Supplemental Materials

Proof to Lemma 1

Proof. Denote $\text{supp}(P_{\Omega(t,s)}(w))$ and $\text{supp}(P_{\Omega(t,s)}(w))$ by A and B respectively for short. We first prove $B \subseteq A$.

Suppose $B \not\subseteq A$, then we can find an element $b \in B$ but $b \not\in A$. Without the loss of generality, we assume that b is in a certain group g. Since $A \cap g$ contains the indices of the t_g largest (magnitude) elements of group g, there exists at least one element $a \in A \cap g$ and $a \not\in B \cap g$ (otherwise $|B \cap g| \geq t_g + 1$). Replacing b by a in B, the constraints are still satisfied, but we can get a better solution since $|w_a| > |w_b|$. This contradicts $B = \text{supp}(P_{\Omega(t,s)}(w))$.

Because we already know $B \subseteq A$, we can construct B by selecting the A’s elements corresponding to the largest s (magnitude) elements. Therefore, $\text{supp}(P_{\Omega(s,t)}(w)) = \text{supp}(P_{\Omega(s,\infty)}(P_{\Omega(t,s)}(w)))$, which proves Lemma 1. \qed

Lemma 5. ∀$\text{supp}(w - \bar{w}) \subseteq S, S \in \Omega(s, t)$, if $2\eta - \eta^2 \rho_+(s, t)) > 0$, then

$$
\|w - \bar{w} - \eta[\nabla f(w) - \nabla f(\bar{w})]_S \| \leq (1 - 2\eta \rho_-(s, t) + \eta^2 \rho_+(s, t))\|w - \bar{w}\|^2.
$$

\[(6) \]

Proof.

$$
\|w - \bar{w} - \eta[\nabla f(w) - \nabla f(\bar{w})]_S \|^2 \\
= \|w - \bar{w}\|^2 + \eta^2 \|\nabla f(w) - \nabla f(\bar{w})\|^2 - 2\eta(w - \bar{w}, [\nabla f(w) - \nabla f(\bar{w})]_S) \\
\leq \|w - \bar{w}\|^2 + \eta^2 \rho_+(s, t) - 2\eta(w - \bar{w}, [\nabla f(w) - \nabla f(\bar{w})]_S) \\
\leq \|w - \bar{w}\|^2 - (2\eta - \eta^2 \rho_+(s, t))\rho_-(s, t)\|w - \bar{w}\|^2 \\
= (1 - 2\eta \rho_-(s, t) + \eta^2 \rho_+(s, t))\|w - \bar{w}\|^2.
$$

It completes the proof. \qed

Proof to Theorem 2

Proof. Let us prove the first claim.

$$
\|w^{k+1} - (w^k - \eta \nabla f(w^k))\|^2 \\
= \|w^{k+1} - w^k + \|w^k - (w^k - \eta \nabla f(w^k))\|^2 + 2\|w^{k+1} - w^k - \eta \nabla f(w^k))\|^2 \\
\leq 2\|w^{k+1} - w^k, [w^k - \eta \nabla f(w^k)]_{\Omega_{k+1}}\) \\
\leq 2\|w^{k+1} - w^k\|\|w^k - \eta \nabla f(w^k) - \bar{w}\|_{\Omega_{k+1}}\|.
$$

Define $\Omega = \text{supp}(\bar{w}), \Omega_{k+1} = \text{supp}(w^{k+1})$, and $\Omega_{k+1} = \Omega \cup \Omega_{k+1}$. From $\|w^{k+1} - (w^k - \eta \nabla f(w^k))\|^2 \leq \|w - (w^k - \eta \nabla f(w^k))\|^2$, we have

$$
\|w^{k+1} - \bar{w}\|^2 \leq 2\|w^{k+1} - \bar{w}, [w^k - \eta \nabla f(w^k)]_{\Omega_{k+1}}\) \\
\leq 2\|w^{k+1} - \bar{w}\|\|w^k - \eta \nabla f(w^k) - \bar{w}\|_{\Omega_{k+1}}\|
$$

