
ReSeg: A Recurrent Neural Network-based Model

for Semantic Segmentation

Francesco Visin∗ †

francesco.visin@polimi.it

Adriana Romero†

adriana.romero.soriano@umontreal.ca

Marco Ciccone∗

marco.ciccone@mail.polimi.it

Kyle Kastner†

kyle.kastner@umontreal.ca

Kyunghyun Cho‡

kyunghyun.cho@nyu.edu

Matteo Matteucci∗

matteo.matteucci@polimi.it

Yoshua Bengio† §

yoshua.bengio@umontreal.ca

Aaron Courville†

aaron.courville@umontreal.ca

Abstract

We propose a structured prediction architecture, which

exploits the local generic features extracted by Convolu-

tional Neural Networks and the capacity of Recurrent Neu-

ral Networks (RNN) to retrieve distant dependencies. The

proposed architecture, called ReSeg, is based on the re-

cently introduced ReNet model for image classification. We

modify and extend it to perform the more challenging task

of semantic segmentation. Each ReNet layer is composed of

four RNN that sweep the image horizontally and vertically

in both directions, encoding patches or activations, and

providing relevant global information. Moreover, ReNet

layers are stacked on top of pre-trained convolutional lay-

ers, benefiting from generic local features. Upsampling

layers follow ReNet layers to recover the original image

resolution in the final predictions. The proposed ReSeg

architecture is efficient, flexible and suitable for a vari-

ety of semantic segmentation tasks. We evaluate ReSeg on

several widely-used semantic segmentation datasets: Weiz-

mann Horse, Oxford Flower, and CamVid; achieving state-

of-the-art performance. Results show that ReSeg can act as

a suitable architecture for semantic segmentation tasks, and

may have further applications in other structured prediction

problems. The source code and model hyperparameters are

available on https://github.com/fvisin/reseg.

∗Dipartimento di Elettronica Informazione e Bioingegneria, Politec-

nico di Milano, Milan, 20133, Italy
†Montreal Institute for Learning Algorithms (MILA), University of

Montreal, Montreal, QC, H3T 1J4, Canada
‡Courant Institute and Center for Data Science, New York University,

New York, NY 10012, United States
§CIFAR Senior Fellow

1. Introduction

In recent years, Convolutional Neural Networks (CNN)

have become the de facto standard in many computer vi-

sion tasks, such as image classification and object detec-

tion [23, 15]. Top performing image classification archi-

tectures usually involve very deep CNN trained in a su-

pervised fashion on a large datasets [28, 39, 43] and have

been shown to produce generic hierarchical visual represen-

tations that perform well on a wide variety of vision tasks.

However, these deep CNNs heavily reduce the input resolu-

tion through successive applications of pooling or subsam-

pling layers. While these layers seem to contribute signifi-

cantly to the desirable invariance properties of deep CNNs,

they also make it challenging to use these pre-trained CNNs

for tasks such as semantic segmentation, where a per pixel

prediction is required.

Recent advances in semantic segmentation tend to con-

vert the standard deep CNN classifier into Fully Convolu-

tional Networks (FCN) [30, 33, 2, 36] to obtain coarse im-

age representations, which are subsequently upsampled to

recover the lost resolution. However, these methods are

not designed to take into account and preserve both local

and global contextual dependencies, which has shown to

be useful for semantic segmentation tasks [40, 17]. These

models often employ Conditional Random Fields (CRFs)

as a post-processing step to locally smooth the model pre-

dictions, however the long-range contextual dependencies

remain relatively unexploited.

Recurrent Neural Networks (RNN) have been introduced

in the literature to retrieve global spatial dependencies and

further improve semantic segmentation [34, 17, 9, 8]. How-

ever, training spatially recurrent neural networks tends to be

computationally intensive.

