
Deep End2End Voxel2Voxel Prediction

Du Tran1,2, Lubomir Bourdev3, Rob Fergus1, Lorenzo Torresani2, Manohar Paluri1

1Facebook AI Research, 2Dartmouth College, 3UC Berkeley

{dutran,lorenzo}@cs.dartmouth.edu {trandu,robfergus,mano}@fb.com lubomir.bourdev@gmail.com

Abstract

Over the last few years deep learning methods have

emerged as one of the most prominent approaches for video

analysis. However, so far their most successful applications

have been in the area of video classification and detection,

i.e., problems involving the prediction of a single class la-

bel or a handful of output variables per video. Further-

more, while deep networks are commonly recognized as the

best models to use in these domains, there is a widespread

perception that in order to yield successful results they

often require time-consuming architecture search, manual

tweaking of parameters and computationally intensive pre-

processing or post-processing methods.

In this paper we challenge these views by presenting a

deep 3D convolutional architecture trained end to end to

perform voxel-level prediction, i.e., to output a variable at

every voxel of the video. Most importantly, we show that

the same exact architecture can be used to achieve competi-

tive results on three widely different voxel-prediction tasks:

video semantic segmentation, optical flow estimation, and

video coloring. The three networks learned on these prob-

lems are trained from raw video without any form of pre-

processing and their outputs do not require post-processing

to achieve outstanding performance. Thus, they offer an

efficient alternative to traditional and much more computa-

tionally expensive methods in these video domains.

1. Introduction

During the last decade we have witnessed a tremendous

growth in the number of videos created and shared on the

Internet thanks to the advances in network bandwidth and

computation. In turn this has lead to a strong effort toward

the creation of better tools and apps to search, browse and

navigate these large and continuously expanding video col-

lections. This poses new challenges for the computer vision

community and gives new motivations to build better, faster

and more generally applicable video analysis methods.

In the still-image domain deep learning has revolution-

ized the traditional computer vision pipeline, which typ-

3D ConvNet

Semantic Segmentation

3D ConvNet

Optical Flow Prediction

3D ConvNet

Video Coloring

Figure 1. Voxel to voxel prediction: is a fine-grained video under-

standing task where the algorithm need to infer a variable for each

input voxel. The problem has many potential applications includ-

ing video semantic segmentation, optical flow prediction, depth

estimation, and video coloring.

ically consisted of: pre-processing, hand-construction of

visual features, training of a learning model, and post-

processing. Instead, the successful introduction of deep

convolutional neural network [15, 11, 23, 25] has shown

that much better results can be obtained through end to end

learning on very large collections of image examples, where

the network is trained on raw image input and it directly

predicts the target output. Besides the demonstrated advan-

tages in improved accuracy, these end to end learned models

have also been shown to be often more computationally ef-

ficient than traditional hand-designed approaches because

they eliminate the need for computationally expensive pre-

processing and post-processing steps and because convolu-

tion can run very fast, particularly on GPUs.

The video domain is also harnessing the benefits of this

revolution but it is still lagging compared to the image set-

ting [7, 32, 27]. In particular, most of the end to end learn-

ing approaches for video analysis have been introduced in

the area of classification and detection [14, 24, 29, 28]

and involve predicting a single label or few output vari-

ables per video. However, there are many computer vi-

sion problems that require labeling every single voxel of

a video. Examples include optical flow computation, video

semantic segmentation, depth estimation and video color-

ing. There have been some attempts at approaching these

1 17

pixel-labeling problems with deep learning [17, 10, 9] for

images. One of the reasons is that deep networks typi-

cally involve a large set of pooling layers which signifi-

cantly lower the spatial resolution of the output. In order

to output pixel labels at the original resolution, several “un-

pooling” strategies have been proposed, including simple

upsampling, and multi-scale approaches. One of the most

promising solution in this genre is learning convolution fil-

ters that upsample the signal. The primary benefit of convo-

lutional upsampling is that it only requires learning a small

number of location-agnostic filters and thus it can be carried

out with limited training data.