It follows

$$
\|w^{k+1} - w\| \leq 2\|w^k - \eta \nabla f(w^k) - \bar{w}\|_{\Omega_{k+1}}\| \\
= 2\|w^k - \eta \nabla f(w^k) - \bar{w} + \eta \nabla f(w) - \eta \nabla f(w)\|_{\Omega_{k+1}}\| \\
\leq 2\|w^k - \eta \nabla f(w^k) - \bar{w} + \eta \nabla f(w)\|_{\Omega_{k+1}}\| + 2\eta\|\nabla f(w)\|_{\Omega_{k+1}}\| \\
\leq 2\|w^k - \eta \nabla f(w^k) - \bar{w} + \eta \nabla f(w)\|_{\Omega_{k+1}}\| + 2\eta\|\nabla f(w)\|_{\Omega_{k+1}}\| \\
= 2\|w^k - \bar{w} - \eta \nabla f(w^k) - \nabla f(w)\|_{\Omega_{k+1}}\| + 2\eta\|\nabla f(w)\|_{\Omega_{k+1}}\|.
$$
From the inequality of Lemma 5, we have
\[
\|w^{k+1} - w\| \leq \alpha \|w^k - w\| + 2\eta \|\nabla f(w)\|_{\Omega_{k+1}}
\leq \alpha \|w^k - w\| + 2\eta \max_j \|\nabla f(w)\|_{\Omega_{j+1}}
\leq \alpha \|w^k - w\| + 2\eta \Delta.
\] (7)

Since \(\Delta\) is constant, using the recursive relation of (7), we have
\[
\|w^k - w\| \leq \alpha^k \|w^0 - w\| + 2\eta \Delta \sum_{i=0}^{k-1} \alpha^i
= \alpha^k \|w^0 - w\| + 2\eta \Delta \frac{1 - \alpha^k}{1 - \alpha}
\leq \alpha^k \|w^0 - w\| + 2\eta \Delta \frac{1}{1 - \alpha}.
\] (8)

Then we move to (2), when \(k \geq \lceil \log \frac{2\Delta}{(1 - \alpha)p_+ (3s, 3t)} \|w^0 - w\| / \log \alpha \rceil\), from the conclusion of (1), we have
\[
\|w^k - w\| \leq \frac{4\Delta}{(1 - \alpha)p_+ (3s, 3t)}.
\] (9)

For any \(j \in \tilde{\Omega}\),
\[
\|w^k - w\|_{\infty} \geq \|w^k - \bar{w}\|_{j}
\geq -\|w^k\|_{j} + \|\bar{w}\|_{j}.
\]

So
\[
\|w^k\|_{j} \geq \|\bar{w}\|_{j} - \|w^k - w\|_{\infty}
\geq \|\bar{w}\|_{j} - \frac{4\Delta}{(1 - \alpha)p_+ (3s, 3t)}.
\]

Therefore, \(w^k\) is non-zero if \(\|\bar{w}\|_{j} > \frac{4\Delta}{(1 - \alpha)p_+ (3s, 3t)}\), and (2) is proved. \(\square\)

Lemma 6. The value of \(\Delta\) is bounded by
\[
\Delta \leq \min \left(O\left(\sqrt{n} \log p + \log \frac{1}{\eta'} \right), \ O\left(\sqrt{\max_{g \in G} \log |g| \sum_{g \in G} t_g + \log \frac{1}{\eta'}} \right) \right),
\] (10)

with high probability \(1 - \eta'\).

Proof. We introduce the following notation for matrix and it is different from the vector notation. For a matrix \(X\in \mathbb{R}^{n \times p}\), \(X_h\) will be a \(\mathbb{R}^{n \times |h|}\) matrix that only keep the columns corresponding to the index set \(h\). Here we restrict \(h\) by \(w_h \in \Omega(s, t)\) for any \(w \in \mathbb{R}^p\). We denote \(\Sigma_h = X_h^T X_h\). For the theorem, we can first show that \(\|X_h^T \epsilon\|_{\infty} \leq \sqrt{n} \left(\sqrt{|h|} + \sqrt{2p_+ (2s, 2t) \log \frac{1}{\eta}} \right)\) with probability \(1 - \eta\). To this end, we have to point out that our columns of \(X\) are normalized to \(\sqrt{n}\) and hence \(X_h^T \epsilon\) will be a \(\mathbb{R}^n\)-variate Gaussian random variable with \(n\) on the diagonal of covariance matrix. We further use \(\lambda_1\) as the eigenvalues of \(\Sigma_h\) with decreasing order, i.e., \(\lambda_1\) being the largest, or equivalently, \(\lambda_1 = \|\Sigma_h\|_{\text{spec}}\).
Also, using the trick that $tr(\Sigma^T_h) = \lambda_1^2 + \lambda_2^2 + \cdots + \lambda_{|h|}^2$ and Proposition 1.1 from [16], we have

