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Abstract

Recent studies have shown that deep neural networks

(DNNs) can outperform state-of-the-art algorithms for a

multitude of computer vision tasks. However, the ability

to leverage DNNs for near real-time performance on em-

bedded systems have been all but impossible so far without

requiring specialized processors or GPUs. In this paper,

we present a new motion detection algorithm that lever-

ages the power of DNNs while maintaining low compu-

tational complexity needed for near real-time embedded

performance without specialized hardware. The proposed

Neural Response Mixture (NeRM) model leverages rich

deep features extracted from the neural responses of an effi-

cient, stochastically-formed deep neural network (Stochas-

ticNet) for constructing Gaussian mixture models to detect

motion in a scene. NeRM was implemented embedded on

an Axis surveillance camera, and results demonstrated that

the proposed NeRM approach can achieve strong motion

detection accuracy while operating at near real-time per-

formance.

1. Introduction

One of the most basic functionalities required of modern

surveillance cameras is the ability to record video when mo-

tion is detected within the field of view of the camera. This

allows for reduced storage requirements for the videos, as

well as the ability to quickly review historical videos focus-

ing only on the times when there is something happening in

the scene. This requirement has driven surveillance camera

manufacturers (e.g., Axis, Samsung, etc.) to build motion

detection algorithms right on the camera. Due to the re-

duced computational capabilities of these cameras, the em-

bedded motion detection algorithms used tend to be very

simple pixel change detection algorithms. For example, the

pixel colour can be modelled as a Gaussian mixture model

using an on-line approximation [19] and when a pixel value

does not conform to the modelled Gaussian it is considered

to be “in-motion” (i.e., the pixel has changed value due to a

moving object in the scene).

Gaussian mixture models (GMM) are a simple and fast

algorithm that can perform motion detection in real-time,

right on the camera. However, using colour as the feature

to represent each pixel has several drawbacks. Most no-

tably, false motion detection can occur as a result of factors

such as: I) illumination changes in the scene (e.g., indoor

light flickering, shadows, overhanging clouds passing by,

and strong sunlight), and II) subtle motions from waving

background objects (e.g., branches and leaves of trees mov-

ing because of wind). Both illumination changes and subtle

motions from waving background objects will change pixel

colour, but should not be considered as true motion in the

scene.

A number of strategies have been proposed to reduce the

false motion detection [1, 9, 18]; however, such methods re-

main limited in dealing with subtle motions. Although sta-

tistical background subtraction methods [5, 15, 19, 21] have

addressed noise and dynamic backgrounds, they are highly

depended on a learning rate to update the background model

to account for gradual illumination changes, which makes

them prone to large errors (false alarms) when subject to

sudden illumination and motion changes in the background.

Furthermore, the computational complexity of such meth-

ods restrict their use on embedded devices.

An alternative strategy for robust motion detection while

maintaining the computation efficiency of the GMM is to

use GMM with different features such as different colour

spaces or texture features [2]. Several texture features have

been utilized to model the image. Matsuyama et al. [13]

obtained the correlation between two blocks in the image

based on a normalized vector distance function. Edge and

color histograms in a block have been utilized as set of tex-

ture features by Mason [12] to model the background. Lo-
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cal binary pattern (LBP) [14] is another well-known texture

feature to capture the background statistics.

Although the use of different colour spaces or texture

features have shown some robustness to noise, the choice

of colour space or texture feature is still hand-crafted based

on our understanding of the human visual system and statis-

tics which we believe to be illumination invariant, and thus

their generic nature limits their ability to comprehensively

capture the unique traits of objects (e.g., people, vehicles,

animals, etc.) in real-world surveillance environments. In-

terestingly, recent work in deep neural networks (DNNs)

have shown that deep features obtained from convolutional

neural networks (CNNs) [10] learned from large natural

image datasets can be used to obtain significant improve-

ments over hand-crafted texture features such as histogram

of gradients [6]. Girshick et al. [6] applied pre-trained

CNNs in a hierarchical framework to compute region pro-

posals based on deep features. They reported a 30% im-

provement on the PASCAL VOC object detection problem.