1 41

https://github.com/fvisin/reseg


In this paper, we aim at the efficient application of Re-

current Neural Networks RNN to retrieve contextual infor-

mation from images. We propose to extend the ReNet ar-

chitecture [45], originally designed for image classification,

to deal with the more ambitious task of semantic segmen-

tation. ReNet layers can efficiently capture contextual de-

pendencies from images by first sweeping the image hori-

zontally, and then sweeping the output of hidden states ver-

tically. The output of a ReNet layer is therefore implicitly

encoding the local features at each pixel position with re-

spect to the whole input image, providing relevant global

information. Moreover, in order to fully exploit local and

global pixel dependencies, we stack the ReNet layers on top

of the output of a FCN, i.e. the intermediate convolutional

output of VGG-16 [39], to benefit from generic local fea-

tures. We validate our method on Weizmann Horse and Ox-

ford Flower foreground/background segmentation datasets

as a proof of concept for the proposed architecture. Then,

we evaluate the performance in the standard benchmark of

urban scenes CamVid; achieving state-of-the-art in all three

datasets.

2. Related Work

Methods based on FCN tackle the information recovery

(upsampling) problem in a large variety of ways. For in-

stance, Eigen et al. [14] introduce a multi-scale architecture,

which extracts coarse predictions, which are then refined us-

ing finer scales. Farabet et al. [16] introduce a multi-scale

CNN architecture; Hariharan et al. [19] combine the infor-

mation distributed over all layers to make accurate predic-

tions. Other methods such as [30, 2] use simple bilinear

interpolation to upsample the feature maps of increasingly

abstract layers. More sophisticated upsampling methods,

such as unpooling [2, 33] or deconvolution [30], are intro-

duced in the literature. Finally, [36] concatenate the feature

maps of the downsampling layers with the feature maps of

the upsampling layers to help recover finer information.

RNN and RNN-like models have become increasingly

popular in the semantic segmentation literature to capture

long distance pixel dependencies [34, 17, 8, 41]. For in-

stance, in [34, 17], CNN are unrolled through different time

steps to include semantic feedback connections. In [8],

2-dimensional Long Short Term Memory (LSTM), which

consist of 4 LSTM blocks scanning all directions of an im-

age (left-bottom, left-top, right-top, right-bottom), are in-

troduced to learn long range spatial dependencies. Follow-

ing a similar direction, in [41], multi-dimensional LSTM

are swept along different image directions; however, in this

case, computations are re-arranged in a pyramidal fashion

for efficiency reasons. Finally, in [45], ReNet is proposed

to model pixel dependencies in the context of image classi-

fication. It is worth noting that one important consequence

of the adoption of the ReNet spatial sequences is that they

Figure 1. A ReNet layer. The blue and green dots on the input im-

age/feature map represent the steps of f↓ and f↑ respectively. On

the concatenation of the resulting feature maps, f→ (yellow dots)

and f← (red dots) are subsequently swept. Their feature maps

are finally concatenated to form the output of the ReNet layer, de-

picted as a blue heatmap in the figure.

are even more easily parallelizable, as each RNN is depen-

dent only along a horizontal or vertical sequence of pixels;

i.e., all rows/columns of pixels can be processed at the same

time.

3. Model Description

The proposed ReSeg model builds on top of ReNet [45]

and extends it to address the task of semantic segmentation.

The model pipeline involves multiple stages.

First, the input image is processed with the first layers

of VGG-16 [39] network, pre-trained on ImageNet [11] and

not fine-tuned, and is set such that the image resolution does

not become too small. The resulting feature maps are then

fed into one or more ReNet layers that sweep over the im-

age. Finally, one or more upsampling layers are employed

to resize the last feature maps to the same resolution as the

input and a softmax non-linearity is applied to predict the

probability distribution over the classes for each pixel.

The recurrent layer is the core of our architecture

and is composed by multiple RNN that can be imple-

mented as a vanilla tanh RNN layer, a Gated Recurrent

Unit (GRU) layer [10] or a LSTM layer [20]. Previous work

has shown that the ReNet model can perform well with lit-

tle concern for the specific recurrent unit used, therefore, we

have chosen to use GRU units as they strike a good balance

between memory usage and computational power.

In the following section we will define the recurrent and

the upsampling layers in more detail.

3.1. Recurrent layer

As depicted in Figure 1, each recurrent layer is com-

posed by 4 RNNs coupled together in such a way to capture

the local and global spatial structure of the input data.