The objective of our work is to demonstrate that 3D con-

volutional networks (3D ConvNets) with upsampling lay-

ers enable highly effective end to end learning of voxel

to voxel prediction models on various video analysis prob-

lems. Instead of building a highly specialized network for

each problem, our goal is to show that the same 3D ConvNet

architecture trained on three distinct application domains

(optical flow prediction, semantic segmentation, video col-

oring) can produce competitive results on each of them.

Although a thorough architecture search is likely to yield

improved results, we find it useful to employ a single net-

work model for the three distinct tasks to convey the mes-

sage that deep learning methods do not necessarily require

to be highly specialized for the task at hand in order to pro-

duce good results. For the same reason, we do not employ

any pre-processing or post-processing of the data. Because

our model is fully convolutional, it involves a small number

of learning parameters which can be optimized with lim-

ited amount of supervised data. Furthermore, the elimina-

tion of computationally expensive pre-processing and post-

processing methods (such as CRF optimization or varia-

tional inference) and the exclusive reliance on efficient con-

volution implies that our learned models run very fast and

can be used in real-time video-processing applications such

as those arising in big-data domains.

In summary, our work provides the following findings:

1. Fully convolutional 3D ConvNets enable end to end

learning of voxel to voxel prediction models with lim-

ited training data.

2. The same exact architecture can be employed to obtain

competitive results on three different voxel-labeling

applications: optical flow estimation, semantic seg-

mentation of image sequences, and video coloring.

3. In domains where supervised training data is scarce

(such as in the case of optical flow), we can train our

end to end learning model on the output of an existing

hand-designed algorithm. We show that this results in

a 3D ConvNet that achieves slightly better accuracy

than the complex hand-tuned vision method but, most

importantly, it is significantly more efficient.

4. While fine-tuning a pre-trained model helps in most

cases, it actually hurts when the new domain requires

visual features that are quite distinct from those of the

pre-learned model, such as in the case of fine-tuning an

action recognition network for optical flow estimation.

2. Related Work

Video analysis has been studied by the computer

vision community for decades. Different approaches

were proposed for action recognition including: tracking-

based methods [8], bag-of-visual words [19], biologically-

inspired models [13], space-time shapes [3], HMMs [12],

and template-based Action-Bank [21]. Different spatio-

temporal features were also introduced for video and action

classification: Spatio-Temporal Interest Points [16], im-

proved Dense Trajectories [29]. Various methods were used

for action and video event detection [22, 6, 30]. Although

these methods showed to work reasonably well, they are not

scalable because most of them require computational inten-

sive steps during preprocessing (e.g. tracking, background

subtraction, or feature extraction) or post-processing (CRF,

variational inference).

Deep learning methods have recently shown good on dif-

ferent computer vision problems [27, 23, 18, 11, 2]. Thanks

to their large learning capacity and the ability to optimize all

parameters end to end, these methods achieved good perfor-

mance on classification [15] and feature learning [27, 28]

provided that there is sufficient supervised training data.

Among the deep learning approaches, our proposed method

is most closely related to the depth estimation method de-

scribed in [9], the Fully Convolutional Network (FCN) [17],

and FlowNet [10]. Our method shares with these ap-

proaches the property of making pixel-level predictions.

However, all these prior methods are designed for still im-

age problems, while our method operates on videos. To the

best of our knowledge, our method is the first one address-

ing end-to-end training of video voxel prediction.

