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Amaia Salvador, Xavier Giró-i-Nieto, Ferran Marqués
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Abstract

Image representations derived from pre-trained Convo-

lutional Neural Networks (CNNs) have become the new

state of the art in computer vision tasks such as instance

retrieval. This work explores the suitability for instance

retrieval of image- and region-wise representations pooled

from an object detection CNN such as Faster R-CNN. We

take advantage of the object proposals learned by a Region

Proposal Network (RPN) and their associated CNN features

to build an instance search pipeline composed of a first fil-

tering stage followed by a spatial reranking. We further

investigate the suitability of Faster R-CNN features when

the network is fine-tuned for the same objects one wants to

retrieve. We assess the performance of our proposed sys-

tem with the Oxford Buildings 5k, Paris Buildings 6k and

a subset of TRECVid Instance Search 2013, achieving com-

petitive results.

1. Introduction

Visual media is nowadays the most common type of con-

tent in social media channels, thanks to the proliferation of

ubiquitous cameras. This explosion of online visual content

has motivated researchers to come up with effective yet effi-

cient automatic content based image retrieval systems. This

work addresses the problem of instance search, understood

as the task of retrieving those images from a database that

contain an instance of a query.

Recently, Convolutional Neural Networks (CNNs) have

been proven to achieve state of the art performance in many

computer vision tasks such as image classification [12, 22],

object detection [19] or semantic segmentation [14]. CNNs

trained with large amounts of data have been shown to learn

feature representations that can be generic enough to be

used even to solve tasks for which they had not been trained

[18]. Particularly for image retrieval, many works in the

literature [3, 25, 11] have adopted solutions based on off-

the-shelf features extracted from a CNN pretrained for the

task of image classification [12, 22, 24], achieving state of

Figure 1. Examples of the rankings and object locations obtained

by our proposed retrieval system for query objects (left, depicted

with a blue contour) of three different datasets: TRECVid INS

2013, Paris Buildings and Oxford Buildings.

the art performance in popular retrieval benchmarks.

Instance search systems often combine fast first filtering

stages, in which all images in a database are ranked accord-

ing to their similarity to the query, with more computation-

ally expensive mechanisms that are only applied to the top

retrieved items. Geometric verification and spatial analy-

sis [10, 29, 15, 28] are common reranking strategies, which

are often followed with query expansion (pseudo-relevance

feedback) [1, 5].

Spatial reranking usually involves the usage of sliding

windows at different scales and aspect ratios over an im-

age. Each window is then compared to the query instance

in order to find the optimal location that contains the query,
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which requires the computation of a visual descriptor on

each of the considered windows. Such strategy resem-

bles that of an object detection algorithm, which usually

evaluates many image locations and determines whether

they contain the object or not. Object Detection CNNs

[8, 9, 7, 19] have rapidly evolved to a point where the usage

of exhaustive search with sliding windows or the computa-

tion of object proposals [26, 2] is no longer required. In-

stead, state of the art detection CNNs [19] are trained in an

end-to-end manner to simultaneously learn object locations

and labels.

This work explores the suitability of both off-the-shelf

and fine-tuned features from an object detection CNN for

the task of instance retrieval. We make the following three

contributions:

∙ We propose to use a CNN pre-trained for object de-

tection to extract convolutional features both at global

and local scale in a single forward pass of the image

through the network.

∙ We explore simple spatial reranking strategies, which

take advantage of the locations learned by a Region

Proposal Network (RPN) to provide a rough object lo-

calization for the top retrieved images of the ranking.

∙ We analyze the impact of fine-tuning an object detec-

tion CNN for the same instances one wants to query in

the future. We find such a strategy to be suitable for

learning better image representations.

This way, we put together a simple instance retrieval sys-

tem that uses both local and global features from an object

detection network. Figure 1 shows examples of rankings

generated with our retrieval pipeline.

The remainder of the paper is structured as follows.

Section 2 introduces the related works, Section 3 presents

the methodology of this paper, including feature pooling,

reranking and fine-tuning strategies. Section 4 includes the

performed experiments on three different image retrieval

benchmarks as well as the comparison to other state of the

art CNN-based instance search systems. Finally, Section 5

draws the conclusions of this work.

