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Abstract

In this paper, we study the challenging problem of multi-

object tracking in a complex scene captured by a single

camera. Different from the existing tracklet association-

based tracking methods, we propose a novel and efficient

way to obtain discriminative appearance-based tracklet

affinity models. Our proposed method jointly learns the

convolutional neural networks (CNNs) and temporally con-

strained metrics. In our method, a siamese convolutional

neural network (CNN) is first pre-trained on the auxil-

iary data. Then the siamese CNN and temporally con-

strained metrics are jointly learned online to construct the

appearance-based tracklet affinity models. The proposed

method can jointly learn the hierarchical deep features and

temporally constrained segment-wise metrics under a uni-

fied framework. For reliable association between tracklets,

a novel loss function incorporating temporally constrained

multi-task learning mechanism is proposed. By employing

the proposed method, tracklet association can be accom-

plished even in challenging situations. Moreover, a large-

scale dataset with 40 fully annotated sequences is created to

facilitate the tracking evaluation. Experimental results on

five public datasets and the new large-scale dataset show

that our method outperforms several state-of-the-art ap-

proaches in multi-object tracking.

1. Introduction

Multi-object tracking in real scenes is an important topic

in computer vision, due to its demands in many essential

applications such as surveillance, robotics, traffic safety and

entertainments. As the seminal achievements were obtained

in object detection [10, 40, 14], tracklet association-based

tracking methods [21, 44, 11, 41, 37] have become popular

recently. These methods usually include two key compo-

nents: 1) A tracklet affinity model that estimates the link-

ing probability between tracklets (track fragments), which

is usually based on the combination of multiple cues (mo-

tion and appearance cues); 2) A global optimization frame-

work for tracklet association, which is usually formulated

as a maximum a posterior problem (MAP).

Even though some state-of-the-art methods [21, 11, 4]

have achieved much progress in constructing more dis-

criminative appearance and motion based tracklet affinity

models, problems such as track fragmentation and identity

switch still cannot be well handled, especially under diffi-

cult situations where the appearance or motion of an object

changes abruptly and significantly. Most of state-of-the-

art tracklet association-based multi-object tracking meth-

ods make use of image representations which are often not

well-suited for constructing robust appearance-based track-

let affinity models. Current methods usually utilize pre-

selected features, such as HOG features [10], local binary

patterns [40], or color histograms, which are not “tailor-

made” for the tracked objects in question. Recently, deep

convolutional neural network architectures have been suc-

cessfully applied to many challenging tasks, such as im-

age classification [20] and object detection [16], and re-

ported highly promising results. The core to its success is to

take advantage of deep architectures to learn richer hierar-

chical features through multiple nonlinear transformations.

Hence, we adopt the deep convolutional neural network for

multi-object tracking in this work.

Traditional deep neural networks are designed for the

classification task. Here, we aim to associate tracklets by

joint learning of the convolutional neural networks and the

appearance-based tracklet affinity models. This joint opti-

mization will maximize their capacity for solving tracklet

association problems. Hence, we propose to jointly learn

the siamese convolutional neural network, which consists

of two sub-networks (see Figure 1), and appearance-based

tracklet affinity models, so that the appearance-based affin-

ity models and the “tailor-made” hierarchical features for

tracked targets are learned simultaneously and coherently.

Furthermore, based on the analysis of the characteristics of

the sequential data stream, a novel temporally constrained
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Figure 1. Tracking framework of our method. In the Generalized Linear Assignment (GLA) graph, each node denotes a reliable tracklet;

each edge denotes a possible link between two tracklets. We jointly learn the siamese CNN and the temporally constrained metrics for

tracklet affinity model, as shown in the red-dashed box, which estimates the linking probability between two tracklets in the GLA graph.

The tracking results are obtained by combinatorial optimization using the softassign algorithm.

multi-task learning mechanism is proposed to be added to

the objective function. This makes the deep architectures

more effective in tackling the tracklet association problem.

Although deep architectures have been employed in single

object tracking [39, 26, 38, 45, 18], we explore deep archi-

tectures for multi-object tracking in this work.