Specifically, we take as an input an image (or the feature

map of the previous layer) X of elements x ∈ R
H×W×C ,

where H , W and C are respectively the height, width and

number of channels (or features) and we split it into I × J

42



patches pi,j ∈ R
Hp×Wp×C . We then sweep vertically a

first time with two RNNs f↓ and f↑, with U recurrent units

each, that move top-down and bottom-up respectively. Note

that the processing of each column is independent and can

be done in parallel.

At every time step each RNN reads the next non-

overlapping patch pi,j and, based on its previous state, emits

a projection o⋆i,j and updates its state z⋆i,j :

o
↓
i,j = f↓(z↓i−1,j , pi,j), for i = 1, · · · , I (1)

o
↑
i,j = f↑(z↑i+1,j , pi,j), for i = I, · · · , 1 (2)

We stress that the decision to read non-overlapping patches

is a modeling choice to increase the image scan speed and

lower the memory usage, but is not a limitation of the archi-

tecture.

Once the first two vertical RNNs have processed the

whole input X , we concatenate their projections o
↓
i,j and

o
↑
i,j to obtain a composite feature map O

l whose elements

o
l
i,j ∈ R

2U can be seen as the activation of a feature detec-

tor at the location (i, j) with respect to all the patches in the

j-th column of the input. We denote what we described so

far as the vertical recurrent sublayer.

After obtaining the concatenated feature map O
l, we

sweep over each of its rows with a pair of new RNNs, f→

and f←. We chose not to split O
l into patches so that

the second recurrent sublayer has the same granularity as

the first one, but this is not a constraint of the model and

different architectures can be explored. With a similar but

specular procedure as the one described before, we proceed

reading one element o
l
i,j at each step, to obtain a concate-

nated feature map O
↔ =

{

h↔i,j
}j=1...J

i=1...I
, once again with

o↔i,j ∈ R
2U . Each element o↔i,j of this horizontal recurrent

sublayer represents the features of one of the input image

patches pi,j with contextual information from the whole im-

age.

It is trivial to note that it is possible to concatenate many

recurrent layers O(1···L) one after the other and train them

with any optimization algorithm that performs gradient de-

scent, as the composite model is a smooth, continuous func-

tion.

3.2. Upsampling layer

Since by design each recurrent layer processes non-

overlapping patches, the size of the last composite feature

map will be smaller than the size of the initial input X,

whenever the patch size is greater than one. To be able to

compute a segmentation mask at the same resolution as the

ground truth, the prediction should be expanded back before

applying the softmax non-linearity.

Several different methods can be used to this end, e.g.,

fully connected layers, full convolutions and transposed

convolutions. The first is not a good candidate in this do-

main as it does not take into account the topology of the

input, which is essential for this task; the second is not opti-

mal either, as it would require large kernels and stride sizes

to upsample by the required factor. Transposed convolu-

tions are both memory and computation efficient, and are

the ideal method to tackle this problem.

Transposed convolutions – also known as fractionally

strided convolutions – have been employed in many works

in recent literature [48, 50, 31, 35, 21]. This method is based

on the observation that direct convolutions can be expressed

as a dot product between the flattened input and a sparse

matrix, whose non-zero elements are elements of the con-

volutional kernel. The equivalence with the convolution is

granted by the connectivity pattern defined by the matrix.

Transposed convolutions apply the transpose of this

transformation matrix to the input, resulting in an opera-

tion whose input and output shapes are inverted with re-

spect to the original direct convolution. A very efficient

implementation of this operation can be obtained exploiting

the gradient operation of the convolution – whose optimized

implementation can be found in many of the most popular

libraries for neural networks. For an in-depth and compre-

hensive analysis of each alternative, we refer the interested

reader to [13].

4. Experiments

4.1. Datasets

We evaluated the proposed ReSeg architecture on sev-

eral benchmark datasets. We proceeded by first assessing

the performances of the model on the Weizmann Horse and

the Oxford Flowers datasets and then focused on the more

challenging Camvid dataset. We will describe each dataset

in detail in this section.