3. Video Voxel Prediction

Problem statement. The input to our system is video

with size C ×L×H ×W , where C is the number of color

channels, L is its temporal length (in number of frames),

and H,W are the frame height and width. Then, a voxel

prediction problem requires producing a target output of

size K×L×H×W , where K is an application-dependent

integer denoting the number of output variables that need to

be predicted per voxel. It is worth nothing that the size of

the input video and the output prediction are the same, ex-

cept only for the number of input channels C and the num-

ber of output channels K are different. Normally, C = 3 for

the case of color video inputs and C = 1 for gray-scale in-

puts. For the three voxel-prediction applications considered

18

in this paper, K will have the following values: K = 2 for

optical flow estimation (the horizontal and vertical motion

displacement for each voxel), K = 3 for video coloring (the

three color channels) and K will be equal to the number of

semantic classes in the case of video semantic segmenta-

tion.

Proposed approach. We propose a novel and unified

approach for video voxel prediction based on a 3D Con-

vNet architecture with 3D deconvolution layers. We show

the generality of the model by demonstrating that a simple

unified architecture can work reasonably well across dif-

ferent tasks without any engineering efforts in architecture

search. Since our method uses 3D deconvolution layers, we

will start by briefly explaining the idea of 2D deconvolu-

tion [31, 17] and then present our architecture based on 3D

deconvolution for voxel prediction.

Deconvolution. The concept of deconvolution was in-

troduced by Zeiler and Fergus [31] to visualize the internal-

layer filters of a 2D ConvNet. Because the objective of

this prior work was merely filter visualization, there was

no learning involved in the deconvolution layers and the

weights were simply set to be equal to the transpose of

the corresponding pre-trained convolution layers. Instead,

Long et al. [17] introduced the idea of deconvolution as a

trainable layer in 2D ConvNets with applications to image

semantic segmentation. As shown in Figure 2, a filter of a

trainable deconvolution layer acts as a learnable local up-

sampling unit. In convolution, input signals are convolved

by the kernel filter and one value is placed on the output

plane. Conversely, deconvolution takes one value from the

input, multiples the value by the weights in the filter, and

place the result in the output channel. Thus, if the 2D fil-

ter has size s × s, it generates a s × s output matrix for

each pixel input. The output matrices can be stored either

overlapping or not overlapping in the output channel. If not

overlapping, then deconvolution with a s × s filter would

upsample the input by a factor s in both dimensions. When

the output matrices overlap, their contributions in the over-

lap are summed up. The amount of output overlap depends

on the output stride. If the output stride is bigger than 1,

then the deconvolution layer produces an outputs with size

larger than the input, thus acts as an upsampler.

In our architecture, we use 3D deconvolutional layers,

instead of 2D deconvolutional layers. This means that the

filters are deconvolved spatio-temporally, instead of only

spatially as in 2D ConvNets.

Architecture for voxel prediction. Our architecture

(which we name V2V, for voxel-to-voxel) is adapted from

the C3D network described in [28], which has shown good

performance for different video recognition tasks. In or-

der to apply it to voxel-prediction problems, we simply

add 3D deconvolutional layers to the C3D network. Note

that C3D operates by splitting the input video into clips of

W
W

Conv Layer Deconv Layer

a) Visualization Deconv b) Trainable Deconv

Forward signals

Backprop gradients

W

copy learnable params

Figure 2. Deconvolutional layers in ConvNets. a) Visualization

of the deconvolutional layer used in [31] where the filter weights

are set to be equal to those of the pre-trained convolutional layer.

b) Trainable deconvolutional layers [17] learn upsampling.

16 frames each and perform prediction separately for each

clip. Thus, our V2V model also takes as input a clip of 16

frames and then outputs voxel labels for the 16 input frames.

Figure 3 illustrates our V2V architecture for voxel predic-

tion. The lower part contains layers from C3D, while the

upper part has three 3D convolutional layers, three 3D de-

convolutional layers, two concatenation layers, and one loss

layer. All three convolutional layers (Conv3c,Conv4c,

and Conv-pre) use filters of size 3 × 3 × 3 with stride

1×1×1 and padding 1×1×1. Conv3c and Conv4c act

as feature-map reducers, while Conv-pre acts as a pre-

diction layer. Deconv5 and Deconv4 use filters of size

4×4×4 with output stride 2×2×2 and padding 1×1×1.

