Efficient Large-scale Approximate Nearest Neighbor Search on the GPU – Supplementary Material –

Patrick Wieschollek^{1,4}

Oliver Wang² Alexander Sorkine-Hornung³ Hendrik P.A. Lensch¹

¹ University of Tübingen ² Adobe Systems Inc. ³ Disney Research ⁴ Max Planck Institute for Intelligent Systems, Tübingen

Re-Ranking The line projection approach for re-ranking proposed nearest neighbor candidates uses a lossy compression of the original datapoints, which projects each vector $x \in \mathbb{R}^D$ to a vector $\tilde{x} \in \mathbb{R}^{P_{\text{line}}}$. When choosing the correct value of P_{line} usually the tradeoff between better approximation (higher values of P_{line}) and less memory consumption (smaller values of P_{line}) arises. To illustrated the effect of our re-ranking approach with $P_{\text{line}} \ll D$, we applied PQT with re-ranking to the MNIST dataset of handwrittendigests $\mathcal{X} \subseteq \mathbb{R}^{784}$ using $P_{\text{line}} = 28$ (see Figure 2), where \mathcal{L}_c comes from the bin traversal and \mathcal{L}_s is the result after re-ranking.

Distribution of Data While the SIFT1M dataset contains vectors in the hypercube $x \in [0, 255]^{128}$, these vectors are not embedded in the entire space, i.e., the intrinsic dimension is much lower. Figure 1 visualizes a random subset of SIFT1M using *t-Stochastic-Neighbor-Embedding (t-SNE)*, which reveals two clusters. A uniform $[0, 255]^{128}$ distributed dataset would be visualized as a uniform 2D point cloud by t-SNE.

Distribution of vectors Figure 4 visualizes a projection of the Voronoi-cells from the PQT trained on the SIFT1M dataset. Mapping a database vector $x \in \mathcal{X}$ to one of $N = (C_1 \cdot C_2)^P$ bins allows us to prune the entire search space by only picking bins during a query which are likely to contain the nearest neighbor. However, those bins may contain millions of vectors when N is small. On the other hand, traversing million of bins is infeasible, even on the GPU. Figure 3 contains the bin-histogram for the SIFT1B dataset (Table 1) in combination with hashing for a maximum of 100M bins. Using higher values of N allows a much finer granularity of produced bins.

Notice, by restricting the number of bins to be at most 100M by hashing, bins are unions of different clusters. A re-ranking step would only pick vectors from the correct cluster, because of the smaller approximate distance.

Figure 1: Visualization of 100K randomly chosen points from SIFT1M using t-SNE reveals two clusters of the data, such that the data is not fully embedded in the space.

Figure 2: Each row visualizes the list of nearest neighbor candidates \mathcal{L}_s (resp. \mathcal{L}_c) for the training MNIST dataset for a query from the test set below (resp. above) the dashed line. Re-ranking these D = 784 dimensional raw image vectors was done with our line projection method ($P_{\text{line}} = 28$).

Figure 3: The SIFT1B dataset is split up into $\max\{10^8, (C_1 \cdot C_2)^4\}$ bins by a PQT with hashing. Each bar above 2^k counts the number of bins which contains $[2^{k-1}, 2^k]$ vectors. Note, how more cluster centers yield fewer highly occupied bins. Distributions with smaller median and shorter tail are better.

	absolute frequency of bins			
vectors per bin	$(64 \cdot 64)^4$	$(32 \cdot 32)^4$	$(32 \cdot 16)^4$	$(16 \cdot 16)^4$
2	19,381	15,963	16,473	14,044
4	189,062	154,028	$161,\!860$	135,162
8	$233,\!141$	189,513	$198,\!391$	166,573
16	$16,\!122,\!413$	$13,\!076,\!618$	$13,\!654,\!802$	$11,\!451,\!256$
32	$3,\!581,\!330$	$3,\!115,\!776$	$3,\!206,\!650$	2,720,408
64	$1,\!354,\!592$	$1,\!449,\!036$	$1,\!418,\!639$	$1,\!351,\!564$
128	$361,\!308$	498,769	454,400	$519,\!172$
256	110,007	$168,\!674$	148,859	$193,\!192$
512	34,012	$53,\!860$	48,198	$66,\!601$
1,024	11,925	19,287	$17,\!610$	25,269
2,048	4,327	7,056	$6,\!678$	$9,\!670$
4,096	$1,\!654$	2,585	2,521	3,761
8,192	613	$1,\!111$	1,067	$1,\!634$
$16,\!384$	228	394	397	608
32,768	77	160	160	255
$65,\!536$	34	51	60	90
131,072	5	29	27	33
262,144	0	12	15	14
$524,\!288$	0	3	6	10
1,048,576	0	0	0	8
$2,\!097,\!152$	0	0	0	0

Table 1: Numerical values of Figure 3

Figure 4: A PQT tree trained on SIFT1M and projected to 2D using random coordinates. Each pixel represents a point p. The gray-value is defined as $0.8f_1 + 0.2f_2$, where f_k is the ratio between the smallest two distances from p to a centroid from the k-th layer in the PQT tree to emphasize the hierarchy. To find nearest neighbor candidates for a query • the PQT prunes the search space to the highlighted area (w = 1), which itself is then further clustered.