The proposed framework in this paper is shown in Figure

1. Given a video input, we first detect objects in each frame

by a pre-trained object detector, such as the popular DPM

detector [14]. Then a dual-threshold strategy [19] is em-

ployed to generate reliable tracklets. The siamese CNN is

first pre-trained on the auxiliary data offline. Subsequently,

the siamese CNN and temporally constrained metrics are

jointly learned for tracklet affinity models by using the on-

line collected training samples among the reliable tracklets.

Finally, the tracklet association problem is formulated as a

Generalized Linear Assignment (GLA) problem, which is

solved by the softassign algorithm [17]. The final trajecto-

ries of multiple objects are obtained after a trajectory recov-

ery process.

The contributions of this paper can be summarized as:

(1) We propose a unified deep model for jointly learning

“tailor-made” hierarchical features for currently tracked ob-

jects and temporally constrained segment-wise metrics for

tracklet affinity models. With this deep model, the feature

learning and the discriminative tracklet affinity model learn-

ing can efficiently interact with each other, maximizing their

performance co-operatively. (2) A novel temporally con-

strained multi-task learning mechanism is proposed to be

embedded into the last layer of the unified deep neural net-

work, which makes it more effective to learn appearance-

based affinity model for tracklet association. (3) A new

dataset with 40 diverse fully annotated sequences is built to

facilitate performance evaluation. This new dataset includes

24,882 frames and 246,330 annotated bounding boxes.

2. The Unified Deep Model

In this section, we explain how the unified deep model is

designed for jointly learning hierarchical features and tem-

porally constrained metrics for tracklet association.

2.1. The Architecture

A deep neural network usually works in a standalone

mode for most of computer vision tasks, such as image clas-

sification, object recognition and detection. The input and

output of the deep neural network in this mode are a sample

and a predicted label respectively. However, for the tracklet

association problem, the objective is to estimate the track-

let affinities between two tracklets to decide whether they

belong to the same object. Hence, the “sample → label”

mode deep neural network is not applicable to the tracklet

association problem. To deal with this problem, we propose

to create a siamese deep neural network, which consists of

two sub-networks working in a “sample pair → similarity”

mode.

The structure of the siamese convolution neural net-

work (CNN) is shown in Figure 1 (red-dashed box). Given

two target images, they are first warped to a fixed 96 ×
96 patch and presented to the siamese CNN. The siamese

CNN is composed of two sub convolutional neural networks

(CNNs), as shown in Figure 1 (red-dashed box). A novel

metric learning based loss function is proposed for learning

this siamese CNN. Moreover, the siamese CNN has their

two sub-CNNs sharing the same parameters, i.e., weights

and biases.

2



C1

96@96×96

Input

3@96×96

S1

96@48×48

C2

96@48×48

S2

96@24×24

F3

512

Convolution
Max Pooling &

Normalization
Convolution

Max Pooling &

Normalization

Fully 

Connected

Figure 2. The structure of 5-layer sub-CNN used in the unified

deep model.

The sub-CNN in the unified deep model consists of 2

convolutional layers (C1 and C2), 2 max pooling layers (S1

and S2) and a fully connected layer (F3), as shown in Fig-

ure 2. The number of channels of convolutional and max

pooling layers are both 96. The output of the sub-CNN is a

feature vector of 512 dimensions. A cross-channel normal-

ization unit is included in each pooling layer. The convo-

lutional layer output has the same size as the input by zero

padding of the input data. The filter sizes of C1 and C2 lay-

ers are 7 × 7 and 5 × 5 respectively. The activation function

for each layer in the CNN is ReLU neuron [20].

2.2. Loss Function and Temporally Constrained
Metric Learning

As we can see in Figure 1 (red-dashed box), the siamese

CNN consists of two basic components: two sub-CNNs and

a loss function. The loss function converts the difference

between the input sample pair into a margin-based loss.

