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013 1. Gibbs sampling for the HTGMM model 067
g:: This supplementary material presents the derivation for inferring the hidden variables in the HTGMM of the submitted ggz
016 paper. We follow the notation of the paper if we do not particularly mention about it. To derive the inference procedure in 070
017 HTGMM, we need to compute the joint pdf of the HTGMM. By considering the dependency among the random variables in 071
018 the model, the joint pdf can be derived as 072
019 K 073
020 p(¢,q7T,z,9,07c,u, Svﬂ‘aa57’y»7—vﬂo,fﬁ307 o H ¢k | B qk | ’Y)* o
021 P 075
022 D N 076
023 T 1 o, @5 ¢, ([ 0DVp(0D | prgiar, TIP(OD | precar, S )p(elD | ) (D orr
024 d=1 I=1 078
025 M 079
026 LT 2t | Sy o, 50 )p(Sim So) * p( | ), ose
027 el 081
028 082
029 where the bold character denotes the set of the corresponding elements indexed as in the right-hand side of the equation (1). 083
030 We note that p(0D | i ca), Sow), 0D) = p(0D | pioca, Soy) when p(8@ | (D) = 1 as mentioned in the paper. To infer 084
031 the posterior probability for each hidden variable, we should compute an integral to marginalize other variables. However, 085
032 this equation is not tractable because c, z are natural numbers and the domain of this pdf is not Lebesgue Integrable [1]. 086
033 Therefore, we use gibbs sampling approach [2] to infer the hidden variables in the proposed HTGMM. The problem is that 087
034 our model has many random variables and hence has a large sample space. Accordingly, it is required to reduce the sample 088
035 space for efficient solving of the problem. To reduce the sample space, we will pre-marginalize out some random variables 089
036 before the sampling, which is referred to as collapsed gibbs sampling [5]. To utilize the collapsed gibbs sampling method 090
037 in the proposed HTGMM, we first divide our models into two blocks by using blocked gibbs sampling approach [7]. This 091
038 method can be applied to our model because the set of variables {¢, q, z} and {c, , S, 7} are conditionally independent 092
039 given 6. This independency can be easily checked by applying Bayes ball algorithm [&] to the proposed HTGMM. By 093
040 using the blocked gibbs sampler, we infer the random variables through iteration of the following two steps: step I; update 094
041 {¢,q, 2,0} given {c, u, S, 7} and step 2; update {c, u, S, w} given {¢, q, z,0}. For each update step, we marginalize 095
042 all the random variables except the intractable variables z and ¢. We can analytically compute the marginalizing calculation 096
043 because the random variables are designed to satisfy the conjugate prior by introducing the augmented variable 8 as described 097
044 in the paper. The detailed description of the update procedure is given in the following. 098
045 In step 1, we will sample only the random variable set z. For simplicity, in the below, we will use the redefined notation 099
046 of T and z by eliminating the chunk index d, thatis, z = {z1, ..., 24, .., 2n, } and T = {T, T», ..., T}, ..., Tn, }, where N, 100
047 indicates the number of all trajectories, i.e., N, = N * D. z; indicates the assignment variable to assign a pattern index to 17, 101
048 and T; is defined by using the words as T; = {w;1, wia, ..., , Win, ..., W;N, }, where NN; indicates the number of words in 7j. 102
049 The chunk including T; is indexed by d;. Then, by the Bayes’ rule, the conditional posterior distribution for z; is given by 103
22(1] P(zi=j|z2-,T) occp(T; | 20 = j, 2, T-i) P(2i = j | 2-i), ) :g:
g:i where z_; is the set z excluding z;, and this notation is also applied to the other variables in the same manner. The first term :gs
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1g§ in the right-hand side in (2) is a likelihood, and the second is a prior. For the first term, we have 12§