4.1.1 Weizmann Horse

The Weizmann Horse dataset, introduced in [6], is an image

segmentation dataset consisting of 329 variable size images

in both RGB and gray scale format, matched with an equal

number of groundtruth segmentation images, of the same

size as the corresponding image. The groundtruth segmen-

tations contain a foreground/background mask of the fo-

cused horse, encoded as a real-value between 0 and 255. To

convert this into a boolean mask, we threshold in the center

of the range setting all smaller values to 0, and all greater

values to 1.

4.1.2 Oxford Flowers 17

The Oxford Flowers 17 class dataset from [32] contains

1363 variable size RGB images, with 848 image segmen-

tations maps associated with a subset of the RGB images.

43



3

32

32

22

22

256 256

1

1
512

1

1
512

256

2

2
512

256

2

2
512

16

16

16

16

256

2

2
512

256

2

2
512

256 256

1

1
512

1

1
512

8

8

8

8

256 256

1

1
512

1

1
512

4

4

32

32

Figure 2. The ReSeg network. For space reasons we do not represent the pretrained VGG-16 convolutional layers that we use to preprocess

the input to ReSeg. The first 2 RNNs (blue and green) are applied on 2x2x3 patches of the image, their 16x16x256 feature maps are

concatenated and fed as input to the next two RNNs (red and yellow) which read 1x1x512 patches and emit the output of the first ReNet

layer. Two similar ReNet layers are stacked, followed by an upsampling layer and a softmax nonlinearity.

There are 8 unique segmentation classes defined over all

maps, including flower, sky, and grass. To build a fore-

ground/background mask, we take the original segmenta-

tion maps, and set any pixel not belonging to class 38

(flower class) to 0, and setting the flower class pixels to 1.

This binary segmentation task for Oxford Flowers 17 is fur-

ther described in [46].

4.1.3 CamVid Dataset

The Cambridge-driving Labeled Video Database

(CamVid) [7] is a real-world dataset which consists

of images recorded from a car with an internally mounted

camera, capturing frames of 960 × 720 RGB pixels per

frame, with a recording frame rate of 30 frames per second.

A total of ten minutes of video was recorded, and approxi-

mately one frame per second has been manually annotated

with per pixel class labels, from one of 32 possible classes.

A small number of pixels were labelled as void in the

original dataset. These do not belong to any of the 32

classes prescribed in the original data, and are ignored

during evaluation. We used the same subset of 11 class

categories as [2] for experimental analysis. The CamVid

dataset itself is split into 367 training, 101 validation and

233 test images, and in order to make our experimental

setup fully comparable to [2], we downsampled all the

images by a factor of 2 resulting in a final 480 × 360
resolution.

4.2. Experimental settings

To gain confidence with the sensitivity of the model to

the different hyperparameters, we decided to evaluate it first

on the Weissman Horse and Oxford Flowers datasets on a

binary segmentation task; we then focused the most of our

efforts on the more challenging semantic segmentation task

on the CamVid dataset.

The number of hyperparameters of this model is poten-

tially very high, as for each ReNet layer different implemen-

tations are possible (namely vanilla RNN, GRU or LSTM),

each one with its specific parameters. Furthermore, the

number of features, the size of the patches and the initializa-

tion scheme have to be defined for each ReNet layer as well

as for each transposed convolutional layer. To make it fea-

sible to explore the hyperparameter space, some of the hy-

perparameters have been fixed by design and the remaining

have been finetuned. In the rest of this section, the architec-

tural choices for both sets of parameters will be detailed.

All the transposed convolution upsampling layers were

followed by a ReLU [24] non-linearity and initialized

with the fan-in plus fan-out initialization scheme described

in [18]. The recurrent weight matrices were instead ini-

tialized to be orthonormal, following the procedure defined

in [38]. We also constrained the stride of the upsampling

transposed convolutional layers to be tied to their filter size.

In the segmentation task, each training image carries

classification information for all of its pixels. Differently

from the image classification task, small batch sizes pro-

vide the model with a good amount of information with

sufficient variance to learn and generalize well. We experi-

mented with various batch sizes going as low as processing

a single image at the time, obtaining comparable results in

terms of performance. In our experiments we kept a fixed

batch size of 5, as a compromise between train speed and

memory usage. In all our experiments, we used L2 regu-

larization [25], also known as weight decay, set to 0.001 to

avoid instability at the end of training. We trained all our

models with the Adadelta [49] optimization algorithm, for

its desired property of not requiring a specific hyperparam-

eter tuning. The effect of Batch Normalization in RNNs has

been a focus of attention [27], but it does not seem to pro-

vide a reliable improvement in performance, so we decided

not to adopt it.

