Gaussian Conditional Random Field Network for Semantic Segmentation - Supplementary Material

Raviteja Vemulapalli[†], Oncel Tuzel^{*}, Ming-Yu Liu^{*}, and Rama Chellappa[†]

†Center for Automation Research, UMIACS, University of Maryland, College Park.

*Mitsubishi Electric Research Laboratories, Cambridge, MA.

Abstract

In Section 1 of this supplementary material, we derive the mean field update equation for the Gaussian distribution used in this paper. Section 2 provides the relevant derivative formulas for backpropagation and Section 3 presents a detailed algorithmic description of the proposed Gaussian CRF network.

Notations: We use bold face small letters to denote vectors and bold face capital letters to denote matrices. We use \mathbf{A}^{\top} , $|\mathbf{A}|$ and trace (\mathbf{A}) to denote the transpose, inverse, determinant and trace of a matrix \mathbf{A} , respectively. We use $\|\mathbf{b}\|_2^2$ to denote the squared ℓ_2 norm of a vector \mathbf{b} . $\mathbf{A} \succeq 0$ means \mathbf{A} is symmetric and positive semidefinite. We use \mathcal{R} to denote the set of real numbers and \mathbb{E} to denote expectation.

1. Mean field inference

In this work, we model the conditional probability density P(y|X) as a Gaussian distribution given by

$$P(\mathbf{y}|\mathbf{X}) \propto \exp\left\{-\frac{1}{2} E(\mathbf{y}|\mathbf{X})\right\}, \text{ where}$$

$$E(\mathbf{y}|\mathbf{X}) = \sum_{i} \|\mathbf{y}_{i} - \mathbf{r}_{i}\|_{2}^{2} + \sum_{ij} (\mathbf{y}_{i} - \mathbf{y}_{j})^{\top} \mathbf{W}_{ij} (\mathbf{y}_{i} - \mathbf{y}_{j})$$

$$= \sum_{i} \mathbf{y}_{i}^{\top} \left(I + \sum_{j} \mathbf{W}_{ij}\right) \mathbf{y}_{i} - 2 \sum_{i} \mathbf{r}_{i}^{\top} \mathbf{y}_{i} + \sum_{i} \mathbf{r}_{i}^{\top} \mathbf{r}_{i} - 2 \sum_{ij} \mathbf{y}_{i}^{\top} \mathbf{W}_{ij} \mathbf{y}_{j}$$

$$(1)$$

The standard mean field approach approximates the joint Gaussian distribution $P(\mathbf{y}|\mathbf{X})$ using a simpler Gaussian distribution $Q(\mathbf{y}|\mathbf{X})$ which can be written as a product of independent marginals, i.e, $Q(\mathbf{y}|\mathbf{X}) = \prod_i Q_i(\mathbf{y}_i|\mathbf{X})^{-1}$, where $Q(\mathbf{y}_i|\mathbf{X})$ is a Gaussian distribution with mean $\boldsymbol{\mu}_i \in \mathcal{R}^K$ and covariance $\boldsymbol{\Sigma}_i \in \mathcal{R}^{K \times K}$. The parameters $\{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}$ of Q are obtained by minimizing the KL-divergence between the distributions Q and P.

¹Note that instead of using marginals of scalar variables y_{ik} , we are using marginals of vector variables \mathbf{y}_i .

$$KL(Q||P) = \int Q(\mathbf{y}|\mathbf{X}) \log \left[\frac{Q(\mathbf{y}|\mathbf{X})}{P(\mathbf{y}|\mathbf{X})} \right]$$

$$= \int Q(\mathbf{y}|\mathbf{X}) \log \left[Q(\mathbf{y}|\mathbf{X}) \right] - \int Q(\mathbf{y}|\mathbf{X}) \log \left[P(\mathbf{y}|\mathbf{X}) \right]$$

$$= \sum_{i} \int Q_{i}(\mathbf{y}_{i}|\mathbf{X}) \log \left[Q_{i}(\mathbf{y}_{i}|\mathbf{X}) \right] - \int Q(\mathbf{y}|\mathbf{X}) \log \left[P(\mathbf{y}|\mathbf{X}) \right] \left(\text{using } Q(\mathbf{y}|\mathbf{X}) = \prod_{i} Q_{i}(\mathbf{y}_{i}|\mathbf{X}) \right)$$