The relative distance between an input sample pair used

in the loss function, parameterized as a Mahalanobis dis-

tance, is defined as:

‖xi − xj‖M
2
= (xi − xj)

T
M(xi − xj), i 6= j (1)

where xi and xj are two 512-dimensional feature vectors

obtained from the last layer of the two sub-CNNs; and M is

a positive semidefinite matrix.

Before introducing the proposed loss function with the

temporally constrained multi-task learning mechanism, we

first present the loss function with common metric learning.

Given training samples, we aim to minimize the following

loss:

min
M

λ

2
‖M − I‖F

2
+ C

∑

i,j

max(0, b− li,j [1− ‖xi − xj‖M
2
])

s.t. M � 0, i 6= j (2)

where λ is a regularization parameter; ‖ · ‖F denotes the

Frobenius norm of a matrix; C is the weight parameter of

the empirical loss; b is a constant value satisfying 0 ≤ b ≤
1, which represents the decision margin; li,j is a label that

equals to 1 when xi and xj are of the same object and -1

otherwise; and M � 0 means that M is a positive semidef-

inite matrix.

Nevertheless, object appearance can vary a lot in the en-

tire video sequence. It is undesirable to use the same metric

to estimate the tracklet affinities over the entire video se-

quence. In this paper, segment-wise metrics are proposed to

be learned within each short-time segment, known as local

segment. Meanwhile, to capture the common discriminative

information shared by all the segments, a multi-task learn-

ing mechanism is proposed to be embedded into the loss

function for learning the segment-wise and common met-

rics simultaneously. Moreover, segments in videos are tem-

poral sequences. Temporally close segments should share

more information. Hence, we propose a multi-task learning

method incorporating temporal constraints for this learning

problem:

min
M0,...,Mn

(

λ0

2
‖M0 − I‖F

2
+

n
∑

t=2

η

2
‖Mt −Mt−1‖F

2
+

n
∑

t=1

[
λ

2
‖Mt‖F

2
+ C

∑

i,j

h(xi, xj)]

)

s.t. M0,M1, ...,Mn � 0, i 6= j (3)

where λ0 and λ are the regularization parameters of Mt for

t = 0, 1, ..., n; n is the total number of segments; M0 is

the common metric shared by all the segments; Mt is the

segment-wise metric; ‖ · ‖F denotes the Frobenius norm of

a matrix; the second term of this loss function is the tempo-

ral constraint term, in which η is a regularization parameter;

h(xi, xj) is the empirical loss function; and C is the weight

parameter of the empirical loss.

The empirical loss function h(xi, xj) used in Equation

(3) is expressed as:

h(xi, xj) = max(0, b− li,j [1− ‖xi − xj‖Mtot

2
]); (4)

Mtot = M0 +Mt, i 6= j,

‖xi − xj‖Mtot

2
= (xi − xj)

T
(M0 +Mt)(xi − xj)

where b is a constant value, which represents the decision

margin; li,j is a label that equals to 1 when xi and xj are

of the same object and -1 otherwise; xi and xj are two 512-

dimensional feature vectors obtained from the last layer of

the two sub-CNNs; and Mtot is the metric used for estimat-

ing the relative distance between a sample pair.

Intuitively, the common metric M0 represents the shared

discriminative information across the entire video sequence

and the segment-wise metric Mt>0 adapt the metric for each

local segment. In the proposed objective function, in Equa-

tion (3), the second term is the temporal constraint term,

which accounts for the observation that the neighboring seg-

ments sharing more information than the non-neighboring

segments (see Figure 3 for an illustration). In the implemen-

tation, we use the previous segment-wise metric Mt−1 in

temporal space to initialize the current segment-wise metric
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Figure 3. An illustration of the temporally constrained multi-task

learning mechanism. n is the total number of the segments and the

segments are shown in the temporal space.

Mt, due to the assumption that the neighboring segment-

wise metrics are more correlated than the non-neighboring

ones.