2. Related Work

CNNs for Instance Search. Features from pre-trained

image classification CNNs have been widely used for in-

stance search in the literature. Early works in this direc-

tion demonstrated the suitability of features from fully con-

nected layers for image retrieval [4]. Razavian et al. [18]

later improved the results by combining fully connected lay-

ers extracted from different image sub-patches.

A second generation of works explored the usage of

other layers in the pretrained CNN and found that convo-

lutional layers significantly outperformed fully connected

ones at image retrieval tasks [21]. Babenko and Lempit-

sky [3] later proposed a compact descriptor composed of

the sum of the activations of each of the filter responses

in a convolutional layer. Tolias et al. introduced R-MAC

[25], a compact descriptor composed of the aggregation of

multiple region features. Kalantidis et al. [11] found signif-

icant improvements when applying non-parametric spatial

and channel-wise weighting strategies to the convolutional

layers.

This work shares similarities with all the former in the

usage of convolutional features of a pretrained CNN. How-

ever, we choose to use a state-of-the-art object detection

CNN, to extract both image- and region-based convolu-

tional features in a single forward pass.

Object Detection CNNs. Many works in the literature

have proposed CNN-based object detection pipelines. Gir-

shick et al. presented R-CNN [8], a version of Krizhevsky’s

AlexNet [12], fine-tuned for the Pascal VOC Detection data

[6]. Instead of full images, the regions of an object proposal

algorithm [26] were used as inputs to the network. At test

time, fully connected layers for all windows were extracted

and used to train a bounding box regressor and classifier.

Since then, great improvements to R-CNN have been

released, both in terms of accuracy and speed. He et al.

proposed SPP-net [9], which used a Spatial Pyramid based

pooling layer to improve classification and detection per-

formance. Additionally, they significantly decreased com-

putational time by pooling region features from convolu-

tional features instead of forward passing each region crop

through all layers in the CNN. This way, the computation

of convolutional features is shared for all regions in an im-

age. Girshick later released Fast R-CNN [7], which used

the same speed strategy as SPP-net but, more importantly,

replaced the post-hoc training of SVM classifiers and box

regressors with an end-to-end training solution. Ren et al.

introduced Faster R-CNN [19], which removed the object

proposal dependency of former object detection CNN sys-

tems by introducing a Region Proposal Network (RPN). In

Faster R-CNN, the RPN shares features with the object de-

tection network in [7] to simultaneously learn prominent

object proposals and their associated class probabilities.

In this work, we take advantage of the end-to-end self-

contained object detection architecture of Faster R-CNN to

extract both image and region features for instance search.

3. Methodology

3.1. CNN-based Representations

This paper explores the suitability of using features from

an object detection CNN for the task of instance search. In

our setup, query instances are defined by a bounding box

over the query images. We choose the architecture and pre-

trained models of Faster R-CNN [19] and use it as a feature
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Figure 2. Image- and region-wise descriptor pooling from the Faster R-CNN architecture.

extractor at both global and local scales. Faster R-CNN is

composed of two branches that share convolutional layers.

The first branch is a Region Proposal Network that learns a

set of window locations, and the second one is a classifier

that learns to label each window as one of the classes in the

training set.

Similarly to other works [3, 25, 11] our goal is to extract

a compact image representation built from the activations

of a convolutional layer in a CNN. Since Faster R-CNN op-

erates at global and local scales, we propose the following

strategies of feature pooling:

Image-wise pooling of activations (IPA). In order to

construct a global image descriptor from Faster R-CNN

layer activations, one can choose to ignore all layers in the

network that operate with object proposals and extract fea-

tures from the last convolutional layer. Given the activations

of a convolutional layer extracted for an image, we aggre-

gate the activations of each filter response to construct an

image descriptor of the same dimension as the number of

filters in the convolutional layer. Both max and sum pool-

ing strategies are considered and compared in Section 4.3

of this paper.

Region-wise pooling of activations (RPA). After the

last convolutional layer, Faster R-CNN implements a region

pooling layer that extracts the convolutional activations for

each of the object proposals learned by the RPN. This way,

for each one of the window proposals, it is possible to com-

pose a descriptor by aggregating the activations of that win-

dow in the RoI pooling layer, giving raise to the region-wise

descriptors. For the region descriptor, both max and sum

pooling strategies are tested as well.