110 , ) 164
111 p(,I‘z | Zi:jazfivT) ://p(THZZ :.77¢)j,qj)'p(¢j7qj |7Z7iani)d¢jdqj (3) 165
112 N, N1 166
:i :// H P(Win | 2i = J, ¢;) H P(Wim41) | 28 = J, 4 (Wim, 1)) - p(d4|2—i, T—i)p(qj|2—:, T—i)d¢;dg; “4) 12;
n=1 m=1
115 N; N;—1 169
e :/ I pwin | 2 = 3, ¢j)p(¢j|z—i7T—i)d¢j/ I p(wigni) | 2 = 4 @5 (wim, ))p(@; (wim, )z, T-i)dg; (5 170
117 n=1 m=1 171
118 N; N;—1 172
119 =/ Hp(wm | 2 = 7, ¢j)p(¢j|z—i,w7in)d¢j/ H P(Wigmt1) | 2 = J, @5 (Wi, )¢5 (Wim, 1) [2—i, W_im)dg; (6) 173
120 n=1 m=1 174
121 N; 175
122 =/ 11 p(win | 2 = 4. 65)p(¢512—is w i) ds @) 176
123 n=1 177
124 N;—1 178
125 [ H /p(wz(m+1) | Zj :ja Qj(wimv:))p(qj(wfima:)lzfiawfim)dqj(wim,:)]' ('-.vqj(wsv:) 1 Qj(wla:)as 7é l) (8) 179
126 m=1 180
:;; Note that ¢ and g are conditionally independent given 7" which has been applied to the procedure from (3) to (4). From :g;
Bayes’ Rule, the second term in (7) becomes
129 183
130 P(jlz—i; w_in) < pw—in | ¢5,2-:)p(8;). ©) e
131 185
:22 Since p(¢;) is Dirichler(() and conjugate to p(w_;, | ¢;, z—;), the posterior p(¢;|z_;, w_,,) will be Dirichlet(3 + n(_“jzu) :gg
134 as shown in the textbook [6], where ”(}:21 ; 18 the number of instances of word w assigned to pattern j, excluding w;,. The 188
135 first term p(win, | 2; = j, ¢;) in (7) is just ¢§3}n according to the definition of HTGMM. Then, by following the multinomial- 189
136 Dirichlet prior calculation given in the tutorial [3], we can easily complete the integral in (7) with 190
137 N N (w) 191
. . w
138 - . r Nein; B 192
139 / 11 pwin | 2 = 4, 65)p(0512 i, w_in)de; = ] 5 (10) 193
n=1 n=1N"_%n 7 + Wﬂ
140 ’ 194
141 . . . : i i i !
where W is the total number of words. nQ- - is the total number of instances of all the words in w assigned to pattern 7, %
142 } . in,j . . S , ) 196
143 excluding w;,,. We can compute the integral in (8) using the similar derivation. From Bayes’ Rule, the second term in (8) 197
becomes
144 198
145 199
(Win, )|z, W_in) X p(2_i, W_in | ¢j(Win,: i(Win, ). 11
I P(gj(win, )| ) o< p( | ¢j(Win, ))p(gj (Win, ) (11) 20
ar Subsequently, from the tutorial [3], the posterior p(q; (Win, :)|Z2—i, W—;n ) is Dirichlet( +nt) (win)). The term n®) (win) 201
148 . d ¥, o -1, the post PAgj\Win, 2)12—i, W—in) 13 Y TN i \Win))- o Tim,g AT 202
is the number of instances of word w assigned to the transition probability starting from w;, for pattern j, excluding the
149 . R . . . 203
150 current word w;,,. By following the same procedure in (10), the integral in (8) is computed as o041
151 N;—1 N;—1 (w) 205
. nf’im (wlm) + Y
152 [ H P(Witmt1) | 26 = J, ¢ (Wi, )P0 (Wi, )| 25, Wi ) dq; (Wipn, :)] = - , (12) 206
) , W
153 m=1 m=1 N (Wim) + Wy 207
154 208
155 where ni)lm(wlm) is the total number of instances of all the words assigned to the transition probability starting from w;,, 209
156 for pattern j, excluding the current word w;,,. Therefore, from the (10),(12), the probability p(T; | z; = j,z—;, T) in (3) is 210
157 derived as 211
158 212
N; (w) Ni—=1 (w)

1 . N in,j + 5 n_; (wzm) +7 21
o0 p(Til s =gz T) o [[ = o ' (1) e
. nel Ny W B 2y iy (wim) + Wy 5
161 15
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2:3 In addition, we can find p(z; = j | z_;) in (2) with the same procedure as in (10). We have Z?
218 g ) — C— 4| pldi) (di) Ndp(di) 272
Plzi=jlz_;)= | P(z; =360 0 z_;)do
e (=3 | 20) = [ Pl =31 69)p(6% | 2-) e
220 (ﬂ)j +rpe(f) 14 274
221 = ( d ) , 275
222 |+ KT Y pe(k) 276
22 (d:) (@) ; i (d:) 277
-~ when c'“) = ¢, because p(0')) is defined as Dirichlet(tp.). The term n;";”; is the total number of trajectories in chunk 278
295 d; assigned to pattern j, excluding the current one. Therefore, from the (13), (14) the posterior (2) is solved as 279
226 Ni—1 _(w) (ds) ; 280
. 7zn + /8 nfim Wim + 'Y ng_ 7,7 + T/”’C(.])