To learn the parameters of the unified deep model, back-

propagation (BP) [25] is utilized. The forward propagation

function to calculate the loss of the training pairs is pre-

sented in Equation (3). By differentiating the loss function

with respect to the two input samples, we have the gradi-

ents. The total gradient for back-propagation is the sum of

the contributions from the two samples, which is as follows:

∇Gtotal = 2Cli,j(Mtot +Mtot
T )(xi − xj) (■{g(xi, xj) > 0})

(5)

where

Mtot = M0 +Mt, (6)

g(xi, xj) = b− li,j [1− ‖xi − xj‖Mtot

2
], (7)

‖xi − xj‖Mtot

2
= (xi − xj)

T
(M0 +Mt)(xi − xj) (8)

and ■{·} is the indicator function.

Based on Equations (3) and (5), we can learn the param-

eters of the unified deep model by stochastic gradient de-

scent via back-propagation. Moreover, the temporally con-

strained metrics for tracklet affinity models are obtained si-

multaneously by batch mode stochastic gradient descent.

Online training sample collection is an important issue

in the learning of the unified deep model. We take the

assumptions similar to those as in [21]: (1) detection re-

sponses in one tracklet are from the same object; (2) any

detection responses in two different tracklets which have

overlaps over time are from different objects. The first one

is based on the assumption that the tracklets generated by

the dual-threshold strategy are reliable; the second one is

based on the fact that one target cannot appear at two or

more different locations at the same time, known as spatio-

temporal conflict. For each tracklet, κ strongest detection

responses are selected as training samples (κ = 4 in our

implementation). Then we use two arbitrarily selected dif-

ferent detection responses from the κ strongest responses of

Algorithm 1 Online Learning Algorithm for Temporally

Constrained Metric Learning

Input:

Feature vectors of online collected training samples {xi
t}; i =

1, ..., nt, nt is the number of the samples within segment t; t =
1, ..., n, n is the total number of the segments; and learning rate β.

Output:

The learned metrics: M0,M1, ...,Mn.

1: Initialize M0 = I (identity matrix).

2: for t = 1, ..., n do

3: if t == 1 then

4: Initialize Mt = 0.

5: else

6: Initialize Mt = Mt−1.

7: end if

8: Randomly generate the training pairs {xi, xj , li,j} from {xi
t}.

li,j = 1, if xi and xj are from one tracklet; li,j = −1, if xi

and xj are from two different tracklets which have overlaps over

time. A total of 2m training pairs in an random order are generated,

which includes m positive and m negative pairs.

9: for p = 1, ..., 2m do

10: if li,j [1− (xi − xj)
T (M0 +Mt)(xi − xj)] > b then

11: M0=M0; Mt=Mt.

12: else if li,j < 0 then

13: Compute M0 and Mt by Equations (9) and (10).

14: else

15: M0 = πS+(M0 − β ∂L
∂M0

);

16: Mt = πS+(Mt − β ∂L
∂Mt

);

where πS+(A) projects matrix A into the positive semidefi-

nite cone.

17: end if

18: end for

19: end for

Ti as positive training samples, and two detection responses

from the κ strongest responses of two spatio-temporal con-

flicted tracklets as negative training samples.

Finally, the common metric M0 and the segment-wise

metrics Mt>0 are obtained simultaneously through a gradi-

ent descent rule. The online learning algorithm is summa-

rized in Algorithm 1.

M0 =M0 − β
∂L

∂M0

(9)

Mt =Mt − β
∂L

∂Mt

(10)

where β is the learning rate.

Meanwhile, the siamese CNN is online fine-tuned

through back propagating the gradients calculated by Equa-

tion (5).

3. Tracklet Association Framework

In this section, we present the tracklet association frame-

work, in which, we incorporate the temporally constrained

metrics learned by the unified deep model to obtain robust

appearance-based tracklet affinity models.
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3.1. Tracklet Association with Generalized Linear
Assignment

To avoid learning tracklet starting and termination prob-

abilities, we formulate the tracklet association problem as

a Generalized Linear Assignment (GLA) [34], which does

not need the source and sink nodes as in conventional net-

work flow optimization [46, 32, 8, 37]. Given N tracklets

{T1, ..., TN}, the Generalized Linear Assignment (GLA)

problem is formulated as:

max
X

N
∑

i=1

N
∑

j=1

P (Ti, Tj)Xij (11)

s.t.