The Deconv3 layer uses kernels of size 8×4×4, an output

stride of 4 × 2 × 2, and padding 2 × 1 × 1. Note that the

number written inside the box of each layer in the Figure

indicates the number of filters (e.g., 64 for Deconv3). The

voxel-wise loss layer and Conv-pre layer are application-

dependent and will be described separately for each of the

applications considered in this paper. Since V2V shares the

bottom layers with C3D, we have the option to either fine-

tuning these layers starting from the C3D weights, or learn-

ing the weights from scratch. We will report results for both

options in our experiments.

4. Application I: Video Semantic Segmentation

Dataset. Our experiments for video semantic segmen-

tation are carried out on the GATECH dataset [20], which

comes with a public training/test split. The training set con-

tains 63 videos while the test set has 38 sequences. There

are 8 semantic classes: sky, ground, solid (mainly build-

ings), porous (mainly trees), cars, humans, vertical mix, and

main mix.

Training. Similarly to C3D, we down-scale the video

frames to size 128×171. Because the dataset is quite small,

we split each training video into all possible clips of length

16 (thus, we take overlapping clips with stride 1). For test-

ing, we perform prediction on all non-overlapping clips of

the video (stride equal to 16). We use the V2V architec-

ture described in section 3 with K = 8 prediction channels,

corresponding to the 8 semantic classes. We use a voxel-

19

Conv1a

64

Conv2a

128

Conv3a

256

Conv3b

256

Conv4a

512

Conv4b

512

Conv5a

512

Conv5b

512P
o

o
l1

P
o

o
l3

P
o

o
l4

P
o

o
l2

2x7x74x14x148x28x2816x56x5616x112x112

Deconv5

64

Conv4c

64

concat
4x14x14

Deconv4

64

Conv3c

64

8x28x28concat

Deconv3

64

Conv-pre

K

16x112x112

Voxel wise

loss

Figure 3. V2V Architecture for Voxel Prediction. The lower part (below dashed line) consists of layers from C3D [28]. Connected to

these layers we have three 3D convolution layers: Conv3c,Conv4c,Conv-pre use filters of size 3× 3× 3 with stride 1× 1× 1. Both

Deconv5 and Deconv4 are deconvolutional layers employing kernels of size 4 × 4 × 4 with output stride of 2 × 2 × 2. Deconv3

has kernel size 8 × 4 × 4 and output stride of 4 × 2 × 2. The numbers inside the boxes represent the number of learning filters in that

layer, while the numbers near the boxes (above or below) represent the size of output signals produced by that layer. The part inside the

thick-dashed box is application-dependent.

wise softmax for the loss layer. We fine-tune the full V2V

network initialized from C3D, using randomly initialized

weights for the new layers. The learning rate is set initially

to 10−4, and it is divided by 10 every 30K iterations. The

size of each mini-batch is 1. Fine-tuning is stopped at 100K

iterations, approximately 9 epochs.

Baselines. We compare our V2V model with several

baselines to gain better insights about our method. The first

set of baselines are based on bilinear upsampling. The pur-

pose of these baselines is to understand the benefits of our

3D deconvolution layers compared to simple upsampling.