In the experiments, we varied the number of ReNet lay-

ers and the number of upsampling transposed convolutional

layers, each of them defined respectively by the number of

features dRE(l) and dUP(l), the size of the input patches (or

equivalently of the filters) psRE(l) and fsUP(l).

44



Method Global acc Avg IoU

All foreground baseline 25.4 79.9

All background baseline 74.7 0.0

Kernelized structural SVM [5] 94.6 80.1

ReSeg (no VGG) 94.9 79.9

CRF learning [29] 95.7 84.0

PatchCut [47] 95.8 84.0

ReSeg 96.8 91.6

Table 1. Weizmann Horses. Per pixel accuracy and IoU are

reported.

Method Global acc Avg IoU

All background baseline 71.0 0.0

All foreground baseline 29.0 29.2

GrabCut [37] 95.9 89.3

Tri-map [46] 96.7 91.7

ReSeg 98 93.7

Table 2. Oxford Flowers. Per pixel accuracy and IoU are re-

ported.

Method B
u

il
d

in
g

T
re

e

S
k
y

C
ar

S
ig

n
-S

y
m

b
o

l

R
o

ad

P
ed

es
tr

ia
n

F
en

ce

C
o

lu
m

n
-P

o
le

S
id

e-
w

al
k

B
ic

y
cl

is
t

A
v

g
cl

as
s

ac
c

G
lo

b
al

ac
c

A
v

g
Io

U

Segmentation models

Super Parsing [44] 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3 n/a

Boosting+Higher order [42] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8 n/a

Boosting+Detectors+CRF [26] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8 n/a

Neural Network based segmentation models

SegNet-Basic (layer-wise training [1]) 75.0 84.6 91.2 82.7 36.9 93.3 55.0 37.5 44.8 74.1 16.0 62.9 84.3 n/a

SegNet-Basic [2] 80.6 72.0 93.0 78.5 21.0 94.0 62.5 31.4 36.6 74.0 42.5 62.3 82.8 46.3

SegNet [2] 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 88.6 50.2

ReSeg + Class Balance 70.6 84.6 89.6 81.1 61.0 95.1 80.4 35.6 60.6 86.3 60.0 73.2 83.5 53.7

ReSeg 86.8 84.7 93.0 87.3 48.6 98.0 63.3 20.9 35.6 87.3 43.5 68.1 88.7 58.8

Sub-model averaging

Bayesian SegNet-Basic [22] 75.1 68.8 91.4 77.7 52.0 92.5 71.5 44.9 52.9 79.1 69.6 70.5 81.6 55.8

Bayesian SegNet [22] 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 86.9 63.1

Table 3. CamVid. The table reports the per-class accuracy, the average per-class accuracy, the global accuracy and the average intersection

over union. The best values and the values within 1 point from the best are highlighted in bold for each column. For completeness we

report the Bayesian Segnet models even if they are not directly comparable to the others as they perform a form of model averaging.

Model psRE dRE fsUP dUP B
u

il
d

in
g

T
re

e

S
k
y

C
ar

S
ig

n
-S

y
m

b
o

l

R
o

ad

P
ed

es
tr

ia
n

F
en

ce

C
o

lu
m

n
-P

o
le

S
id

e-
w

al
k

B
ic

y
cl

is
t

A
v

g
cl

as
s

ac
c

G
lo

b
al

ac
c

A
v

g
Io

U

ReSeg + LCN (2× 2), (1× 1) (100, 100) (2× 2) (50, 50) 81.5 80.3 94.7 78.1 42.8 97.4 53.5 34.3 36.8 68.9 47.9 65.1 84.8 52.6

ReSeg + Class Balance (2× 2), (1× 1) (100, 100) (2× 2) (50, 50) 70.6 84.6 89.6 81.1 61.0 95.1 80.4 35.6 60.6 86.3 60.0 73.2 83.5 53.7

ReSeg (2× 2), (1× 1) (100, 100) (2× 2) (50, 50) 86.8 84.7 93.0 87.3 48.6 98.0 63.3 20.9 35.6 87.3 43.5 68.1 88.7 58.8

Table 4. Comparison of the performance of different hyperparameter on CamVid.