N
∑

i=1

Xij ≤ 1;

N
∑

j=1

Xij ≤ 1;Xij ∈ {0, 1}

where P (Ti, Tj) is the linking probability between Ti and

Tj . The variable Xij denotes that Ti is the predecessor of

Tj in temporal domain when Xij = 1 and that, they may be

merged during the optimization.

3.2. Tracklet Affinity Measurement

To solve the Generalized Linear Assignment (GLA)

problem in Equation (11), we need to estimate the track-

let affinity score, or equivalently, the linking probability,

P (Ti, Tj), between two tracklets. The linking probability

P (Ti, Tj) is defined based on two cues: motion and appear-

ance.

P (Ti, Tj) = Pm(Ti, Tj)Pa(Ti, Tj) (12)

The motion-based tracklet affinity model Pm(Ti, Tj) is

defined as:

Pm(Ti, Tj) =N (ptaili + vFi ∆t; pheadj ,Σ)·

N (pheadj + vBj ∆t; ptaili ,Σ) (13)

where ptaili is the position of the tail response in Ti; p
head
j

is the position of the head response in Tj ; vFi is the forward

velocity of Ti; v
B
j is the backward velocity of Tj ; and ∆t

is the time gap between the tail response of Ti and the head

response of Tj .

In Equation (13), the forward velocity vFi is estimated

from the head to the tail of Ti, while the backward velocity

vBj is estimated from the tail to the head of Tj . It is assumed

that the difference of the predicted position and the refined

position follows a Gaussian distribution.

To estimate the appearance-based tracklet affinity scores,

we need to construct the probe set, consisting of the

strongest detection response in each tracklet. The probe set

is defined as G = {gi}, i = 1, ..., Ns, in which Ns is the

number of tracklets in a local segment. Each Ti has only

one selected gi in G to represent itself.

The appearance-based tracklet affinity model Pa(Ti, Tj)
is defined based on the learned temporally constrained met-

rics:

dkij = (xk
i − gj)

T (M0 +Mt)(x
k
i − gj);

dk
′

ji = (xk′

j − gi)
T (M0 +Mt)(x

k′

j − gi);

normk
i =

√

√

√

√(

Ns
∑

j=1

dkij); norm
k′

j =

√

√

√

√(

Ns
∑

i=1

dk
′

ji);

dij =
[

∑

k

(
dkij

normk
i

)
]

/mi; dji =
[

∑

k′

dk
′

ji

normk′

j

]

/mj ;

Pa(Ti, Tj) = (dijdji)
−1 (14)

where xk
i denotes the feature vector of the kth detection

response in Ti; xk′

j denotes the feature vector of the k′th
detection response in Tj ; gi, gj ∈ G; mi and mj are the

numbers of detection responses of Ti and Tj respectively.

Through Equation (12), we can obtain the predecessor-

successor matrix P for the objective function (11). To

achieve fast and accurate convergence, P is normalized by

column and a threshold ω is introduced to ensure that a re-

liable tracklet association pair has a high affinity score.

P (Ti, Tj) =















Pm(Ti, Tj)Pa(Ti, Tj),
if Pm(Ti, Tj)Pa(Ti, Tj) ≥ ω

0, otherwise

(15)

The Generalized Linear Assignment problem in Equa-

tion (11) can be solved by the softassign algorithm [17].

Due to missed detections, there may exist some gaps be-

tween adjacent tracklets in each trajectory after tracklet as-

sociation. Therefore, the final tracking results are obtained

through a trajectory interpolation process over gaps based

on a linear motion model.

