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Abstract

With the heated trend of augmented reality (AR) and pop-

ularity of smart head-mounted devices, the development of

natural human device interaction is important, especially

the hand gesture based interaction. This paper presents a

solution for the point gesture based interaction in the ego-

centric vision and its application. Firstly, a dataset named

EgoFinger is established focusing on the pointing gesture

for the egocentric vision. We discuss the dataset collec-

tion detail and as well the comprehensive analysis of this

dataset, including background and foreground color distri-

bution, hand occurrence likelihood, scale and pointing an-

gle distribution of hand and finger, and the manual labeling

error analysis. The analysis shows that the dataset covers

substantial data samples in various environments and dy-

namic hand shapes. Furthermore, we propose a two-stage

Faster R-CNN based hand detection and dual-target finger-

tip detection framework. Comparing with state-of-art track-

ing and detection algorithm, it performs the best in both

hand and fingertip detection. With the large-scale dataset,

we achieve fingertip detection error at about 12.22 pixels

in 640px × 480px video frame. Finally, using the fingertip

detection result, we design and implement an input system

for the egocentric vision, i.e., Ego-Air-Writing. By consid-

ering the fingertip as a pen, the user with wearable glass

can write character in the air and interact with system us-

ing simple hand gestures.

1. Introduction

The egocentric vision, also known as the first-person

vision, usually refers to capture and process images and

videos from cameras worn on the person’s head. With

the development of smart wearable cameras and aug-

mented reality headset such as Facebook Oculus, Microsoft

HoloLens, and Google Glass, the egocentric vision and its

potential applications have drawn lots of attention. Natural

and simple human device interaction is an essential factor

that encourages people to use it in their daily life. As shown

in several conceptual and demonstration videos [1], we be-

lieve the pointing gesture and its fingertip trajectory is one

of important interaction patterns. Various instructions like

pointing, selecting and writing can be easily given by the

user. Hence, we focus on the pointing gesture based inter-

action in the egocentric vision.

Considering both indoor and outdoor situation for a

wearable device, the depth camera is not applicable but only

RGB color sequences. Hence, the key challenge is to detect

and track the fingertip location accurately in real-time under

various situations. This is a very difficult task due to many

factors like background complexity, illumination variation,

hand shape deformation, fingertip motion blur etc. With the

depth sensor, several advanced developments in the hand

tracking are proposed [23, 22] but we have different camera.

The object tracking approaches [10, 8] can be employed

for hand tracking but still face difficulties on the fingertip

tracking because it’s too small. Deep learning framework

has provided promising results in the object detection field,

including the hand detection [2] but this framework is too

slow due to redundant proposals. In [9], a two CNN-based

stages hand and fingertip detection framework is proposed

but it is not good enough for real-world applications. Cur-

rently, in this field, we need a large benchmark dataset to

train and evaluate the performance on hand detection and

fingertip detection.

In this paper, we have the following three contributions.

First, we establish a large dataset, called EgoFinger, con-

taining egocentric videos of various pointing gestures in dif-

ferent scenarios. We in-depth analyze the dataset attributes,

like background and foreground color distribution, hand oc-

currence likelihood, scale and pointing angle distribution

of hand and finger, and the manual labeling error analy-

sis. Second, a two-stage Faster R-CNN based hand detec-
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tion and dual-target fingertip detection framework is pre-

sented. Comparing with state-of-art tracking and detection

algorithm, it performs the best in both hand and fingertip

detection. Thirdly, we develop and demonstrate a fingertip-

based application, the input system for the egocentric vi-

sion, Ego-Air-Writing, which allows user write in the air

with their fingertip.

2. Related Work

Given the fingertip-based human computer interaction

system, the key challenge is to accurately locate such a

small fingertip from a large dynamic image or video in real-

time. Previous research can be summarized as two cate-

gories: tracking methods and detection methods. We re-

view few most related egocentric hand datasets to explore

the uniqueness and necessarily of our Ego-finger dataset.