$$= -\sum_{i} \frac{1}{2} \log \left[(2\pi e)^{K} |\Sigma_{i}| \right] - \int Q(\mathbf{y}|\mathbf{X}) \log \left[P(\mathbf{y}|\mathbf{X}) \right]$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} KL(Q||P)$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \frac{1}{2} \log \left[(2\pi e)^{K} |\Sigma_{i}| \right] - \int Q(\mathbf{y}|\mathbf{X}) \log \left[P(\mathbf{y}|\mathbf{X}) \right]$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \log \left[|\Sigma_{i}| \right] + \sum_{i} \int Q(\mathbf{y}|\mathbf{X}) \mathbf{y}_{i}^{\mathsf{T}} \left(I + \sum_{j} \mathbf{W}_{ij} \right) \mathbf{y}_{i} - 2 \sum_{i} \int Q(\mathbf{y}|\mathbf{X}) \mathbf{r}_{i}^{\mathsf{T}} \mathbf{y}_{i}$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \log \left[|\Sigma_{i}| \right] + \sum_{i} \mathbb{E} \left[\mathbf{y}_{i}^{\mathsf{T}} \left(I + \sum_{j} \mathbf{W}_{ij} \right) \mathbf{y}_{i} \right] - 2 \sum_{i} \mathbb{E} \left[\mathbf{r}_{i}^{\mathsf{T}} \mathbf{y}_{i} \right]$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \log \left[|\Sigma_{i}| \right] + \sum_{i} \mathbb{E} \left[\operatorname{trace} \left(\mathbf{y}_{i} \mathbf{y}_{i}^{\mathsf{T}} \left(I + \sum_{j} \mathbf{W}_{ij} \right) \right) \right] - 2 \sum_{i} \mathbb{E} \left[\mathbf{r}_{i}^{\mathsf{T}} \mathbf{y}_{i} \right]$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \log \left[|\Sigma_{i}| \right] + \sum_{i} \operatorname{trace} \left(\mathbb{E} \left[\mathbf{y}_{i} \mathbf{y}_{i}^{\mathsf{T}} \right] \left(I + \sum_{j} \mathbf{W}_{ij} \right) \right) - 2 \sum_{i} \mathbb{E} \left[\mathbf{r}_{i}^{\mathsf{T}} \mathbf{y}_{i} \right]$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \log \left[|\Sigma_{i}| \right] + \sum_{i} \operatorname{trace} \left(\mathbb{E} \left[\mathbf{y}_{i} \mathbf{y}_{i}^{\mathsf{T}} \right] \left(I + \sum_{j} \mathbf{W}_{ij} \right) \right) - 2 \sum_{i} \mathbb{E} \left[\mathbf{r}_{i}^{\mathsf{T}} \mathbf{y}_{i} \right]$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \log \left[|\Sigma_{i}| \right] + \sum_{i} \operatorname{trace} \left(\mathbb{E} \left[\mathbf{y}_{i} \mathbf{y}_{i}^{\mathsf{T}} \right] \left(I + \sum_{j} \mathbf{W}_{ij} \right) \right) - 2 \sum_{i} \mathbb{E} \left[\mathbf{r}_{i}^{\mathsf{T}} \mathbf{y}_{i} \right]$$

$$= \underset{\{\mu_{i}, \Sigma_{i}\}}{\operatorname{argmin}} - \sum_{i} \log \left[|\Sigma_{i}| \right] + \sum_{i} \operatorname{trace} \left(\mathbb{E} \left[(\Sigma_{i} + \mu_{i} \mu_{i}^{\mathsf{T}}) \left(I + \sum_{j} \mathbf{W}_{ij} \right) \right) - 2 \sum_{i} \mathbb{E} \left[\mathbf{r}_{i}^{\mathsf{T}} \mu_{i} \right]$$

$$= 2 \sum_{i} \operatorname{trace} \left(\mu_{i} \mu_{i}^{\mathsf{T}} \mathbf{y}_{i} \right)$$

Note that in the last step, we have used the fact that y_i and y_j are independent under the distribution Q. From (3) we have,

$$\Sigma_{i}^{*} = \underset{\Sigma_{i}}{\operatorname{argmin}} \operatorname{trace}\left(\Sigma_{i}\left(I + \sum_{j} \mathbf{W}_{ij}\right)\right) - \log\left[|\Sigma_{i}|\right]$$
 (4)

Note that (4) is a convex problem. Differentiating the cost function and setting the gradient to zero, we get $\Sigma_i^* = \left(I + \sum_j \mathbf{W}_{ij}\right)^{-1}$.