4. Experiments

4.1. Datasets

To evaluate the multi-object tracking performance of the

proposed method, experiments are conducted on five pub-

licly available datasets: PETS 2009 [15], Town Centre [5],

Parking Lot [35], ETH Mobile scene [13] and MOTChal-

lenge [23]. Moreover, a new dataset containing 40 diverse

fully annotated sequences is used to evaluate the proposed

method. For this new dataset, 10 sequences, which con-

tain 5,080 fames and 52,833 annotated boxes, are used for

training; 30 sequences, which contain 19,802 frames and

193,497 annotated boxes, are used for testing.

4.2. Experimental Settings

For the first four datasets evaluation, the proposed

siamese CNN is first pre-trained on the JELMOLI dataset
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[12] with the loss function in Equation (2). For the

MOTChallenge [23], the siamese CNN is first pre-trained

on the training set of [23]. For the new dataset, the siamese

CNN is first pre-trained on the 10 training sequences. For

the regularization parameters in the loss function (3), we set

λ0 = 0.01, λ = 0.02 and η = 0.02. The weight parameter

of the empirical loss is set to C = 0.001. The learning rate

β is fixed as 0.01 for all the sequences. The variance Σ in

the motion-based tracklet affinity model in Equation (13) is

fixed at Σ = diag[625 3600]. A threshold value ω between

0.5 and 0.6 in Equation (15) works well for all the datasets.

Moreover, a segment of 50 to 80 frames works well for all

the sequences.

For fair comparison, the same input detections and

groundtruth annotations are utilized for all the trackers in

each sequence. Some of the tracking results are directly

taken from the corresponding published papers. For the new

dataset, we use DPM detector [14] to generate the detec-

tions. The DPM detections with a score above the threshold

value −0.3 serve as inputs for all the evaluated trackers in

the new dataset.

4.3. Performance Evaluation

Evaluation metrics: We use the popular evaluation met-

rics defined in [27], as well as the CLEAR MOT metrics

[7]: MOTA (↑), MOTP (↑), Recall (↑), Precision (↑), False

Alarms per Frame (FAF ↓), False Positives (FP ↓), False

Negatives (FN ↓), the number of Ground Truth trajecto-

ries (GT), Mostly Tracked (MT ↑), Partially Tracked (PT),

Mostly Lost (ML ↓), the number of Track Fragments (Frag

↓) and Identity Switches (IDS ↓). Here, ↑ denotes higher

scores indicate better performance, and ↓ denotes lower

scores indicate better performance.

Evaluation: To show the effectiveness of joint learn-

ing and temporally constrained metrics, two baselines are

designed. For Baseline 1, the siamese CNN and the met-

rics are learned separately. We first learn the siamese CNN

alone by using the loss function (2), in which the M is fixed

as M = I . Then the common metric M is learned sepa-

rately with the features obtained from the previous learned

siamese CNN. No segment-wise metrics Mt are learned for

Baseline 1. For Baseline 2, the unified deep model without

the temporally constrained multi-task mechanism is learned

for tracklet affinity model. In Baseline 2, we use the loss

function in Equation (2) instead of Equation (3) to learn the

unified deep model. Moreover, to show the effectiveness of

the CNN fine-tuning and the common metric M0, two more

baselines are designed. For Baseline 3, the siamese CNN

is pre-trained on JELMOLI dataset but without fine-tuning

on target dataset using (3). The temporally constrained

metrics and the siamese CNN are learned separately. For

Baseline 4, no common metric M0 is used. The objective

function (3) without the first term is used for this baseline.

Note that the siamese CNNs of all the baselines are pre-

trained on JELMOLI dataset [12].

From Table 1, 2, 3 and 4, it is found that Baseline

2 achieves overall better performance than Baseline 1 on

the evaluated datasets, which proves the effectiveness of

the joint learning. Moreover, our method achieves signifi-

cant improvement in performance on the evaluated datasets,

compared with Baseline 2, which validates the superiority

of our unified deep model with the temporally constrained

multi-task learning mechanism. Our method also achieves

overall better performance than Baseline 3 and Baseline

4, which demonstrates the effectiveness of fine-tuning and

adding the common metric M0.