Instead of using V2V with deconvolution layers, we use

only C3D up to Conv5b, we then add a prediction layer

(analogous to Conv-pre). Because the prediction made

at Conv5b has size 2 × 7 × 7, we apply a bilinear upsam-

pling to produce a prediction of the same size as the in-

put. We call this baseline Conv5b-up. We include two other

baselines, namely, Conv4b-up and Conv3b-up, correspond-

ing to adding a prediction layer and an upsampling layer

at Conv4b and Conv3b, respectively. The second set of

baselines includes V2V-remove-skip and V2V-remove-skip-

0 where we try to understand how much the skip connec-

tions help our segmentation. V2V-remove-skip is an alterna-

tive architecture of V2V where we remove the skip connec-

tions from conv3b and conv4b, so that the network has

only a single stream from conv5b followed by a few de-

conv layers and a prediction layer. V2V-remove-skip-0 de-

notes the same architecture but trained from scratch instead

of being fine-tuned from C3D. Finally, we also compare our

fine-tuned V2V model with the V2V architecture trained

from scratch on GATECH, which we call V2V-0. We also

trained a 2D version of V2V, namely 2D-V2V. The model

2D-V2V has the same architecture as V2V except that all

3D convolutional layers, 3D pooling layers, and 3D decon-

volutional layers are replaced with 2D convolutional layers,

2D pooling layers, and 2D deconvolutional layers, respec-

tively. As we do not a have pre-trained model of 2D-V2V,

we train 2D-V2V from scratch on GATECH.

Results. Figure 4 visualizes some qualitative results of

semantic segmentation using V2V on GATECH. Table 1

presents the semantic segmentation accuracy on GATECH

of V2V compared with all of the baselines. 2D-V2V, trained

from scratch on GATECH, obtains 55.7% which is 11%
below V2V-0. This result underscores the advantages of

3D convolution and 3D deconvolution over their 2D coun-

terparts. Note also that V2V-0 is 9.3% below V2V. This

predictably confirms the benefit of large-scale pre-training

before fine-tuning. V2V also outperforms all bilinear up-

sampling baselines showing the advantages of using decon-

volution over traditional upsampling. By visualizing the

predictions of these methods, we can see that Conv5b-Up

yields fairly accurate predictions but over-smoothed due to

its big upsampling rate. On the other extreme, Conv3b-up

produces finer predictions thanks to the lower upsampling

rate, but its segments are noisy and fragmented because it

relies on feature maps at layer 3, thus less deep and less

complex than those used by Conv5b-Up. Finally, removing

skip connections causes a drop in accuracy in both the case

of fine-tuning (V2V-remove-skip) and training from scratch

(V2V-remove-skip-0) compared to V2V and V2V-0 (1.3%
and 5.9%, respectively).

5. Application II: Optical Flow Estimation

Dataset. Since there is no large-scale video dataset

20

input sky ground building tree car human

Figure 4. Video Semantic Segmentation Results on GATECH. The softmax prediction heat maps produced by V2V for different classes

together with input frames. The last two classes are omitted due to their small populations. Best viewed in color.

Method Train Acc (%)

2D-V2V from scratch 55.7

Conv3b+Up fine-tune 69.7

Conv4b+Up fine-tune 72.7

Conv5b+Up fine-tune 72.1

V2V-remove-skip-0 from scratch 60.8

V2V-remove-skip fine-tune 74.7

V2V-0 from scratch 66.7

V2V fine-tune 76.0

Table 1. Semantic segmentation on GATECH. Comparison of

several V2V variants.

available with optical flow ground truth, we fabricate our

training data by applying an existing optical flow method

on unlabeled video. Specifically, we use the OpenCV GPU

implementation of Brox’s method [4] to generate semi-truth

data on both UCF101 [26] (public test split 1) and MPI-

Sintel [5] (training set).

Training. We use the same V2V architecture with the

number of channels at prediction layer set to K = 2. On

both horizontal and vertical motion components, we use the

Huber loss for regression as it works well with noisy data

and outliers. Formally, this is given by

H(x) =

{

1

2
x2, |x| ≤ 1

|x|, otherwise.
(1)

To avoid numerical issues, the optical flow values are di-

vided by a constant (α = 15) so that most values fall in the

range of [−1, 1]. We note that larger optical flows are still

handled by the Huber loss. The V2V network takes as input

clips of size 3×16×112×112 and produces clip outputs of

size 2×16×112×112. The network is trained from scratch

on UCF101 (using non-overlapping clips from each video)

with a mini-batch size of 1. The initial learning rate is set

to 10−8 and it is divided by 10 every 200K iterations (about

2 epochs). Training is stopped at 800K iterations. We note

that, at inference time, we need to scale the predictions by

α = 15 to convert them back into the correct optical flow

range.