$$e^{-t} \geq \Pr \left(\|X_h^T \epsilon\|^2 > \sum_{i=1}^{|h|} \lambda_i + 2 \sqrt{\sum_{i=1}^{|h|} \lambda_i^2 t + 2 \lambda_1 t} \right)$$

$$\geq \Pr \left(\|X_h^T \epsilon\|^2 > \sum_{i=1}^{|h|} \lambda_i + 2 \sqrt{2 \sum_{i=1}^{|h|} \lambda_i \lambda_1 t + 2 \lambda_1 t} \right)$$

$$\geq \Pr \left(\|X_h^T \epsilon\| > \sqrt{\sum_{i=1}^{|h|} \lambda_i + 2 \lambda_1 t} \right).$$

Substitute t with $\log(\frac{1}{\eta})$ and the facts that $\sum_{i=1}^{|h|} \lambda_i = |h|n$ and $\lambda_1 = \|\Sigma\|_{\text{spec}} \leq n \rho_+(2s, 2t)$, we have

$$\|X_h^T \epsilon\| \leq \sqrt{n} \left(\sqrt{|h|} + \sqrt{2 \rho_+(2s, 2t) \log(1/\eta)} \right)$$

with probability $1 - \eta$.

For the least square loss, we have $\nabla f(\bar{w}) = \frac{1}{n} X^T (X \bar{w} - y) = \frac{1}{n} X^T \epsilon$. To estimate the upper bound of $\|P_{\Omega(2s, 2t)}(\nabla f(\bar{w}))\|$, we use the following fact

$$\|P_{\Omega(2s, 2t)}(\nabla f(\bar{w}))\| = \|P_{\Omega(2s, 2t)}(X^T \epsilon)\| \leq \min \left(\|P_{\Omega(2s, \infty)}(X^T \epsilon)\|, \|P_{\Omega(\infty, 2t)}(X^T \epsilon)\| \right).$$

We consider the upper bounds of $\|P_{\Omega(2s, \infty)}(X^T \epsilon)\|$ and $\|P_{\Omega(\infty, 2t)}(X^T \epsilon)\|$ respectively:

$$\Pr \left(\|P_{\Omega(2s, \infty)}(X^T \epsilon)\| \geq n^{-1/2} \left(\sqrt{2s} + \sqrt{2 \rho_+(2s, 2t) \log(1/\eta)} \right) \right)$$

$$= \Pr \left(\max_{|h|=2s} \|X_h^T \epsilon\| \geq n^{-1/2} \left(\sqrt{2s} + \sqrt{2 \rho_+(2s, 2t) \log(1/\eta)} \right) \right)$$

$$\leq \sum_{|h|=2s} \Pr \left(\|X_h^T \epsilon\| \geq n^{-1/2} \left(\sqrt{2s} + \sqrt{2 \rho_+(2s, 2t) \log(1/\eta)} \right) \right)$$

$$\leq \left(\frac{p}{2s} \right) \eta.$$

By taking $\eta' = \eta \left(\frac{p}{2s} \right)$, we obtain

$$\eta' \geq \Pr \left(\|P_{\Omega(2s, \infty)}(X^T \epsilon)\| \geq n^{-1/2} \left(\sqrt{2s} + \sqrt{2 \rho_+(2s, 2t) \log \left(\left(\frac{p}{2s} \right) / \eta' \right)} \right) \right)$$

$$\geq \Pr \left(\|P_{\Omega(2s, \infty)}(X^T \epsilon)\| \geq O \left(\frac{s \log(p) + \log 1/\eta'}{n} \right) \right),$$

where the last inequality uses the fact that $\rho_+(2s, 2t)$ is bounded by a constant with high probability.
Next we consider the upper bound of $\|P_{\Omega(2t)}(X^T \epsilon)\|$. Similarly, we have

$$\Pr \left(\|P_{\Omega(2t)}(X^T \epsilon)\| \geq n^{-1/2} \left(\frac{2 \sum_{g \in \mathcal{G}} t_g + \sqrt{2 \rho_+ (2s, 2t) \log(1/\eta)}}{2} \right) \right)$$