Gupta et al. [8] extracted deep features from a CNN learned

from RGB-D images for object detection and image seg-

mentation. Razavian et al. [16] examined deep features

from CNNs as generic descriptors for different recognition

tasks and reported consistent superior results compared to

the highly-tuned, state-of-the-art systems in all visual clas-

sification tasks over various datasets.

Although deep features have demonstrated great applica-

bility and achieved significant performance improvements

over state-of-the-art in several computer vision tasks, and

hold great potential for achieving improved motion detec-

tion performance, the ability to leverage them for near real-

time performance on embedded systems have been all but

impossible so far without requiring the integration of cus-

tom GPUs or specialized processors designed for accelerat-

ing DNNs. Not only are the vast majority of surveillance

cameras not equipped with GPUs or specialized deep pro-

cessors, their embedded CPU capabilities are also far infe-

rior to most modern computers and thus further prohibiting

the use of existing DNN architectures for real-time embed-

ded motion detection. As such, alternative approaches to

leveraging DNNs for improved near real-time, embedded

motion detection is highly desired.

The main contribution of this paper is a novel approach

to motion detection that leverages the power of DNNs while

maintaining low computational complexity necessary for

near real-time embedded performance without the need for

specialized hardware. In the proposed Neural Response

Mixture (NeRM) model, rich deep features are extracted

from the neural responses of a highly efficient deep neu-

ral network called a StochasticNet [17], where the synap-

tic connectivity of such networks is sparsely formed in a

stochastic manner. Such StochasticNets have been shown

to achieve the same level of modelling accuracy as general

DNNs while containing only a small fraction of the synap-

tic connectivities, thus greatly reducing computational com-

plexity. These deep features, which are obtained from

StochasticNets pre-trained on large natural image datasets,

are then used to construct Gaussian mixture models in an

unsupervised manner to model the background based on

past frames in the sequence which is being updated on-line.

Given its low computational complexity compared to exist-

ing DNN approaches, NeRM was implemented on an em-

bedded system on an Axis surveillance camera to demon-

strate that strong motion detection accuracy can be achieved

while operating at near real-time performance.

The paper is organized as follows. The theory and de-

sign considerations behind NeRM, along with implementa-

tion details on the embedded system are discussed in Sec-

tion 2. Experimental results where we examine the pro-

posed NeRM framework on very difficult video datasets for

motion detection are reported and discussed in Section 3.

Finally, conclusions are drawn in Section 4

2. Methodology

The methodology of the proposed NeRM framework for

motion detection is described in detail as follows. First,

the problem of motion detection via background modelling

is described. Second, the motivation behind the proposed

Neural Response Mixture (NeRM) model is presented.

Third, the probabilistic framework for forming the Stochas-

ticNets used in NeRM is explained. Fourth, the implemen-

tation details of NeRM on an embedded system of an Axis

camera is discussed in detail.

2.1. Motion Detection via Background Modelling

A feasible approach for motion detection on an embed-

ded system is to evaluate each pixel or region by the back-

ground model and assigning ones that do not conform with

the model as pixels under motion. In other words, motion

is detected in the scene by evaluating their likelihood of be-

longing to the background based on the background model.

A common approach to this background modelling for mo-

tion detection on an embedded system is the use of a Gaus-

sian mixture model (GMM), which can be described as fol-

lows. At time t, pixel x̄t
i ∈ Xt (where Xt = {x̄t

1, · · · , x̄
t
n})

of frame t, is classified as background if the probability of

being background is larger than 0.5. The Gaussian mixture

model is formulated as

P (x̄t
i = bg) =

M∏

m=1

ωt
i,m · Nm(x̄t

i; µ̄
t
i,m, σ̄t2

i,m) (1)

where the GMM model contains M normal distributions

with mean µ̄t
m and standard deviation σ̄t

m at time t, and

ωt
i,m encodes the weight of the normal distribution m in

GMM model at time t of pixel i. The probability of being
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background (“bg”) is evaluated via (1). At each frame, the

normal distributions Nm(x̄t
i; µ̄

t
m, σ̄t2

m) are updated based on

which mixture the pixels was assigned to:

ωt+1
i,m = ωt

i,m + α · (1− ωt
i,m) (2)

µ̄t+1
i,m = µ̄t

i,m + (
α

ωt
i,m

) · dti (3)

σ̄t+1
2

i,m = σ̄t2

i,m + (
α

ωt
i,m

) · (dti,m − σ̄t2

i,m) (4)

dti,m =
(x̄t

i − µ̄t
i,m)2

σ̄t2

i,m

(5)

where dti,m represents the distance between the new sample

(pixel) x̄t
i and the mthnormal distribution and α encodes the

learning rate. It is worth noting that x̄t
i can be pixel intensity

or a set of features extracted from pixel i at frame t. x̄t
i is

commonly modelled with the RGB (Red, Green and Blue)

pixel intensities in embedded systems because there are no

additional feature computation costs. However, while com-

putationally efficient, pixel intensity is highly sensitive to

illumination changes, subtle motion in the background, and

camera sensor noises. Texture features have been explored

to mitigate some of the issues when dealing with the afore-

mentioned factors, but their generic, hand-crafted nature

limits their ability to comprehensively capture the unique

traits of objects (e.g., people, vehicles, animals, etc.) in

real-world surveillance environments, thus limiting their ro-

bustness.

Motivated to leverage the recent advances in DNNs

while maintaining low computational complexity needed

for near real-time embedded performance without special-

ized hardware, we propose a novel method for motion de-

tection via background modelling based on rich deep fea-

tures obtained from the neural responses of a highly effi-

cient, stochastically-formed deep neural network known as

StochasticNets [17]. Such deep features are highly discrim-

inative and facilitate for a powerful mechanism to model the

background while facilitating for low computational com-

plexity, which is the key for near real-time embedded per-

formance. An overview of the proposed Neural Response

Mixture (NeRM) framework for motion detection is shown

in Figure 1. First, the neural responses of a Stochastic-

Net pre-trained on a large natural image dataset (e.g., Im-

ageNet [4]) are extracted from the input video frame. A

Gaussian mixture model (GMM) is then constructed based

on the extracted neural responses to act as the background

model of the scene. Finally, motion is detected in the scene

by evaluating their likelihood of belonging to the back-

ground based on this constructed neural response GMM

model.

2.2. Neural Response Mixture Model

The first step to the NeRM framework is to extract rich

deep features with which to build a reliable GMM model

of the background that can capture the unique traits of ob-

jects (e.g., people, vehicles, animals, trees, etc.) in real-

world surveillance environments. To train a DNN for the

task of video motion detection requires a large training set

under different scenarios such as lighting changes, weather

conditions, camera jitter, etc. with full manual annotation

indicating the pixels in motion (corresponding to objects

like people, vehicles, etc.). Obtaining such a large manu-

ally annotated dataset is highly difficult. However, DNNs

can be trained on an extensive image dataset, such as Im-

ageNet, with millions of images for object classification,

with hundreds of object categories. It is worth noting that

this dataset (i.e., ImageNet) is not related to motion detec-

tion problem. ImageNet [4] is a large scale ontology of

images built upon the backbone of the WordNet structure

which is mostly utilized for image classification tasks. This

can allow the neural responses of the DNN to provide pow-

erful deep features that can better characterize the unique

traits of objects, many of which are present in real-world

surveillance environments. Considering that true motion in

videos is caused by moving objects of interest such as those

found in the aforementioned image datasets, we are moti-

vated to leverage the neural responses of DNNs trained in

this manner to provide rich features for GMM modelling of

the background.

Specifically, we take the first synaptic layer of a highly

efficient StochasticNet trained on the ImageNet dataset as

a primitive, low-level, feature representation that can iso-

late important features required for object classification.

Therefore, the neural responses of the first synaptic layer

at all pixels in the frame can be used as a feature to distin-

guish motion caused by objects moving in the scene. It is

worth noting that the formation of StochasticNets used in

the NeRM framework is a one-time and off-line procedure

which is not implemented on an embedded system. The

final formed StochasticNet is transferred to the embedded

system after as described in Section 2.2.2.