Results. Figure 5 visualizes optical flow predicted by

our V2V method and compares it with that computed by

Brox’s method for a few sample clips taken from the test

split of UCF101. The V2V end point error (EPE) on the

UCF101 test split 1 (treating Brox’s optical flow as ground

truth) is only 1.24. To better understand the performance

of the learned V2V network, we further evaluate its per-

formance on the training set of the MPI-Sintel dataset [5],

which comes with ground truth data. This ground truth data

is unbiased and allows us to assess performance indepen-

dently from the accuracy of Brox’s flow. Table 2 shows the

EPE error obtained with two variants of our model: V2V

stands for our network learned on the UCF101 Brox’s flow,

while finetuned-V2V denotes our model after fine-tuning

V2V on Sintel ground truth data using 3-fold cross vali-

dation. The table also contains the best method on Sintel

which is better than V2V by a good margin. Even though

V2V is not state of the art, the results are very interest-

ing: both V2V and finetuned-V2V perform better than their

“teacher”, the optical flow method that is used to gener-

ate the semi-truth training data. While the improvement is

slim, it is important to highlight that V2V is much faster

than Brox’s algorithm (70x faster, see Table ??). Thus, this

experiment shows that the V2V network can be employed

to learn efficient implementations of complex, hand-tuned

voxel-prediction models.

To compare the runtime of V2V-Flow and Brox’s

method [4], we use the GPU implementation of Brox’s

method provided in OpenCV and extract optical flows for

the whole UCF101 test split 1 by the two methods using a

21

Figure 5. Optical flow estimation on UCF101. The output of V2V is qualitatively compared with Brox’s optical flow for 6 sample clips

from the UCF101 test split. For each example we show (from left to right): an input frame, V2V’s predicted optical flow, and Brox’s

motion. Note that Brox’s method is used to generate semi-truth data for training V2V. We see that on test videos V2V is able to predict

flow of similar quality as that produced by Brox’s algorithm. Best viewed in color.

Method Brox V2V finetuned-V2V FlowFields [1]

EPE 8.89 8.86 8.38 5.81

Table 2. Optical flow results on Sintel. V2V denotes our net-

work learned from the UCF101 optical flow computed with Brox’s

method. The finetuned-V2V network is obtained by fine-tuning

V2V on Sintel (test accuracy is measured in this case using 3-fold

cross validation). Both versions of our network perform slightly

better than Brox’s algorithm and they allow computation of opti-

cal flow with a runtime speedup of 20 times compared to Brox’s

software.

NVIDIA Tesla K40. V2V-Flow is 70x faster than Brox’s

method. It can run at 91 fps while Brox’s method operates

at less than 2 fps (including I/O in both cases).

Observation. Unlike the case of video semantic seg-

mentation application where V2V could be effectively fine-

tuned from the initial C3D network, we empirically discov-

ered that fine-tuning from C3D does not work for the case

of optical flow estimation as in this case the training consis-

tently converges to a bad local minimum. We further inves-

tigated this phenomenon by visualizing the learned filers of

the first few convolutional layers for both the original C3D

as well as the V2V learned from scratch on Brox’s flow. The

results are visible in Fig. 7. We see that the filters of the two

networks look completely different. This is understandable,

as C3D is trained to complete a high-level vision task, e.g.

classifying sports. Thus the network learns a set of discrim-

inative filters at the early layers. Some of these filters cap-

ture texture, some focus on discriminative motion patterns,

while others respond to particular appearance or color cues.