2.1. Tracking methods

How to track a small object like fingertip from a high

dimension image (i.e 640px × 480px) accurately and ro-

bustly remains a great challenge. Template matching[17]

and mean-shift [11] methods have been applied for in the

constraint environment, and interesting related applications

have been demonstrated. In the latest work [25], the tracker

is composed by several sections with HOG feature and lin-

ear regression classifier, which presents good performance

in tracking benchmark [26]. Also, a state-of-art real-time

tracking method, Kernelized Correlation Filters (KCF) [8],

uses a discriminative classifier to distinguish between the

target and surrounding environment. However, these meth-

ods are mainly designed and evaluated on short videos

(less 30 seconds) and cannot deal with long time continu-

ous tracking problems like drifting and error accumulation.

For the long time tracking, the Tracking-Learn-Detection

(TLD) [10] is proposed by combining temporal clues and

detection-based feature update. It is not fast but works well

on the large object appearance variation problem. Still, the

long time small object tracking is a challenge issue.

2.2. Detection methods

By using the depth sensor, the hand detection [23, 22]

and segmentation [3] have been improved a lot. Unfortu-

nately, considering both indoor and outdoor situations and

its wearable application features, we can only employ the

RGB camera. In [12, 13], the RGB-based hand detection

and segmentation have produced nice results but face chal-

lenges with the saturation and illumination variation. In

[18], the skin detector, DPM-based context and shape detec-

tor are combined to detect hands, but their method is time-

consuming due to the sliding window strategy. Deep learn-

ing related methods have nice results on the detection prob-

lem. Region-based CNN is applied in [2] to detect hands but

this framework is too slow due to repeated computation of

redundant overlapping proposals. In [4], the detector only

reports the existence of the hand without its location. Faster

R-CNN [19] is the most recent general object detection al-

gorithm with good performance. A two stages CNN-based

hand and fingertip detection framework is proposed in [9]

but the detection accuracy can still be improved for the real

world application.

2.3. Related datasets

Currently, in the domain of egocentric hand-related re-

search, it is not easy to obtain a benchmark dataset to evalu-

ate the performance of their methods on hand detection and

tracking. The latest data set, called EgoHands [2], contains

images captured by Google Glass with manually labeled

hand regions (pixel-wise). The dataset aims at recognizing

human behavior by egocentric hand gesture. In [3], authors

present a small dataset of egocentric gesture with a spe-

cific goal of enhancing museum experience. Several data

sets collect RGB-D images with the depth camera. In [14],

SKIG dataset has Kinect capturing moving gestures under

various background conditions. GUN-71 [20] provides a

grasp gesture dataset. In [21], a real-time fingertip detec-

tion method is proposed with the fingertip labeled RGB-D

dataset. This dataset is indoor and not designed for the ego-

centric vision. To our best knowledge, there is no data set

designed and collected for the pointing gesture fingertip-

based interaction in the egocentric vision. We believe our

data set will provide an effective and efficient benchmark

for the related research field.

3. Dataset: EgoFinger

To locate the fingertip in the egocentric vision using deep

learning methods, we firstly establish a large-scale dataset

containing egocentric images of labeled hand and fingertip,

called EgoFinger1. The dataset covers various situations

and challenges including the complex background, illu-

mination change, deformable hand shape and skin-like

object disturbance, etc. Moreover, we present in-depth

analysis on the dataset attributes, like the background and

foreground color distribution, hand occurrence likelihood,

hand and finger scale and pointing angle distribution, and

manual labeling error analysis. We believe the EgoFinger

dataset is diversity and credible as a benchmark dataset for

the finger and hand related research in the egocentric vision.

The dataset contains 93,729 RGB frames of egocentric

videos captured, collected and labeled by 24 different in-

dividuals. Half of data is in the indoor environment and

half outdoor. Fig 3 demonstrates few representative sam-

ples from EgoFinger dataset.

1The dataset and demo can be downloaded from http://www.hcii-

lab.net/data/SCUTEgoFinger/index.htm
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Figure 1. Examples of the dataset frames captured in 24 scenarios.

3.1. Dataset acquisition

By carefully analyzing challenges of the hand and

fingertip detection problem in the egocentric vision, we

design the data acquisition process to fully represent

various situations. In Table 3.1 we summarize the related

challenges and corresponding design for the dataset collec-

tion. For example, we have half samples taken in indoor

and half samples from outdoor, which describes the real

world complex background.