Thus, by taking $\eta' = \eta \prod_{g \in \mathcal{G}} \left(\frac{|g|}{2t_g} \right)$, we have

$$\eta' \geq \Pr \left(\|P_{\Omega(2t)}(X^T \epsilon)\| \geq n^{-1/2} \left(\frac{2 \sum_{g \in \mathcal{G}} t_g + \sqrt{2 \rho_+ (2s, 2t) \log \left(\prod_{g \in \mathcal{G}} \left(\frac{|g|}{2t_g} \right) / \eta' \right)}}{2} \right) \right)$$

$$\geq \Pr \left(\|P_{\Omega(2t)}(X^T \epsilon)\| \geq n^{-1/2} \left(\frac{2 \sum_{g \in \mathcal{G}} t_g + \sqrt{4 \rho_+ (2s, 2t) \sum_{g \in \mathcal{G}} t_g \log|g| + 2 \rho_+ (1) \log(1/\eta')}}{2} \right) \right)$$

$$\geq \Pr \left(\|P_{\Omega(2t)}(X^T \epsilon)\| \geq n^{-1/2} \left(\frac{2 \sum_{g \in \mathcal{G}} t_g + \sqrt{4 \rho_+ (2s, 2t) \max \sum_{g \in \mathcal{G}} t_g + 2 \rho_+ (1) \log(1/\eta')}}{2} \right) \right)$$

$$\geq \Pr \left(\|P_{\Omega(2t)}(X^T \epsilon)\| \geq O \left(\frac{\max_{g \in \mathcal{G}} \log|g| \sum_{g \in \mathcal{G}} t_g + \log 1/\eta'}{n} \right) \right).$$

Summarizing two upper bounds, we have with high probability $(1 - 2\eta')$

$$\|P_{\Omega(2t)}(\nabla f(\mathbf{w}))\| \leq \min \left(O \left(\frac{s \log p + \log 1/\eta'}{n} \right), O \left(\frac{\max_{g \in \mathcal{G}} \log|g| \sum_{g \in \mathcal{G}} t_g + \log 1/\eta'}{n} \right) \right).$$

Lemma 7. For the least square loss, assume that matrix X to be sub-Gaussian with zero mean and has independent rows or columns. If the number of samples n is more than

$$O \left(\min \left\{ s \log p, \log(\max_{g \in \mathcal{G}} |g|) \sum_{g \in \mathcal{G}} t_g \right\} \right),$$