4.3. Results

In Table 1, we report the results on the Weizmann Horse

dataset. On this dataset, we verified the assumption that

processing the input image with some pre-trained convolu-

tional layers from VGG-16 could ease the learning. Specif-

ically, we restricted ourselves to only using the first 7 con-

volutional layers from VGG, as we only intended to extract

some low-level generic features and learn the task-specific

high-level features with the ReNet layers. The results in-

deed show an increase in terms of average Intersection over

Union (IoU) when these layers are being used, confirming

our hypothesis.

Table 2 shows the results for Oxford Flowers dataset,

when using the full ReSeg architecture (i.e., including VGG

convolutional layers). As shown in the table, our method

clearly outperforms the state-of-the-art both in terms of

global accuracy and average IoU.

Table 3 presents the results on CamVid dataset using the

full ReSeg architecture. Our model exhibits state-of-the-

art performance in terms of IoU when compared to both

standard segmentation methods and neural network based

methods, showing an increase of 17% w.r.t. to the recent

SegNet model. It is worth highlighting that incorporating

sub-model averaging to SegNet model, as in [22], boosts the

original model performance, as expected. Therefore, intro-

ducing sub-model averaging to ReSeg would also presum-

ably result in significant performance increase. However,

this remains to be tested.

45



5. Discussion

As reported in the previous section, our experiments on

the Weizmann Horse dataset show that processing the in-

put images with some layers of VGG-16 pre-trained net-

work improves the results. In this setting, pre-processing

the input with Local Contrast Normalization (LCN) does

not seem to give any advantage (see Table 4). We did not

use any other kind of pre-processing.

While on both the Weizmann Horse and the Ox-

ford Flowers datasets we trained on a binary back-

ground/foreground segmentation task, on CamVid we ad-

dressed the full semantic segmentation task. In this set-

ting, when the dataset is highly imbalanced, the segmen-

tation performance of some classes can drop significantly

as the network tries to maximize the score on the high-

occurrence classes, de facto ignoring the low-occurrence

ones. To overcome this behaviour, we added a term to

the cross-entropy loss to bias the prediction towards the

low-occurrence classes. We use median frequency balanc-

ing [14], which re-weights the class predictions by the ra-

tio between the median of the frequencies of the classes

(computed on the training set) and the frequency of each

class. This increases the score of the low frequency classes

(see Table 4) at the price of a more noisy segmentation

mask, as the probability of the underrepresented classes is

overestimated and can lead to an increase in misclassified

pixels in the output segmentation mask, as shown in Fig-

ure 3.

On all datasets we report the per-pixel accuracy (Global

acc), computed as the percentage of true positives w.r.t. the

total number of pixels in the image, and the average per-

class Intersection over Union (Avg IoU), computed on each

class as true positive divided by the sum of true positives,

false positives and false negatives and then averaged. In

the full semantic segmentation setting we also report the

per-class accuracy and the average per-class accuracy (Avg

class acc).

6. Conclusion

We introduced the ReSeg model, an extension of the

ReNet model for image semantic segmentation. The pro-

posed architecture shows state-of-the-art performances on

CamVid, a widely used dataset for urban scene semantic

segmentation, as well as on the much smaller Oxford Flow-

ers dataset. We also report state-of-the-art performances on

the Weizmann Horses.

In our analysis, we discuss the effects of applying some

layers of VGG-16 to process the input data, as well as those

of introducing a class balancing term in the cross-entropy

loss function to help the learning of under-represented

classes. Notably, it is sufficient to process the input im-

ages with just a few layers of VGG-16 for the ReSeg model

to gracefully handle the semantic segmentation task, con-

firming its ability to encode contextual information and long

term dependencies.