227 P(Zz = | Z,Z, {H () 2 O ( ) (d ) A } (15) 281
228 Ny W B 02 n, (Wim) + Wy g 5+ K7 Zk 1 e (k) 282
229 We highlight that this derivation is possible by employing the augment variable § of which prior is the Gaussian distribution 283
230 N (e, Se). If we naively define the prior of 6@ as N (te, Se), the integral in (14) is intractable because the Gaussian 284
231 distribution is not a conjugate prior for the multinomial 6(9) . However, since we employ 8(?) which is given by deterministic 285
232 mapping from #(?) and make 6(9) have the Gaussian prior, we can let (@ has Dirichlet prior satisfying the conjugate prior. 286
233 In step 2, we compute update equation considering both §(®) and #(%), 287
234 For step 2, we will sample only ¢(?), the assignment of the 6(?, to infer the hidden variables {p, S, }. Similar to the 288
222 equation (2), we compute the posterior distribution for ¢(®) as zgi
237 P =¢|e_q,0,0) x P(c'D =c|e_q)p0,0 | D =c e_yq) 291
izg =P =c|c_g)p(0D,0D | 6_4,0_4,¢D =c,e_q)p(0_q,0_q| D =c,c_q)  (16) §Z§
240 x P =¢|e_g)(0D, 0D | 0_4,0_4,D =c,c_y). 204
24 The equation (16) is further derived as 295
242 . B . o . 296
243 P(C( ) =cC |C_d,07 9) X P(C( ) =C | C_d)p(a( ),9( ) | B_d, H_d,c( ) =C, C_d) (17) 297
244 ( ) | Cfd)p(g‘(d) | 0_4,0_q,cD =¢, cfd,g(d))p(g(d) | 0_4,0_q,cD =¢, c_q) (18) 298
245 ~ - = . 299
246 x P =c| e a)p(0 |0 4, = c,c_a)p(0D |6 4, =c,c_a), (o p(@P)0D) =1). (19) 300
247 By using the same derivation step with (10), the first term in (19) is given by 301
248 n Ta 302
249 P =c|e_g)= —2=be T - (20) 303
250 Mm—a,() + Ma 304
251 Since 6(4) is drawn from Gaussian distribution, the second term in (19) is equivalent to Gaussian posterior distribution. 305
252 Accordingly, by following the tutorial [4, 6], the second term is given as 306
253 307
_ _ _ 1
254 ID1G e —ee V@D |y, Pt e pid 21 308
- p(0” | 0_a, sC—a) = (0" | p—gye, o D1y b Un ), 1) o
256 where ((-) is standard-t distribution. The p_q ¢, S_g.c, £, and v, are given by 310
257 311
258  Rollo + X0 0DI(cD = ¢) 312
259 H-de= or ) 313
260 D 314
261 K = ko + Y _I(cD =), 315
262 d=1 316
263 D 317
264 Up = Uo + Z I(cD = ¢), (22) 318
265 d=1 319
266 Sfd,c - So + Sc + HOMOMZ - K?n,ufd,c/i,z_wdym 320
267 D 321
268 _ 2(d) p(d)T 7/ .(d) _ 322
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269 Z ( ) 323
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324 where I(+) is an indicator function. As defined in our paper, the third term in (19) is Dirichlet distribution over 7p_g4 . and so 378
325 given as 379
326 380
327 p(G(d) | 6_4, D=, c_g4) = Dirichlet(H(d) | Th—d,c)- (23) 381
328 382
329 Therefore, from (20),(21),(23), the posterior equation (17) is solved as 383
330 n 1 384
331 () — 5 _Mmede T p(d) _ fnr _ . Diri (d) 385
o P =c|c_4,0,0) x a0y + Ma C(0' | p—g,c, o —D T 1)S,d,c,vn D +1) - Dirichlet(6'" | Tp—a.). o
333 (24) 387
334 388
335 By iteratively resampling z and ¢ by the equations (15) and (24), we can infer the hidden variables of the proposed HT- 389
336 GMM. 390
337 391
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