We further evaluate our method on the recent MOTChal-

lenge 2D Benchmark [23]. The qualitative results of our

method (CNNTCM) are available on the MOTChallenge

Benchmark website [1]. From Table 5, it is found that our

method achieves better performance on all evaluation mea-

sures compared with a recent work [11] which is also based

on the GLA framework. Compared with other state-of-the-

art methods, our method achieves better or comparable per-

formance on all the evaluation measures.

Moreover, to further show the generality and effective-

ness of the proposed method on large-scale sequences, a

new dataset with 40 diverse sequences is built for perfor-

mance evaluation. 5 state-of-the-art tracking methods with

released source codes are used in evaluation for the new

dataset. The parameters of each evaluated tracking method

are fine-tuned on the 10 training sequences. As shown in Ta-

ble 6, our method achieves the best performance on MOTA

and IDS, which are the most two direct measures for track-

let association evaluation, among all the evaluated methods.

Computation speed: Our system was implemented

using the MatConvNet toolbox [36] on a server with a

2.60GHz CPU and a Tesla K20c GPU. The computation

speed is subject to the number of targets in a video se-

quence. The speeds of our method are about 0.38, 0.81,

0.50, 0.60, 0.59, 0.55 (sec/frame) for PETS 2009, Town

Centre, ParkingLot, ETH, MOTChallenge, and the new

dataset, respectively, excluding the detection step. Note

that speed-up can be achieved by further optimization of

the codes.

5. Conclusion

In this paper, a novel unified deep model for tracklet as-

sociation is presented. This deep model can jointly learn

the siamese CNN and temporally constrained metrics for

tracklet affinity models. The experimental results of Base-

line 1 and Baseline 2 validate the effectiveness of the joint

learning and the temporally constrained multi-task learning

mechanism of the proposed unified deep model. Baseline 3

and Baseline 4 demonstrate the effectiveness of fine-tuning

and adding the common metric. Moreover, a new large-

6



Method MOTA MOTP Recall Precision FAF FP FN GT MT PT ML Frag IDS

Milan et al. [29] 90.6% 80.2% 92.4% 98.4% 0.07 59 302 23 91.3% 4.4% 4.3% 6 11

Berclaz et al. [6] 80.3% 72.0% 83.8% 96.3% 0.16 126 641 23 73.9% 17.4% 8.7% 22 13

Andriyenko et al. [2] 86.3% 78.7% 89.5% 97.6% 0.11 88 417 23 78.3% 17.4% 4.3% 21 38

Andriyenko et al. [3] 88.3% 79.6% 90.0% 98.7% 0.06 47 396 23 82.6% 17.4% 0.0% 14 18

Pirsiavash et al. [32] 77.4% 74.3% 81.2% 97.2% 0.12 93 742 23 60.9% 34.8% 4.3% 62 57

Wen et al. [41] 92.7% 72.9% 94.4% 98.4% 0.08 62 222 23 95.7% 0.0% 4.3% 10 5

Chari et al. [9] 85.5% 76.2% 92.4% 94.3% - 262 354 19 94.7% 5.3% 0.0% 74 56

Baseline1 93.6% 86.3% 96.3% 97.7% 0.13 106 170 19 94.7% 5.3% 0.0% 18 18

Baseline2 94.3% 86.4% 96.6% 97.9% 0.12 94 157 19 94.7% 5.3% 0.0% 16 11

Baseline3 94.0% 86.3% 96.5% 97.8% 0.13 100 163 19 94.7% 5.3% 0.0% 20 12

Baseline4 94.7% 86.4% 97.1% 97.8% 0.13 103 134 19 94.7% 5.3% 0.0% 13 8

Ours 95.8% 86.4% 97.5% 98.4% 0.09 74 115 19 94.7% 5.3% 0.0% 8 4

Table 1. Comparison of tracking results between state-of-the-art methods and ours on PETS 2009 dataset.