Acknowledgments

We would like to thank all the developers of Theano [4, 3]

and in particular Pascal Lamblin, Arnaud Bergeron and

Frédéric Bastien for their dedication. We are also thank-

ful to César Laurent for the moral support and to Vincent

Dumoulin for the insightful discussion on transposed con-

volutions. We are also very grateful to the developers of

Lasagne [12] for providing a light yet powerful framework

and to the reviewers for their valuable feedback. We finally

acknowledge the support of the following organizations for

research funding and computing support: NSERC, IBM

Watson Group, IBM Research, NVIDIA, Samsung, Calcul

Québec, Compute Canada, the Canada Research Chairs and

CIFAR. F.V. was funded by the AI*IA Young Researchers

Mobility Grant and the Politecnico di Milano PHD School

International Mobility Grant.

References

[1] V. Badrinarayanan, A. Handa, and R. Cipolla. SegNet: A

Deep Convolutional Encoder-Decoder Architecture for Ro-

bust Semantic Pixel-Wise Labelling.

[2] V. Badrinarayanan, A. Handa, and R. Cipolla. SegNet: A

Deep Convolutional Encoder-Decoder Architecture for Im-

age Segmentation. page 5, 2015.

[3] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Good-

fellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and

Y. Bengio. Theano: new features and speed improvements.

Submited to the Deep Learning and Unsupervised Feature

Learning NIPS 2012 Workshop, 2012.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.

Theano: a CPU and GPU math expression compiler. In Pro-

ceedings of the Python for Scientific Computing Conference

(SciPy), 2010.

[5] L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized

structural svm learning for supervised object segmentation.

In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 2153–2160. IEEE, 2011.

[6] E. Borenstein. Combining top-down and bottom-up segmen-

tation. In In Proceedings IEEE workshop on Perceptual Or-

ganization in Computer Vision, CVPR, page 46, 2004.

[7] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object

classes in video: A high-definition ground truth database.

Pattern Recognition Letters, 30(2):88–97, 2009.

[8] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene

labeling with lstm recurrent neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3547–3555, 2015.

[9] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and

A. L. Yuille. Semantic image segmentation with task-specific

46



Figure 3. Camvid segmentation example with and without class balancing. From the left: input image, ground truth segmentation, ReSeg

segmentation, ReSeg segmentation with class balancing. Class balancing improves the low frequency classes as e.g., the street lights, at

the price of a worse overall segmentation.

edge detection using cnns and a discriminatively trained do-

main transform. arXiv preprint arXiv:1511.03328, 2015.

[10] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations

using RNN encoder-decoder for statistical machine transla-

tion. In Proceedings of the Empiricial Methods in Natural

Language Processing (EMNLP 2014), Oct. 2014. to appear.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009.

[12] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby,

D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly,

J. D. Fauw, M. Heilman, diogo149, B. McFee, H. Weide-

man, takacsg84, peterderivaz, Jon, instagibbs, D. K. Rasul,

CongLiu, Britefury, and J. Degrave. Lasagne: First release.,

Aug. 2015.

[13] V. Dumoulin and F. Visin. A guide to convolution arithmetic

for deep learning, 2016. cite arxiv:1603.07285.

[14] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. CoRR, abs/1411.4734, 2014.

[15] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable

object detection using deep neural networks. In Proceedings

of the 2014 IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR ’14, pages 2155–2162, Washington,

DC, USA, 2014. IEEE Computer Society.

[16] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learn-

ing hierarchical features for scene labeling. IEEE TPAMI,

35(8):1915–1929, 2013.

[17] C. Gatta, A. Romero, and J. van de Weijer. Unrolling loopy

top-down semantic feedback in convolutional deep networks.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR Workshops 2014, Columbus, OH, USA, June

23-28, 2014, pages 504–511, 2014.

[18] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In International

conference on artificial intelligence and statistics, pages

249–256, 2010.

[19] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In Computer Vision and Pattern Recognition (CVPR),

2015.

[20] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Computation, 9(8):1735–1780, 1997.

[21] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating

images with recurrent adversarial networks. arXiv preprint

arXiv:1602.05110, 2016.