Figure 2 shows a schematic of the Faster R-CNN archi-

tecture and the two types of descriptor pooling described

above.

Following several other authors [3, 11], sum-pooled fea-

tures are �2-normalized, followed by whitening and a sec-

ond round of �2-normalization, while max-pooled features

are just �2-normalized once (no whitening).

3.2. Fine-tuning Faster R-CNN

This paper explores the suitability of fine-tuning Faster

R-CNN to 1) obtain better feature representations for image

retrieval and 2) improve the performance of spatial analysis

and reranking. To achieve this, we choose to fine tune Faster

R-CNN to detect the query objects to be retrieved by our

system. This way, we modify the architecture of Faster R-

CNN to output the regressed bounding box coordinates and

the class scores for each one of the query instances of the

tested datasets.

In our experiments, we explore two modalities of fine-

tuning:

∙ Fine-tuning Strategy #1: Only the weights of the

fully connected layers in the classification branch are

updated (i.e. the convolutional layers and the RPN are

left unchanged).

∙ Fine-tuning Strategy #2: Weights of all layers after

the first two convolutional layers are updated. This

way, convolutional features, RPN proposals and fully

connected layers are modified and adapted to the query

instances.

The resulting fine-tuned networks are to be used to ex-

tract better image and region representations and to perform

spatial reranking based on class scores instead of feature

similarities.

3.3. Image Retrieval

The three stages of the proposed instance retrieval

pipeline are described in this section: filtering stage, spa-

tial reranking and query expansion.

Filtering Stage. The Image-wise pooling (IPA) strat-

egy is used to build image descriptors for both query and

database images. At test time, the descriptor of the query

image is compared to all the elements in the database, which

are then ranked based on the cosine similarity. At this stage,

the whole image is considered as the query.

11



Spatial Reranking. After the Filtering Stage, the top N

elements are locally analyzed and reranked. We explore two

reranking strategies:

∙ Class-Agnostic Spatial Reranking (CA-SR). For every

image in the top N ranking, the region-wise descriptors

(RPA) for all RPN proposals are compared to the re-

gion descriptor of the query bounding box. The region-

wise descriptors of RPN proposals are pooled from the

RoI pooling layer of Faster R-CNN (see Figure 2). To

obtain the region-wise descriptor of the query object,

we warp its bounding box to the size of the feature

maps in the last convolutional layer and pool the ac-

tivations within its area. The region with maximum

cosine similarity for every image in the top N ranking

gives the object localization, and its score is kept for

ranking.

∙ Class-Specific Spatial Reranking (CS-SR). Using a net-

work that has been fine-tuned with the same instances

one wishes to retrieve, it is possible to use the direct

classification scores for each RPN proposal as the sim-

ilarity score to the query object. Similarly to CA-SR,

the region with maximum score is kept for visualiza-

tion, and the score is used to rank the image list.

Query Expasion (QE). The image descriptors of the top

M elements of the ranking are averaged together with the

query descriptor to perform a new search.

4. Experiments

4.1. Datasets

The methodologies described in Section 3 are assessed

with the following datasets:

∙ Oxford Buildings [16]. 5,063 images, including 55

query images of 11 different buildings in Oxford (5

images/instance are provided). A bounding box sur-

rounding the target object is provided for query im-

ages.

∙ Paris Buildings [17]. 6,412 still images of Paris land-

marks, including 55 query images of 11 buildings with

associated bounding box annotations.

∙ INS 2013 [23]. A subset of 23,614 keyframes from

TRECVid Instance Search (INS) dataset containing

only those keyframes that are relevant for at least one

of the queries of INS 2013.

4.2. Experimental Setup

We use both the VGG16 [22] and ZF [27] architectures

of Faster R-CNN to extract image and region features. In

both cases, we use the last convolutional layer (����5 and

����5 3 for ZF and VGG16, respectively) to build the im-

age descriptors introduced in Section 3, which are of di-

mension 256 and 512 for the ZF and VGG16 architectures,

respectively. Region-wise features are pooled from the RoI

pooling layer of Faster R-CNN. Images are re-scaled such

that their shortest side is 600 pixels. All experiments were

run in an Nvidia Titan X GPU.