Challenges Causes Designs

Background

complexity

Complicated

real world

environment

24 different scenes

including half indoor

and half outdoor

Hand shape

deformability

Different

user hand

and differ-

ent pointing

direction

Unconstrained user

hand scale and un-

constraint pointing

direction

Illumination

variety

Light expo-

sure, shading,

etc.

Unconstrained walk-

ing of experimenter

Skin-like

object inter-

ference

Faces, arms,

wooden

object, etc

Collect samples

without sleeves and

pointing at human

face

Motion blur Frame rate

slower than

movement

Manually drop out

samples that human

cannot recognize

Table 1. Challenges, their causes and corresponding dataset de-

signs

The dataset is collected by 24 experimenters separately in 24

different scenes. These scenes are designed to be half indoor and

half outdoor. For more detailed information, we give the frame

number of all 24 packages in Table 2. During data recording pro-

cess, every person is required to collect video sequences with the

mobile camera.They need to keep hand and fingertip visible inside

camera frame with a pointing gesture. Except for this requirement,

experimenters are allowed to go anywhere around the appointed

scene and to capture video under any illumination with any cam-

era.

After video sequences collection, collectors are required to

manually label the important point coordinates of hand and fin-

ger. We define a bounding box to locate hand and manually label

the top-left point and bottom-right point of the bounding box. Ad-

ditionally, we define two important points for labeling, that is, the

fingertip and index finger joint. We believe the finger physical

constraint could improve the detection accuracy.

Two points need to be clarified here. First, we deliberately col-

lect images by right hand because we could simply gain left hand

samples by mirroring all samples. Secondly, we collect samples

with only one hand using pointing gesture because the dataset aims

to evaluate methods of single hand detection and fingertip detec-

tion, while single hand situation is more common in egocentric

vision. Dataset of more gestures will be established in the future.

3.2. Dataset analysis

To clarify the complexity of background and foreground, we

analyze the dataset from the aspect of color distribution. To begin

with, we select an indoor package and an outdoor package and then

calculate the RGB histogram to describe the general environment.

After that we draw the correlation index of two histogram so as

to confirm the fact of background complexity. Package Basketball

field and package Classroom are selected as representatives.

Fig. 3 shows the color histogram of an indoor scene package

and an outdoor scene package to visually reveal the distinction of

background environment. Furthermore, the correlation indexes

of each channel are -0.0711, 0.239939 and 0.218826 in order

blue, green and red. The result proves the background complexity
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(a) Raw image sample (b) Hand location distribution (c) Total hand location distribution

Figure 2. Hand position frequency calculation and result.

claimed in previous sections.

Figure 3. Color distribution of package Basketball field and pack-

age Classroom

To evaluate the location frequency of hand, we calculate a 2D

distribution matrix of hand position by the following algorithm

shown in 2. Loop over a sample package and find out hand lo-

cation in each frame. Each pixel of distribution matrix add one

in the area corresponding to hand location district. After looping,

a normalization to 0-255 is taken to the distribution matrix as for

visualization.

Fig 2(b) and Fig 2(c) shows the result of location frequency.

It fits the Gaussian distribution. The discovered distribution re-

veals that the hand locates in the vision center more often, which

is essentially consistent with human eye visual mechanism. Ac-

Outdoor Frame Indoor Frame

Scene No. Scene No.

Avenue 4058 Chinese Book 3001

BasketballField 2894 N. Canteen 4314

Tennis Field 5124 W. Canteen 4185

Football Field 4145 RW Building 3611

N. Lake 3419 N. Library 2495

Yifu Building F1 3806 Yifu Building F2 2870

E. Canteen 3738 Lcy Lab 4084

E. Lake 4151 Classroom 4868

Fountain 4158 Wyx Lab 3222

No. 31 Building 4368 Computer Screen 5088

Liwu Building 5488 Supermarket 1682

No.1 N. Dorm 4281 No.3 North Dorm 4679

Table 2. Detail information of scenes and frame numbers

(a) (b)

Figure 4. (a) Hand scale distribution (mean: 82.42607841,

var: 30.06176942); (b) Pointing direction distribution (mean:

15.22603769, var: 60.13557164).

cording to human vision research, people unconsciously focuses

on the central part of vision, which academically named “center

bias” [24, 5] or “center prior” [7, 6]. While gazing at the target ob-

ject, human eyes will relocate target by transferring it to the vision

center.