[22] A. Kendall, V. Badrinarayanan, and R. Cipolla. Bayesian

SegNet: Model Uncertainty in Deep Convolutional Encoder-

Decoder Architectures for Scene Understanding. 2015.

[23] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems 25

(NIPS’2012). 2012.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[25] A. Krogh and J. A. Hertz. A simple weight decay can im-

prove generalization. In ADVANCES IN NEURAL INFOR-

MATION PROCESSING SYSTEMS 4, pages 950–957. Mor-

gan Kaufmann, 1992.

[26] L. Ladický, P. Sturgess, K. Alahari, C. Russell, and P. H. S.

Torr. What, where and how many? Combining object

detectors and CRFs. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 6314 LNCS(PART

4):424–437, 2010.

[27] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Ben-

gio. Batch normalized recurrent neural networks. CoRR,

abs/1510.01378, 2015.

[28] M. Lin, Q. Chen, and S. Yan. Network in network. In Pro-

ceedings of the Second International Conference on Learn-

ing Representations (ICLR 2014), Apr. 2014.

[29] F. Liu, G. Lin, and C. Shen. Crf learning with cnn features

for image segmentation. Pattern Recognition, 2015.

[30] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. CVPR (to appear),

Nov. 2015.

[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015.

[32] M.-E. Nilsback and A. Zisserman. A visual vocabulary for

flower classification. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, volume 2,

pages 1447–1454, 2006.

47



[33] H. Noh, S. Hong, and B. Han. Learning deconvolu-

tion network for semantic segmentation. arXiv preprint

arXiv:1505.04366, 2015.

[34] P. Pinheiro and R. Collobert. Recurrent convolutional neural

networks for scene labeling. JMLR, 1(32):82–90, 2014.

[35] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[36] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In Med-

ical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 9351 of LNCS, pages 234–241. Springer,

2015. (available on arXiv:1505.04597 [cs.CV]).

[37] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. ACM

Transactions on Graphics (TOG), 23(3):309–314, 2004.

[38] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact so-

lutions to the nonlinear dynamics of learning in deep linear

neural networks. In Proceedings of the Second International

Conference on Learning Representations (ICLR 2014), Apr.

2014.

[39] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[40] G. Singh and J. Kosecka. Nonparametric scene parsing with

adaptive feature relevance and semantic context. In 2013

IEEE Conference on Computer Vision and Pattern Recog-

nition, Portland, OR, USA, June 23-28, 2013, pages 3151–

3157, 2013.

[41] M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhu-

ber. Parallel multi-dimensional lstm, with application to fast

biomedical volumetric image segmentation. In Advances in

Neural Information Processing Systems, pages 2980–2988,

2015.

[42] P. Sturgess, K. Alahari, L. Ladicky, and P. H. S. Torr. Com-

bining Appearance and Structure from Motion Features for

Road Scene Understanding. Procedings of the British Ma-

chine Vision Conference 2009, pages 62.1–62.11, 2009.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. arXiv preprint

arXiv:1409.4842, 2014.

[44] J. Tighe and S. Lazebnik. Superparsing: Scalable nonpara-

metric image parsing with superpixels. International Journal

of Computer Vision, 101(2):329–349, 2013.

[45] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville,

and Y. Bengio. Renet: A recurrent neural network

based alternative to convolutional networks. arXiv preprint

arXiv:1505.00393, 2015.

[46] X. Wu and K. Kashino. Tri-map self-validation based on

least gibbs energy for foreground segmentation. In Proceed-

ings of the British Machine Vision Conference. BMVA Press,

2014.

[47] J. Yang, B. Price, S. Cohen, Z. Lin, and M.-H. Yang. Patch-

cut: Data-driven object segmentation via local shape transfer.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1770–1778, 2015.

[48] M. Zeiler, G. Taylor, and R. Fergus. Adaptive decon-

volutional networks for mid and high level feature learn-

ing. In Proc. International Conference on Computer Vision

(ICCV’11), pages 2146–2153. IEEE, 2011.

[49] M. D. Zeiler. ADADELTA: an adaptive learning rate method.

Technical report, arXiv 1212.5701, 2012.

[50] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV’14, 2014.

48