4.3. Off-the-shelf Faster R-CNN features

In this section, we assess the performance of using off-

the-shelf features from the Faster R-CNN network for in-

stance retrieval.

First, we compare the sum and max pooling strategies

of image- and region-wise descriptors. Table 1 summarizes

the results. According to our experiments sumpooling is

significantly superior to maxpooling for the filtering stage.

Such behaviour is consistent with other works in the litera-

ture [3, 11]. Sumpooling is, however, consistently outper-

formed by maxpooling when reranking using region-wise

features for all three datasets. Specifically for the Oxford

and Paris datasets, we find the spatial reranking with max-

pooling to be beneficial after filtering (gain of 0.10 and 0.03

mAP points for Oxford and Paris, respectively). However,

the spatial reranking (either with max or sum pooling) has

little or no effect for the INS13 dataset. To further inter-

pret these results, we qualitatively evaluate the two pool-

ing strategies. Figure 3 shows examples of top rankings

for INS13 queries, spatially reranked with region-wise max

and sum pooled descriptors. These examples indicate that,

although mAP is similar, the object locations obtained with

maxpooling are more accurate. According to this analysis,

we set IPA-sum descriptors for the filtering stage and RPA-

max descriptors for the spatial reranking in all the upcoming

experiments of this paper.

Table 2 shows the performance of different Faster R-

CNN architectures (ZF and VGG16) trained on two datasets

(Pascal VOC and COCO [13]), including experiments with

query expansion with the � = 5 top retrieved images as

well. As expected, features pooled from the deeper VGG16

network perform better in most cases, which is consistent

with previous works in the literature showing that features

from deeper networks reach better performance. Query

expansion applied after the spatial reranking achieves sig-

nificant gains for all tested datasets. Such behaviour was

expected in particular with Oxford and Paris datasets, for

which the spatial reranking already provided a significant

gain. Interestingly, query expansion is also most beneficial

after spatial reranking for the INS13 dataset, which suggests

that, although in this case the spatial reranking does not pro-

vide any gain in mAP, the images that fall on the very top

of the ranking are more useful to expand the query than the

ones in the top of the first ranking.
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Figure 3. Examples of top 4 rankings and object locations obtained for queries 9098: a P (parking automat) sign and 9076: this monochrome

bust of Queen Victoria from the INS 2013 dataset (query images surrounded in blue). Comparison between the rankings generated using

RPA-sum (top) and RPA-max (bottom), after the filtering stage with IPA-sum. Regressed bounding box coordinates have been disabled for

visualization.

Table 1. Mean Average Precision (mAP) comparison between sum

and max pooling strategies for both filtering and reranking stages

using conv5 features from the ZF Faster R-CNN model.

Filtering Reranking Oxford 5k Paris 6k INS 13

IPA-sum

None 0.505 0.612 0.215

RPA-sum 0.501 0.621 0.196

RPA-max 0.602 0.641 0.206

IPA-max

None 0.478 0.540 0.131

RPA-sum 0.508 0.565 0.135

RPA-max 0.559 0.561 0.138

Table 2. mAP of pre-trained Faster R-CNN models with ZF and

VGG16 architectures. (P) and (C) denote whether the network

was trained with Pascal VOC or Microsoft COCO images, respec-

tively. In all cases, IPA-sum descriptors are used for the filtering

stage. The CA-SR column specifies whether Class-Agnostic Spa-

tial Reranking with RPA-max is applied to the top � = 100 ele-

ments of the ranking. When indicated, QE is applied with � = 5.

Net CA-SR QE Oxford 5k Paris 6k INS 13

ZF (P)

No
No 0.505 0.612 0.215

Yes 0.515 0.671 0.246

Yes
No 0.602 0.640 0.206

Yes 0.622 0.707 0.261

VGG16 (P)

No
No 0.588 0.657 0.172

Yes 0.614 0.706 0.201

Yes
No 0.641 0.683 0.171

Yes 0.679 0.729 0.242

VGG16 (C)

No
No 0.588 0.656 0.216

Yes 0.600 0.695 0.250

Yes
No 0.573 0.663 0.192

Yes 0.647 0.732 0.241

4.4. Fine-tuning Faster R-CNN

In this section, we assess the impact in retrieval perfor-

mance of fine-tuning a pretrained network with the query

objects to be retrieved. We choose to fine-tune the VGG16

Faster R-CNN model, pretrained with the objects of the Mi-

crosoft COCO dataset.