Due to difference of hand appearance, hand-camera distance

and pointing direction of each individual at each moment, hands

are deformable in even a short period of time. So as to reveal

the distribution of hand scale and pointing direction, we draw his-

tograms as in Fig 4.

By applying normality test, we found that both distributions are

subjected to Gaussian distribution, which confirms that the dataset

is distributed in balance covering numerous different hand instance

and is fitted with human daily using behavior.

(a) Visualization of multiple label-

ing

(b) Average error of one frame on

each point

Figure 5. Error analysis

Errors are inevitable while manual labeling. In the case of the

dataset, manual labeling error mainly because of individual differ-

ence of understanding on points. Experimenters considered differ-

ently on how is the bounding box like or on where fingertip is. In

19



order to evaluate the manual labeling error, experimenters are re-

quired to label the same video of about 1000 frames. Visualization

of multiple experimenter labeling and the histogram of average er-

ror of one frame on points are shown in Fig 5.

The result shows that experimenters are more divergent in

bounding box top-left and bottom-right points and are relatively

coincident while labeling fingertip. Therefore, while evaluating

hand detection accuracy or fingertip detection preciseness on the

dataset, the manual error should be brought into consideration.

4. Hand and Fingertip Detection

Although recent CNN-based approaches can generate good re-

sults on the object detection, directly locating the tiny fingertip in

RGB videos is still very challenge. Following the two-stage CNN-

based pipeline in [9, 15], we first detect the hand by extracting it

in the bounding box. In this work, we employ the faster R-CNN

framework for hand detection based on EgoFinger dataset. Sec-

ondly, we find the fingertip position within the hand region.

4.1. Faster R­CNN based hand detection

As discussed before, the Faster R-CNN (FRCNN) [19] has

good performance on the object detection. In this paper, we mod-

ify faster R-CNN method for hand detection for RGB egocentric

vision by using EgoFinger dataset. The region proposal network

takes an image as input and outputs a set of proposals with their

scores of objectiveness with the novel strategy of sliding anchors.

According to the proposals, features in corresponding locations of

the feature maps are extracted by spatial pooling on the last con-

stitutional layer. Taken these features as input, the following fully

convolution layer output the final scores for all categories and the

corresponding parameters of the object bounding box. After non-

maximum suppression, the final detection result can be obtained.

The detected hand region will be the input of following fingertip

detection.

4.2. CNN­based fingertip detector

Given the extracted hand region, the complex background dis-

turbance is reduced. We propose a dual-target CNN-based finger-

tip detection framework. We believe the physical constraint be-

tween the index fingertip and index finger joint can facilitate the

fingertip detection. Consider this prior, we label the data accord-

ingly and train a CNN-based network with two key points location.

The framework is shown in the following Fig. 6.

Figure 6. The CNN-based network for the fingertip detection (N

is the number of target points, i.e., fingertip and joint).

5. Experimental Results and Discussions

5.1. Data preparation and augmentation

Given totally 24 videos in the EgoFinger, we randomly select

21 as training set, which contains 80,755 frames, and the rest as

testing set containing 12,974 frames. Data augmentation tech-

niques are applied in our experiment to reduce the risk of overfit-

ting. For the training data set, we firstly flip the image horizontally

to generate left-hand samples. Secondly, we randomly enlarge or

shrink the size of image scale. Moreover, we randomly rotate the

image with certain angle.

5.2. Hand tracking and detection

Since the hand detection and tracking is the first stage of our

proposed algorithm, we evaluate its performance here. We com-

pare four algorithms, i.e., KCF [8], HOG+LR [25], CNN-based

hand detection (BHD) [15], CNN-based attention hand detection

(AHD) [15] and FRCNN, and their performance is shown in Fig.