Instead, V2V is trained to perform a low-level vision task,

e.g. predict motion directions. The Figure shows that the

V2V filters are insensitive to color and texture as they fo-

cus exclusively on motion estimation. This explains why

the pre-trained C3D model is a bad initialization to learn

V2V for optical flow, but it is instead a good initialization

for training V2V on semantic segmentation.

6. Application III: Video Coloring

Setup and Training. In this experiment we use UCF101

again in order to learn to color videos. We use the public

training/test split 1 for the training and testing of our model.

In this study we generate training data by converting the

color videos to grayscale. V2V is fed with C = 1 input

grayscale channel and it is optimized to predict the K = 3
ground truth original color channels. For this application

we use the L2 regression loss as colors have no outliers. We

use mini-batches of size 1. The learning rate is set initially

to 10−8 and it is divided by 10 every 200K iterations. The

training is stopped at 600K iterations. Similarly to the case

of semantic segmentation, we compare our V2V with its

2D version baseline, 2D-V2V, both optimized on the same

training set. Both models were learned from scratch.

We note that video coloring is challenging and ill-posed

because there are some objects (e.g., clothes) that can be

colored with any valid color. A reasonable expectation is

that the coloring algorithm should learn to color correctly

objects that typically occur only in one color. For example,

the sky is usually blue (not always but often) and the grass

is typically green. Thus, the model should learn to predict

well the colors of such objects.

Results. To assess performance, we use as metric the

average Euclidean distance between the predicted color and

22

Figure 6. Visualizations of optical flow computed by the V2V network (trained on UCF101 without finetuning) for a few sample Sintel

clips. For each example we show: input frame, V2V’s predicted optical flow, Brox’s flow, and ground truth. Best viewed in color.

a) C3D conv1a ilters

b) V2V conv1a ilters (trained to predict optical lows)

Figure 7. Visualization of Conv1a filters learned by C3D (top) and V2V (bottom). Note that C3D is trained to recognize actions (on

Sport1M), while V2V is optimized to estimate optical flow (on UCF101). Each set shows the 64 learned filters at the Conv1a layer. Three

consecutive square images on each row represent one filter (as kernel size is 3× 3× 3). Each square image is upscaled to 30× 30 pixels

for better visualization. Best viewed in color. GIF animation of these filters will be provided in the project website.

the true color. Here each voxel color is represented in

(r, g, b) and r, g, b ∈ [0, 1]. V2V has an average distance

error (ADE) of 0.1375 whereas the 2D baseline has an ADE

of 0.1495. Figure 8 presents some qualitative results of

V2V on predicting voxel colors. It is interesting to see

that the algorithm learns “common sense” colors such as

the color of skin, sky, trees, river, sea, mountains, wood

furniture, and the billiard table. For objects whose color is

ambiguous, V2V applies very little coloring, leaving them

almost in the original grayscale form. One can imagine ex-

tending V2V to have sparse inputs of color to make the

problem well-posed for objects that can occur in various

colors.

7. Conclusions

We have presented V2V, a novel architecture for voxel

to voxel prediction using 3D convolutional networks. The

proposed approach can be trained end to end from raw video

input to predict target voxel labels without the need to pre-

process or post-process the data. We have shown that the

same architecture trained on three distinct application do-

mains delivers reasonably good results on each of them. In

the course of our experiments we have discovered that fine-

tuning pre-trained models does not always help: for the case

of optical flow estimation, learning from scratch is bene-

ficial over fine-tuning from an action recognition model.

We have also demonstrated that in absence of large-scale

supervised data, V2V can be trained to reproduce the out-

put of an existing hand-constructed voxel prediction model.

Quite surprisingly, in our study the resulting learned model

has accuracy superior (albeit only slightly) to its “teacher”

method. We believe that bootstrapping the learning from

an existing model can be an interesting avenue for future

work and can be a successful strategy to learn efficient im-

plementation of computationally expensive algorithm, such

as in our case where V2V predicts optical flow with a 70x

speedup over the original optical flow method that was used

to generate training data. While we purposely avoided spe-

cializing the network to each task in order to emphasize the

general applicability of the approach, we believe that fur-

ther improvements can be obtained from more thorough ar-

chitecture search.