In the case of Oxford and Paris, we modify the output

layers in the network to return 12 class probabilities (11

buildings in the dataset, plus an extra class for the back-

ground), and their corresponding regressed bounding box

coordinates. We use the 5 images provided for each one of

the buildings and their bounding box locations as training

data. Additionally, we augment the training set by perform-

ing a horizontal flip on the training images (11∗5∗2 = 110

training images in total). For INS 13, we have 30 differ-

ent query instances, with 4 images each, giving raise to

30 ∗ 4 ∗ 2 = 240 training examples. The number of output

classes for INS 13 is 31 (30 queries plus the background

class).

The original Faster R-CNN training parameters de-

scribed in [19] are kept for fine-tuning, except for the num-

ber of iterations, which we decreased to 5.000 considering

our small number of training samples. We use the approxi-

mate joint training strategy introduced in [20], which trains

the RPN and classifier branches at the same time, using

the multi-task loss defined in [19]. This way, we train a

separate network for each one of the tested datasets, using

the two different fine-tuning modalities described in Section

3.2. Fine-tuning was performed on a Nvidia Titan X GPU

and took around 30 and 45 minutes for finetuning strategies

#1 and #2, respectively.

We first take the networks fine-tuned with strategy #1

and run the retrieval pipeline from scratch. Table 3 shows

the obtained results (ft#1 columns). Results of the filtering

and CA-SR stages are the same as those obtained with the

original Faster R-CNN model, which is because the weights

for the convolutional layers were not modified during fine-

tuning. Results indicate that, although mAP is not always

improved after CS-SR (e.g. from 0.588 to 0.543 for Ox-

ford 5k), it is significantly better than CA-SR for Oxford

and Paris when followed with query expansion. In case of

the INS 13 dataset, we do not find significant improvements

when using CS-SR, which suggests that only fine-tuning

fully connected layers might not be sufficient to effectively
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detect the challenging query objects in this dataset.

The second experiment in this section involves fine-

tuning a higher number of layers in the Faster R-CNN archi-

tecture (Fine-tuning Strategy #2). Using this modality, the

weights in the last convolutional layer are modified. Figure

4 shows the difference in the activations in conv5 3 after

fine-tuning it for the query instances in each dataset. These

visualizations indicate that, after fine-tuning, more neurons

in the convolutional layer positively react to the visual pat-

terns that are present in the query objects of the dataset.

We then use the fine-tuned networks of the Fine-tuning

Strategy #2 for each one of the datasets to extract image-

and region-wise descriptors to perform instance search. Ta-

ble 3 presents the results (ft#2 columns). As expected, fine-

tuned features significantly outperform raw Faster R-CNN

features for all datasets (mAP is ∼ 20% higher for Oxford

and Paris, and 8% higher for INS 13). Results indicate that,

for Oxford and Paris datasets, the gain of CA-SR + QE is

higher with raw features (10% and 11% mAP increase for

Oxford and Paris, respectively) than with fine-tuned ones

(8% and 3% mAP increase, respectively). This suggests

that fine-tuned features are already discriminant enough to

correctly retrieve the objects in these two datasets. How-

ever, results for the INS 13 dataset show that CA-SR + QE

is most beneficial when using fine-tuned features (11% and

41% mAP increase for raw and fine-tuned features, respec-

tively). This difference between the performance for Ox-

ford/Paris and INS13 suggests that queries from the latter

are more challenging and therefore benefit from fine-tuned

features and spatial reranking the most. A similar behaviour

is observed for CS-SR which, for Oxfod and Paris, is most

beneficial when applied to a ranking obtained with raw fea-

tures. For INS 13, however, the gain is greater when using

fine-tuned features. Overall, the performance of reranking

+ query expansion is higher for CS-SR than CA-SR. Figure

1 shows examples of rankings for queries of the three dif-

ferent datasets after applying CS-SR. For visualization, we

disable the regressed bounding box coordinates predicted

by Faster R-CNN and choose to display those that are di-

rectly returned by the RPN. We find that the locations re-

turned by the regression layer are innacurate in most cases,

which we hypothesize is caused by the lack of training data.