7. It is worth to mention that KCF and HOG+LR are tracking

methods and fail on long videos. To have a fair comparison, we

picked three short video clips (less 1000 frames) from our testing

set. Generally speaking, short video clips are less challenge due to

smaller environment variation and less object deformation. Also,

following the tracking framework, we manually initialize the first

frame hand position. Among all three videos, CNN-based detec-

tion methods are better than tracking methods because they can

avoid the drifting problem. In the whole testing data set, FRCNN-

based hand detection reaches the best performance and we will use

its result for the fingertip detection.

5.3. Fingertip detection

We have implemented the related tracking algorithms for fin-

gertip problem, like KCF [8], mean-shift [11] and template match-

ing [17]. These methods all failed and loosed track in less than

hundred frames and cannot generate quantitative comparison. In

the proposed CNN framework, based the hand detection result, we

can find the position of fingertip. Fingertip detection comparison

results are showed in Fig 5.3. We compare the fingertip detection

error using three different hand detection results, i.e., manually

labeled ground truth (GT), AHD and FRCNN. The GT-F detects

fingertip with 9.37 pixels error in average, FRCNN-F is 12.22 pix-

els and AHD-F is 15.72 pixels. The hand detection accuracy has

direct and important impact on the fingertip detection.

6. Interaction application: Ego-Air-Writing

system

We design an input system for the egocentric equipment by

considering the fingertip as a pen and allowing it write in the air.

Hence, the fingertip trajectory is recognized as the input character

for the system. We called the system Ego-Air-Writing. The input

system is constructed by three main modules, which are the ges-

ture recognition, fingertip localization and character recognition.

The following Fig. 9 shows the whole process of writing in the air

for the egocentric vision equipment.

The Ego-Air-Writing system has three states: preparation,

writing and selection. The writing state is mainly based on the
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(a) Video Clip 1(well) (b) Video Clip 2(normal)

(c) Video Clip 3(bad) (d) Hand Detection

Figure 7. Performance comparison of hand detection/tracking performance on three short egocentric videos (a-c) and whole testing set

(d). (OPE represents one pass evaluation.)

Figure 8. Finger detection error comparison on the whole testing

data set.

frame-wise detected fingertip location to construct a character tra-

jectory. As for the preparation and selection state, we define two

simple hand posture as the controlling signals, as shown in Fig. 9.

When the preparation posture is detected, the system clears previ-

ous writing record, then emits start signal to get fingertip detection

algorithm ready. During air writing, the system locates the finger-

tip position in real-time and shows it on the writing area. When

the fingertip stops moving for a few frames, the system considers

the writing finished. Then the smoothen writing trajectory is used

for the character recognition using [16]. The first five recognized

Figure 9. Illustration of gesture transition and flowchart of Ego-

Air-writing system.
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Figure 10. Character writing examples using Ego-Air-Writing system.

characters are returned and shown on the right side of the inter-

face. User can select one of them with designed hand posture. We

have collected a small data set and apply the CNN-extracted fea-

ture for these hand postures recognition. In the following Fig. 10

we present two character writing process in the Ego-Air-Writing

System.

7. Conclusion and Future Work

This paper discusses the pointing gesture based interaction so-

lution for the smart wearable glasses application. We have pro-

posed the two-stage CNN-based method to detect the fingertip

from egocentric videos in all possible application scenarios. To

train such model, we have collected a large-scale pointing ges-

ture dataset of multiple subjects and various situations. We de-

signed the dataset acquisition process carefully to make it general,

complete and representative. By applying Faster R-CNN based

hand detection and multi-point fingertip method, the overlap rate

of hand detection is 80% and fingertip detection error is 12.22 pix-

els in the 640*480 image. Last but not the least, we implement

and demonstrate the input system for the egocentric vision using

the pointing and other few simple gestures. By considering the

fingertip as a pen, it is effective and efficient to input and inter-

act with the wearable glasses. In future work, we plan to further

improve the fingertip detection accuracy, enlarge the dataset with

multiple gestures and develop corresponding gesture recognition

algorithms. With accurate gesture recognition, precise fingertip

detection and some other relevant techniques, people could design

and build more interesting interaction applications and systems for

the egocentric vision based equipment.
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