From (3) we have,

$$\mu_{i}^{*} = \underset{\boldsymbol{\mu}_{i}}{\operatorname{argmin}} \operatorname{trace} \left(\boldsymbol{\mu}_{i} \boldsymbol{\mu}_{i}^{\top} \left(I + \sum_{j} \mathbf{W}_{ij} \right) \right) - 2 \mathbf{r}_{i}^{\top} \boldsymbol{\mu}_{i} - 2 \sum_{j} \operatorname{trace} \left(\boldsymbol{\mu}_{j}^{*} \boldsymbol{\mu}_{i}^{\top} \mathbf{W}_{ij} \right)$$

$$= \underset{\boldsymbol{\mu}_{i}}{\operatorname{argmin}} \boldsymbol{\mu}_{i}^{\top} \left(I + \sum_{j} \mathbf{W}_{ij} \right) \boldsymbol{\mu}_{i} - 2 \mathbf{r}_{i}^{\top} \boldsymbol{\mu}_{i} - 2 \boldsymbol{\mu}_{i}^{\top} \left(\sum_{j} \mathbf{W}_{ij} \boldsymbol{\mu}_{j}^{*} \right)$$

$$(5)$$

Note that (5) is a convex problem. Differentiating the cost function and setting the gradient to zero, we get

$$\boldsymbol{\mu}_i^* = \left(I + \sum_j \mathbf{W}_{ij}\right)^{-1} \left(\mathbf{r}_i + \sum_j \mathbf{w}_{ij} \boldsymbol{\mu}_j^*\right). \tag{6}$$

Hence, for the Gaussian distribution in (1), the mean field update for computing the means $\{\mu_i\}$ is given by

$$\boldsymbol{\mu}_i \leftarrow \left(I + \sum_j \mathbf{W}_{ij}\right)^{-1} \left(\mathbf{r}_i + \sum_j \mathbf{W}_{ij} \boldsymbol{\mu}_j\right).$$
 (7)

2. Backpropagation

Let L be the final loss function.

Backpropagating through the matrix generation layer:

Given the derivatives $dL/d\mathbf{W}_{ij}$ of the loss function with respect to the output of the matrix generation layer, we can compute the derivatives of L with respect to its input s_{ij} and parameters \mathbf{C} using

$$\frac{dL}{ds_{ij}} = \operatorname{trace}\left(\left(\frac{dL}{d\mathbf{W}_{ij}}\right)^{\top} \mathbf{C}\right),$$

$$\frac{dL}{d\mathbf{C}} = \sum_{ij} s_{ij} \frac{dL}{d\mathbf{W}_{ij}}.$$
(8)

Backpropagating through the similarity layer:

Given the derivatives dL/ds_{ij} of the loss function with respect to the output of the similarity layer, we can compute the derivatives of L with respect to its input \mathbf{z}_i and parameters \mathbf{f}_m using

$$\frac{dL}{d\mathbf{z}_{i}} = 2\left(\sum_{m=1}^{M} \mathbf{f}_{m} \mathbf{f}_{m}^{\top}\right) \left(\sum_{j} s_{ij} \frac{dL}{ds_{ij}} \left(\mathbf{z}_{j} - \mathbf{z}_{i}\right)\right),$$

$$\frac{dL}{d\mathbf{f}_{m}} = -2\left(\sum_{ij} s_{ij} \frac{dL}{ds_{ij}} \left(\mathbf{z}_{i} - \mathbf{z}_{j}\right) \left(\mathbf{z}_{i} - \mathbf{z}_{j}\right)^{\top}\right) \mathbf{f}_{m}.$$
(9)

Backpropagating through the odd update layer:

Given the derivatives $dL/d\mu_i^{out}$ of the loss function with respect to the output of an odd update layer, we can compute the derivatives of L with respect to its inputs \mathbf{r}_i , \mathbf{W}_{ij} and μ_i^{in} using

$$\frac{dL}{d\mathbf{r}_i} = \begin{cases} \left(\mathbf{I} + \sum_k \mathbf{W}_{ik}\right)^{-1} \frac{dL}{d\boldsymbol{\mu}_i^{out}} & \text{if node } i \text{ is on an odd column} \\ 0 & \text{elsewise}, \end{cases}$$

$$\frac{dL}{d\mathbf{W}_{ij}} = \left(\mathbf{I} + \sum_{k} \mathbf{W}_{ik}\right)^{-1} \frac{dL}{d\boldsymbol{\mu}_{i}^{out}} \left(\boldsymbol{\mu}_{j}^{in} - \boldsymbol{\mu}_{i}^{out}\right)^{\top}, \text{ for } i \text{ in odd columns,}$$
(10)

$$\frac{dL}{d\boldsymbol{\mu}_{j}^{in}} = \begin{cases} \frac{dL}{d\boldsymbol{\mu}_{j}^{out}} + \sum_{i} \left(\mathbf{W}_{ij} \left(\mathbf{I} + \sum_{k} \mathbf{W}_{ik}\right)^{-1} \frac{dL}{d\boldsymbol{\mu}_{i}^{out}}\right) & \text{if node } j \text{ is on an even column} \\ 0 & \text{elsewise}. \end{cases}$$

Backpropagating through the even update layer:

Given the derivatives $dL/d\mu_i^{out}$ of the loss function with respect to the output of an even update layer, we can compute the derivatives of L with respect to its inputs \mathbf{r}_i , \mathbf{W}_{ij} and μ_i^{in} using

$$\frac{dL}{d\mathbf{r}_i} = \begin{cases} \left(\mathbf{I} + \sum_k \mathbf{W}_{ik}\right)^{-1} \frac{dL}{d\boldsymbol{\mu}_i^{out}} & \text{if node } i \text{ is on an even column} \\ 0 & \text{elsewise,} \end{cases}$$

$$\frac{dL}{d\mathbf{W}_{ij}} = \left(\mathbf{I} + \sum_{k} \mathbf{W}_{ik}\right)^{-1} \frac{dL}{d\boldsymbol{\mu}_{i}^{out}} \left(\boldsymbol{\mu}_{j}^{in} - \boldsymbol{\mu}_{i}^{out}\right)^{\top}, \text{ for } i \text{ in even columns,}$$
(11)

$$\frac{dL}{d\boldsymbol{\mu}_{j}^{in}} = \begin{cases} \frac{dL}{d\boldsymbol{\mu}_{j}^{out}} + \sum_{i} \left(\mathbf{W}_{ij} \left(\mathbf{I} + \sum_{k} \mathbf{W}_{ik}\right)^{-1} \frac{dL}{d\boldsymbol{\mu}_{i}^{out}}\right) & \text{if node } j \text{ is on an odd column} \\ 0 & \text{elsewise.} \end{cases}$$

3. Algorithmic description of the proposed Gaussian CRF network

Algorithm 1 Gaussian CRF Network

Input: Image X

Unary Network

1: Apply the DeepLab CNN with parameters θ_u^{CNN} to image **X** to compute the unary predictions $\mathbf{r} = \{\mathbf{r}_i\}$.

$$\mathbf{r} = \text{DeepLabCNN}\left(\mathbf{X}, \theta_{u}^{CNN}\right).$$

Pairwise Network

- 2: Apply the pairwise network with paramters $\{\theta_p^{CNN}, \{\mathbf{f}_m\}, \mathbf{C} \succeq 0\}$ to image **X** to compute the pairwise matrices $\{\mathbf{W}_{ij}\}$ used in the energy function.
 - (a) DeepLab CNN (parameters θ_p^{CNN}): Compute per-pixel features $\mathbf{z} = \{\mathbf{z}_i\}$.

$$\mathbf{z} = \mathsf{DeepLabCNN}\left(\mathbf{X}, \theta_p^{CNN}\right).$$

(b) Similarity layer (parameters $\{\mathbf{f}_m\}$): Compute the similarity measure $s_{ij} \in [0,1]$ for every pair of connected pixels i and j using the features \mathbf{z} .

$$s_{ij} = e^{-\sum_{m=1}^{M} \left(\mathbf{f}_{m}^{\top}(\mathbf{z}_{i}-\mathbf{z}_{j})\right)^{2}}.$$

(c) Matrix generation layer (parameters $C \succeq 0$): Compute the matrix $W_{ij} \succeq 0$ for every pair of connected pixels i and j using the similarity measure s_{ij} .

$$\mathbf{W}_{ij} = s_{ij}\mathbf{C}.$$

GMF Network

- 3: Initialize the GMF network input $\mu^1 = \mathbf{r}$, and partition the nodes into even and odd columns $\mu = \{\mu_e, \mu_o\}$.
- 4: $for t = 1 \ to \ 5$
 - (a) **Even update layer:** Update the even column nodes $\pmb{\mu}_e^{t+1}$ using $\mathbf{r}, \{\mathbf{W}_{ij}\}$ and $\pmb{\mu}_o^t$.

$$\boldsymbol{\mu}_i^{t+1} = \left(I + \sum_j \mathbf{W}_{ij}\right)^{-1} \left(\mathbf{r}_i + \sum_j \mathbf{W}_{ij} \boldsymbol{\mu}_j^t\right), \ \boldsymbol{\mu}_i \in \boldsymbol{\mu}_e, \ \boldsymbol{\mu}_j \in \boldsymbol{\mu}_o.$$

(b) **Odd update layer:** Update the odd column nodes μ_o^{t+1} using $\mathbf{r}, \{\mathbf{W}_{ij}\}$ and μ_e^{t+1} .

$$oldsymbol{\mu}_i^{t+1} = \left(I + \sum_j \mathbf{W}_{ij}
ight)^{-1} \left(\mathbf{r}_i + \sum_j \mathbf{W}_{ij} oldsymbol{\mu}_j^{t+1}
ight), \;\; oldsymbol{\mu}_i \in oldsymbol{\mu}_{oldsymbol{o}}, \;\; oldsymbol{\mu}_j \in oldsymbol{\mu}_{oldsymbol{o}}.$$

- 5: Upsample μ^6 to the input image resolution using bilinear interpolation to obtain the class prediction scores at each pixel.
- 6: For each pixel, select the class label corresponding to the highest score.

Output: Class label at each pixel.