Finally, in Figure 5 we qualitatively evaluate the object

detections after CS-SR using the fine-tuned strategies #1

and #2. The comparison reveals that locations obtained with

the latter are more accurate and tight to the objects. The

Fine-tuning Strategy #2 allows the RPN layers to adapt to

the query objects, which causes the network to produce ob-

ject proposals that are more suitable for the objects in the

test datasets.

Figure 4. Difference between conv5 3 features (sum pooled over

feature maps) extracted from the original Faster R-CNN model

pretrained with MS COCO with conv5 3 features from the same

model fine-tuned for INS13 (bottom), Oxford and Paris (top)

queries.

Table 3. Comparison between Fine-tuning strategies #1 (ft#1) and

#2 (ft#2) on the three datasets. Spatial Reranking (R) is applied to

the � = 100 top elements of the ranking. QE is performed with

� = 5.

R QE Oxford 5k Paris 6k INS 13

ft#1 ft#2 ft#1 ft#2 ft#1 ft#2

No No 0.588 0.710 0.656 0.798 0.216 0.234

No Yes 0.600 0.748 0.695 0.813 0.250 0.259

CA-SR No 0.573 0.739 0.663 0.801 0.192 0.248

CA-SR Yes 0.647 0.772 0.732 0.824 0.241 0.330

CS-SR No 0.543 0.751 0.793 0.807 0.181 0.250

CS-SR Yes 0.678 0.786 0.784 0.842 0.250 0.339

4.5. Comparison with state-of-the-art

In this section, we compare our results with several in-

stance search works in the literature. Table 4 shows the re-

sults of this comparison.

Our proposed pipeline using Faster R-CNN features

shows competitive results with respect to the state of the art.

However, other works [11, 25] achieve a very high perfor-

mance without any reranking nor query expansion strategies

using similar feature pooling strategies. We hypothesize

that the difference in the CNN architecture (Faster R-CNN

vs. VGG16), training data (Pascal VOC vs ImageNet) and

input image size (600px wide vs. full resolution) between

these works and ours might be the reasons of the gap in

performance. Our proposed reranking strategy CA-SR fol-
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Figure 5. Ranking examples after CS-SR with fine-tuned strategies #1 (left) and #2 (right).

Table 4. Comparison with CNN-based state-of-the-art works on

instance retrieval.

Oxford 5k Paris 6k

Razavian et al. [18] 0.556 0.697

Tolias et al. [25] 0.668 0.830

Kalantidis et al. [11] 0.682 0.796

Babenko and Lempitsky [3] 0.657 -

Ours 0.588 0.656

Ours (ft#2) 0.710 0.798

Tolias et al. (+ R + QE) [25] 0.770 0.877

Kalantidis et al. (+ QE) [11] 0.722 0.855

Ours (+ CA-SR + QE) 0.647 0.732

Ours (ft#1) (+ CS-SR + QE) 0.678 0.784

Ours (ft#2) (+ CS-SR + QE) 0.786 0.842

lowed by query expansion is demonstrated to provide simi-

lar mAP gains compared to the one proposed in [25]. While

CA-SR + QE gives us a gain in mAP of ∼ 10% both for Ox-

ford and Paris (using raw Faster R-CNN features), Tolias et

al. [25] use their reranking strategy to raise their mAP by 5

and 15% for the two datasets, respectively.

As expected, results obtained with fine-tuned features

(ft#2) achieve very competitive results compared to those

in the state of the art, which suggests that fine-tuning the

network for the object queries is an effective solution when

time is not a constraint.

5. Conclusion

This paper has presented different strategies to make use

of CNN features from an object detection CNN. It provides

a simple baseline that uses off-the-shelf Faster R-CNN fea-

tures to describe both images and their sub-parts. We have

shown that is possible to greatly improve the performance

of an off-the-shelf based system, at the cost of fine tuning

the CNN for the query images that include objects that one

wants to retrieve.
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