Acknowledgment: we would like to thank colleagues at

Facebook AI Research and Dartmouth Vision and Learning

Group for valuable feedback and discussions.

References

[1] C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields

for highly accurate large displacement optical flow estimation. In ICCV, 2015.

6

[2] G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-scale bifurcated deep

network for top-down contour detection. In CVPR, 2015. 2

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-

time shapes. In ICCV, pages 1395–1402, 2005. 2

23

Figure 8. Examples of video coloring with V2V on the test set of UCF101. For each example we show (from left to right): a gray-scale

input frame, the output frame colored by V2V, and the ground truth color frame. The V2V model is able to predict “common sense” colors

such as the color of human skin, sky, woody furniture, river, sea, and mountain. Best viewed in color.

[4] T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in

variational motion estimation. IEEE TPAMI, 33(3):500–513, 2011. 5

[5] D. Butler, J. Wulff, G. Stanley, and M. Black. A naturalistic open source movie

for optical flow evaluation. In CVPR, 2012. 5

[6] L. Cao, Z. Liu, and T. Huang. Cross-dataset action detection. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2010. 2

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.

Decaf: A deep convolutional activation feature for generic visual recognition.

In ICML, 2013. 1

[8] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In

Proc. International Conference on Computer Vision, pages 726–733, 2003. 2

[9] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image

using a multi-scale deep network. In NIPS, 2014. 2

[10] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. Smagt,

D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional

networks. In ICCV, 2015. 2

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. arXiv preprint

arXiv:1311.2524, 2013. 1, 2

[12] N. Ikizler and D. Forsyth. Searching for complex human activities with no

visual examples. International Journal of Computer Vision, 80(3):337–357,

2008. 2

[13] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biological inspired system for

human action classification. In Proc. International Conference on Computer

Vision, 2007. 2

[14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.

Large-scale video classification with convolutional neural networks. In CVPR,

2014. 1

[15] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep

convolutional neural networks. In NIPS, 2012. 1, 2

[16] I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, 2003. 2

[17] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-

tic segmentation. In CVPR, 2015. 2, 3

[18] J. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and

G. Toderici. Beyond short snippets: Deep networks for video classification.

In CVPR, 2015. 2

[19] J. Niebles and L. Fei-Fei. A hierarchical model of shape and appearance for

human action classification. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–8, 2007. 2

[20] S. H. Raza, M. Grundmann, and I. Essa. Geometric context from video. In

CVPR, 2013. 3

[21] S. Sadanand and J. Corso. Action bank: A high-level representation of activity

in video. In CVPR, 2012. 2

[22] H. Seo and P. Milanfar. Detection of human actions from a single example. In

Proc. International Conference on Computer Vision, 2009. 2

[23] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Over-

feat: Integrated recognition, localization and detection using convolutional net-

works. In ICLR, 2014. 1, 2

[24] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action

recognition in videos. In NIPS, 2014. 1

[25] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. In ICLR, 2015. 1

[26] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human action

classes from videos in the wild. In CRCV-TR-12-01, 2012. 5

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR,

2015. 1, 2

[28] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-

tiotemporal features with 3d convolutional networks. In ICCV, 2015. 1, 2, 3,

4

[29] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion

boundary descriptors for action recognition. IJCV, 103(1):60–79, 2013. 1, 2

[30] J. Yuan, Z. Liu, and Y. Wu. Discriminative video pattern search for efficient

action detection. IEEE Trans. on Pattern Analysis and Machine Intelligence,

2011. 2

[31] M. Zeiler and R. Fergus. Visualizing and understanding convolutional net-

works. In ECCV, 2014. 3

[32] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep

features for scene recognition using places database. In NIPS, 2014. 1

24

