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Abstract

In Section 1 of this supplementary material, we derive the mean field update equation for the Gaussian distribution used
in this paper. Section 2 provides the relevant derivative formulas for backpropagation and Section 3 presents a detailed
algorithmic description of the proposed Gaussian CRF network.

Notations: We use bold face small letters to denote vectors and bold face capital letters to denote matrices. We use AT,
A~1 |A| and trace(A) to denote the transpose, inverse, determinant and trace of a matrix A, respectively. We use ||b||3 to
denote the squared /2 norm of a vector b. A > 0 means A is symmetric and positive semidefinite. We use R to denote the
set of real numbers and E to denote expectation.

1. Mean field inference

In this work, we model the conditional probability density P(y|X) as a Gaussian distribution given by
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The standard mean field approach approximates the joint Gaussian distribution P(y|X) using a simpler Gaussian distribution
Q(y|X) which can be written as a product of independent marginals, i.e, Q(y|X) = []; Q:(y:|X) ', where Q(y;|X) is a
Gaussian distribution with mean p; € R and covariance 3; € RE*K_ The parameters {u;, =;} of Q are obtained by
minimizing the KL-divergence between the distributions ) and P.

INote that instead of using marginals of scalar variables 1/;;,, we are using marginals of vector variables y;.
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Note that in the last step, we have used the fact that y; and y; are independent under the distribution (). From (3) we have,
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Note that (4) is a convex problem. Differentiating the cost function and setting the gradient to zero, we get 37 = (I +3 ;i Wi j)
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From (3) we have,
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Note that (5) is a convex problem. Differentiating the cost function and setting the gradient to zero, we get
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Hence, for the Gaussian distribution in (1), the mean field update for computing the means {u; } is given by
-1
pie (T4 Wiy (vt Y W) @)
J J

2. Backpropagation

Let L be the final loss function.

Backpropagating through the matrix generation layer:

Given the derivatives dL/dW; of the loss function with respect to the output of the matrix generation layer, we can compute
the derivatives of L with respect to its input s;; and parameters C using
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Backpropagating through the similarity layer:

Given the derivatives dL/ds;; of the loss function with respect to the output of the similarity layer, we can compute the
derivatives of L with respect to its input z; and parameters f,,, using
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Backpropagating through the odd update layer:

Given the derivatives dL/du“ of the loss function with respect to the output of an odd update layer, we can compute the
derivatives of L with respect to its inputs r;, W;; and g™ using

dL {(I+Zk W) Zubar if node i is on an odd column
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Backpropagating through the even update layer:

Given the derivatives dL/du$"t of the loss function with respect to the output of an even update layer, we can compute the

derivatives of L with respect to its inputs r;, W;; and p;-" using
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3. Algorithmic description of the proposed Gaussian CRF network

Algorithm 1 Gaussian CRF Network
Input: Image X

Unary Network
1: Apply the DeepLab CNN with parameters 6V to image X to compute the unary predictions r = {r;}.

r = DeepLabCNN (X, 95VN) .

Pairwise Network

2: Apply the pairwise network with paramters {5V {f,,}, C = 0} to image X to compute the pairwise matrices { W }
used in the energy function.

(a) DeepLab CNN (parameters #5VV): Compute per-pixel features z = {z;}.

z = DeepLabCNN (X, 65 V) .
(b) Similarity layer (parameters {f,,, }): Compute the similarity measure 8i; € [0, 1] for every pair of connected pixels
¢ and j using the features z.
- (f;(zi—zj))Q

Sij = e~ Zm=1
(c) Matrix generation layer (parameters C = 0): Compute the matrix W;; = 0 for every pair of connected pixels ¢
and j using the similarity measure s;;.
Wij = S”C
GMF Network
3: Initialize the GMF network input p#! = r, and partition the nodes into even and odd columns g = {fte, fto}-
4 fort=11to 5
(a) Even update layer: Update the even column nodes p! ! using r, {W,;} and p!.
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(b) Odd update layer: Update the odd column nodes p/™! using r, {W;;} and pf+.
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s: Upsample u° to the input image resolution using bilinear interpolation to obtain the class prediction scores at each pixel.

6: For each pixel, select the class label corresponding to the highest score.

Output: Class label at each pixel.




