is convex if and only if
there exists a affine chart where K is compact and convex
in the affine sense.

Proof. If C is a pointed convex cone in Rn+1, there exists
ϕ ∈ (Rn+1)∗ such that ϕ(x) < 0 for all x ∈ C \ {0}.
Thus, if K = PC, K is contained in the affine chart {[x] ∈
Pn |ϕ(x) = 1}, and in this chart it is compact and convex
as an affine set. Conversely, if K is compact and convex
in {[x] ∈ Pn |ϕ(x) = 1}, then C = {x ∈ Rn+1 | [x] ∈
K,ϕ(x) ≥ 0} is a closed pointed convex cone in Rn+1

such that PC = K.

For any finite and connected set T ⊆ Pn, we can define
the convex hull in Pn of T as PConv(C) where C ⊆ Rn+1

is one of the two pointed cones over T (the projectivization
makes the choice of C irrelevant).

Finally, we can define the dual T ◦ ⊆ (Pn)∗ of a finite set
T ⊆ Pn as PC◦ for a pointed cone overC over S (again, the
choice is irrelevant). Note that since Definition 1 requires
a convex set to be the projectivization of pointed convex
cones, it is possible that the dual of a convex set K ⊆ Pn



may not be convex: indeed, if C ⊆ Rn+1 is a convex cone
with empty interior, then C◦ is not pointed.

The next result shows that the convex dual of a set T ⊆
Pn coincides with the closure of the hyperplanes that do not
meet T in Pn:

Proposition 2. Let T ⊆ Pn be a finite connected set and
let C be a pointed cone over T . A hyperplane [ϕ] ∈ (Pn)∗

belongs T ◦ if and only if ϕ(x) ≥ 0 for all x ∈ C or ϕ(x) ≤
0 for all x ∈ C.

Proof. By definition T ◦ = PC◦ and C◦ = {ϕ ∈
(Rn)∗ |ϕ(x) ≤ 0,∀x ∈ C}: it is clear now that if [ϕ] ∈
PC◦ then necessarily ϕ ∈ C◦ or −ϕ ∈ C◦.

3. Proofs
We now use polarity for convex cones to revisit the

proofs from Section 3.2 of the paper. For any finite con-
nected set S ⊆ Pn, we denote by Ŝ an arbitrary pointed
cone over S. We also indicate with M̂ a linear projection
map M̂ : R4 → R3 associated with a perspective projec-
tionM on P3.

Proposition 3. Let M be a perspective projection with
center c, and let K ⊆ P3 \ {c} be a convex set. Then
M(K) = L is equivalent to

M∗(L◦) = K◦ ∩ c∗. (2)

Proof. It is enough to show the analogous property for
cones in R4, namely that M̂(K̂) = L̂ is equivalent to
M̂∗(L̂◦) = K̂◦ ∩ ĉ⊥, where M̂∗ : (R3)∗ → (R4)∗ is
the dual map associated with M̂ (i.e., the map ϕ 7→ ϕ ◦ M̂
for ϕ ∈ (R3)∗), and ĉ⊥ denotes the hyperplane in (R4)∗

of all linear functionals that vanish on the null-space of M̂.
Indeed, we have that:

L̂ = {M̂(x) |x ∈ K̂}
⇔ L̂◦ = {ϕ ∈ (R3)∗ |ϕ(M̂(x)) ≤ 0, ∀x ∈ K̂}
⇔ L̂◦ = {ψ ∈ (R4)∗ |ψ(x) ≤ 0, ∀x ∈ K̂} ∩ Im(M̂∗)
⇔ L̂◦ = K̂◦ ∩ ĉ⊥.

(3)
where we used the basic fact that Im(M̂∗) = ĉ⊥.

Proposition 4. A family L1, . . . , Ln of convex sets in P2 is
consistent for a set of projectionsM1, . . . ,Mn if and only
if L◦1, . . . , L

◦
n are sectionally consistent for the embeddings

M∗1, . . . ,M∗n. Moreover, if consistency holds, and H is
the visual hull associated with L1, . . . , Ln, then H = K◦,
where K is the convex hull ofM∗1(L◦1), . . . ,M∗n(L◦n).

Proof. The only thing that remains to be shown is that
(M∗i (L◦i ))◦ is in fact the visual cone Ci. This prove this,
we use the following relations for cones in R4:

(M̂∗i (L̂◦i ))◦ = {x ∈ R4 |ψ(x) ≤ 0 ∀ψ ∈ M̂∗i (L̂◦i )}
= {x ∈ R4 |ϕ(M̂(x)) ≤ 0 ∀ϕ ∈ L̂◦i }
= {x ∈ R4 | M̂(x) ∈ L̂i}.

(4)

Note that while {x ∈ R4 | M̂(x) ∈ L̂i} is a convex cone in
R4, its projectivization coincides with the two sided projec-
tive cone Ci, which is not convex for Definition 1 (indeed,
the setM∗i (L◦i ) has empty interior).
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