Method MOTA MOTP Recall Precision FAF FP FN GT MT PT ML Frag IDS

Leal-Taixe et al. [24] 71.3% 71.8% - - - - - 231 58.6% 34.4% 7.0% 363 165

Zhang et al. [46] 69.1% 72.0% - - - - - 231 53.0% 37.7 9.3% 440 243

Benfold et al. [5] 64.3% 80.2% - - - - - 231 67.4% 26.1% 6.5% 343 222

Pellegrini et al. [31] 65.5% 71.8% - - - - - 231 59.1% 33.9% 7.0% 499 288

Wu et al. [42] 69.5% 68.7% - - - - - 231 64.7% 27.4% 7.9% 453 209

Yamaguchi et al. [43] 66.6% 71.7% - - - - - 231 58.1% 35.4% 6.5% 492 302

Possegger et al. [33] 70.7% 68.6% - - - - - 231 56.3% 36.3% 7.4% 321 157

Baseline1 54.8% 72.5% 71.1% 85.0% 1.99 895 2068 231 58.0% 31.2% 10.8% 360 268

Baseline2 58.4% 73.0% 72.2% 87.5% 1.63 735 1983 231 59.7% 30.3% 10.0% 325 251

Baseline3 57.1% 72.8% 72.3% 86.5% 1.79 806 1979 231 58.9% 30.7% 10.4% 326 265

Baseline4 63.8% 74.0% 73.2% 90.8% 1.18 530 1915 231 62.8% 29% 8.2% 223 153

Ours 67.2% 74.5% 75.2% 92.6% 0.95 428 1770 231 65.8% 27.7% 6.5% 173 146

Table 2. Comparison of tracking results between state-of-the-art methods and ours on Town Centre dataset.

scale dataset with 40 fully annotated sequences is created

to facilitate multi-target tracking evaluation. Furthermore,

extensive experimental results on five public datasets and

the new large-scale dataset compared with state-of-the-art

methods also demonstrate the superiority of our method.
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Method MOTA MOTP Recall Precision FAF FP FN GT MT PT ML Frag IDS

Shu et al. [35] 74.1% 79.3% 81.7% 91.3% - - - 14 - - - - -

Andriyenko et al. [2] 60.0% 70.7% 69.3% 91.3% 0.65 162 756 14 21.4% 71.5% 7.1% 97 68

Andriyenko et al. [3] 73.1% 76.5% 86.8% 89.4% 1.01 253 326 14 78.6% 21.4% 0.0% 70 83

Pirsiavash et al. [32] 65.7% 75.3% 69.4% 97.8% 0.16 39 754 14 7.1% 85.8% 7.1% 60 52

Wen et al. [41] 88.4% 81.9% 90.8% 98.3% 0.16 39 227 14 78.6% 21.4% 0.0% 23 21

Baseline1 76.5% 72.8% 86.0% 91.6% 0.78 195 344 14 71.4% 28.6% 0.0% 95 39

Baseline2 80.7% 72.6% 89.5% 92.3% 0.74 185 258 14 78.6% 21.4% 0.0% 63 33

Baseline3 79.7% 72.7% 89.1% 91.8% 0.78 196 269 14 78.6% 21.4% 0.0% 70 34

Baseline4 81.9% 72.7% 89.7% 93.1% 0.65 163 254 14 78.6% 21.4% 0.0% 59 30

Ours 85.7% 72.9% 92.4% 93.5% 0.63 158 188 14 78.6% 21.4% 0.0% 49 6

Table 3. Comparison of tracking results between state-of-the-art methods and ours on ParkingLot dataset.

Method MOTA MOTP Recall Precision FAF FP FN GT MT PT ML Frag IDS

Kuo et al. [21] - - 76.8% 86.6% 0.891 - - 125 58.4% 33.6% 8.0% 23 11

Yang et al. [44] - - 79.0% 90.4% 0.637 - - 125 68.0% 24.8% 7.2% 19 11

Milan et al. [30] - - 77.3% 87.2% - - - 125 66.4% 25.4% 8.2% 69 57
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Table 4. Comparison of tracking results between state-of-the-art methods and ours on ETH dataset.

Method MOTA MOTP FAF FP FN GT MT PT ML Frag IDS
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