then with high probability, we have with high probability

$$\rho_+ (3s, 3t) \leq \frac{3}{2} \quad (11)$$

$$\rho_- (3s, 3t) \geq \frac{1}{2}. \quad (12)$$

Thus, α defined in (3) is less than 1 by appropriately choosing η (for example, $\eta = 1/\rho_+ (3s, 3t)$).
Proof. For the linear regression loss, we have
\[
\rho_+^{1/2}(3s, 3t) \leq \frac{1}{\sqrt{n}} \max_{w \in \Omega(3s, 3t)} \|Xw\| = \max_{|h| \leq 3s, |h\cap q| \leq t_q} \|X_h\|
\]
\[
\rho_-^{1/2}(3s, 3t) \geq \frac{1}{\sqrt{n}} \min_{w \in \Omega(3s, 3t)} \|Xw\| = \min_{1 \leq |h| \leq 3s, |h\cap q| \leq t_q} \|X_h\|
\]
From the random matrix theory [35, Theorem 5.39], we have
\[
\Pr \left(\|X_h\| \geq \sqrt{n} + O(\sqrt{3s}) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right) \leq O(\eta)
\]
Then we have
\[
\Pr \left(\sqrt{n} \rho_+^{1/2}(3s, 3t) \geq \sqrt{n} + O(\sqrt{s}) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right)
\]
\[
\leq \Pr \left(\max_{|h| \leq 3s, |h\cap q| \leq t_q} \|X_h\| \geq \sqrt{n} + O(\sqrt{s}) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right)
\]
\[
\leq \Pr \left(\|X_h\| \geq \sqrt{n} + O(\sqrt{s}) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right) = \left(\frac{p}{3s} \right) \Pr \left(\|X_h\| \geq \sqrt{n} + O(\sqrt{s}) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right) \leq O\left(\left(\frac{p}{3s} \right) \eta \right)
\]
which implies (by taking \(\eta' = \left(\frac{p}{3s} \right) \eta \)):
\[
\Pr \left(\sqrt{n} \rho_+^{1/2}(3s, 3t) \geq \sqrt{n} + O\left(\sqrt{s \log p}\right) + O\left(\sqrt{\log \frac{1}{\eta'}}\right) \right) \leq \eta'
\]
Taking \(n = O(s \log p) \), we have \(\rho_+^{1/2}(3s, 3t) \leq \sqrt{\frac{3}{2}} \) with high probability. Next, we consider it from a different perspective.
\[
\Pr \left(\sqrt{n} \rho_+^{1/2}(3s, 3t) \geq \sqrt{n} + O\left(\sum_{g \in \mathcal{V}} |t_g|\right) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right)
\]
\[
\leq \Pr \left(\sqrt{n} \rho_+^{1/2}(+\infty, 3t) \geq \sqrt{n} + O\left(\sum_{g \in \mathcal{V}} |t_g|\right) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right)
\]
\[
= \Pr \left(\max_{|h\cap q| \leq t_q} \|X_h\| \geq \sqrt{n} + O\left(\sum_{g \in \mathcal{V}} |t_g|\right) + O\left(\sqrt{\log \frac{1}{\eta}}\right) \right)
\]
\[
\leq \prod_{g \in \mathcal{V}} \Pr \left(|g| \leq \eta \log \max_{g \in \mathcal{V}} |g| \sum_{g \in \mathcal{V}} t_g \right)
\]
\[
\leq \eta \sum_{g \in \mathcal{V}} |g| t_g \leq \eta \log \max_{g \in \mathcal{V}} |g| \sum_{g \in \mathcal{V}} t_g
\]
\[
\Rightarrow \Pr \left(\sqrt{n} \rho_+^{1/2}(3s, 3t) \geq \sqrt{n} + O\left(\sum_{g \in \mathcal{V}} |t_g| \log \max_{g \in \mathcal{V}} |g|\right) + O\left(\log \frac{1}{\eta'}\right) \right) \leq \eta'$
It indicates that if \(n \geq O(\sum_{g \in G} t_g \max_{g \in G} |g|) \), then we have \(\rho_{\pm}^{1/2}(3s, 3t) \leq \sqrt{\frac{3}{2}} \) with high probability as well. Similarly, we can prove \(\rho_{\pm}^{1/2}(3s, 3t) \leq \sqrt{\frac{1}{2}} \) with high probability.

\[\text{Proof to Theorem 3} \]

\[\text{Proof.} \] Since \(n \) is large enough as shown in (4), from Lemma 7, we have \(\alpha < 1 \) and are allowed to apply Theorem 2. Since \(\Delta = 0 \) for the noiseless case, we prove the theorem by letting \(\bar{w} \) be \(w^* \).

\[\text{Proof to Theorem 4} \]

\[\text{Proof.} \] Since \(n \) is large enough as shown in (4), from Lemma 7, we have \(\alpha < 1 \) and are allowed to apply Theorem 2. From Lemma 6, we obtain the upper bound for \(\Delta \). When the number of iterations \(k \) is large enough such that \(\alpha^k \|w^0 - \bar{w}\| \) reduces the magnitude of \(\Delta \), we can easily prove the error bound of \(w^k \) letting \(\bar{w} \) be \(w^* \). The second claim can be similarly proven by applying the second claim in Theorem 2.