2.2.1 StochasticNet Formation

In order for rich deep features to be obtained for GMM

modeling of the background, one must first form a Stochas-

ticNet pre-trained on ImageNet. In this work, we lever-

age knowledge gained from traditional deep convolutional

neural networks designed for image classification to form

highly-efficient StochasticNets that are adapted for back-

ground modelling and optimized for minimal synaptic con-

nectivity for near real-time embedded performance.

The proposed StochasticNet formation process can be

described as follows. First, we pre-trained a deep convo-
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Figure 1. Motion detection based on the NeRM framework. The neural responses from a highly efficient StochasticNet are used as rich

deep features. These deep features are then used to construct the Gaussian mixture model to model the background. Finally, motion is

detected in the scene by evaluating their likelihood of belonging to the background based on this constructed neural response GMM model.

lutional neural network on the Imagenet dataset for the task

of image classification. A StochasticNet is then formed by

stochastically selecting a very small set of synaptic connec-

tions from this pre-trained deep convolutional neural net-

work. Selection is based on an energy function guided by

a smaller annotated dataset with ground truth motion detec-

tion labels, and adapting them as synaptic connections in the

StochasticNet geared for the task of background modelling.

The goal here is to have the best representative deep fea-

tures to model the background in a video scene based on

a Gaussian mixture model, while limiting the number of

synaptic connections in the formed StochasticNet to enable

near real-time embedded performance. Here, we define an

energy function to minimize false detections while mini-

mizing the number of synaptic connections in the formed

StochasticNet:

El =
1

S

T∑

i=1

N∑

j=1

δ(b̂lij 6= bij) (6)

where S encodes the number of synaptic connections in the

StochasticNet, bij is the ground truth label for pixel j at

frame i and b̂lij encodes the estimated label (i.e., in motion

or not in motion classification from the GMM) for pixel j

at frame i via the extracted neural response features at it-

eration l. T represents the total number of frames in the

training video which the number of pixels in each frame is

represented by N and δ(·) is Dirac function.

The off-line, stochastic formation of the StochasticNet

used for deep features is an iterative procedure such that

in each iteration new synaptic connectivities, stochasti-

cally selected from the deep convolutional neural network,

are included to the network using a stochastic acceptance-

rejection criteria based on the energy function gradient

(∆E) between consecutive iterations (see Algorithm 1).

Line 9 in Algorithm 1 (exp(−∆E
T

) ≥ U(0, 1)) provides

more chance to form a synaptic connection if the connection

does not decrease the energy function E(·), where T is the

controlling parameter to adjust the acceptance probability.

Experimental results showed that we can create Stochastic-

Nets with up to 95% fewer synaptic connections than a con-

ventional deep convolutional neural network while main-

taining good modelling performance. Algorithm 1 demon-

strates the stochastic formation procedure to form Stochas-

ticNets for NeRM.

For the implementation of NeRM used in experi-

ments, a deep convolutional neural network based on the

AlexNet [11] network architecture, trained on ImageNet, is

utilized to form a StochasticNet with just 5% of synaptic

connectivities compared to the AlexNet network architec-

ture. A set of 200 frames of highway video dataset [7] is

used as the small annotated dataset for the formation pro-

cedure. A small dataset is selected to make the formation

process fast; however, utilizing more datasets with varying

conditions can lead to a more efficient and effective network

architecture. The StochasticNet formation in this study is

implemented via MatConvNet framework [20].

2.2.2 Embedded System Implementation Details

There are many camera manufacturers with open platforms

for developing embedded applications; however, Axis cam-

eras and their 3rd party development platform is among the

most popular and mature platforms currently available in

the surveillance industry. Their latest cameras are available

with Axis ARTPEC-5 chip-set (MIPS 1004Kc V2.12 CPU

model) running a striped down version of Linux. While our

implementation will work on any Axis camera that supports

embedded development and has the ARTPEC-5 chip-set,
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Algorithm 1 Stochastic Formation

1: procedure SF

2: X := Video Stream; B := Ground truth;

3: RNeRM := Sparse Set of Synaptic Connections ;

4: RNeRM = Null

5: while is-not-equal(El,El+1) do

6: El = ComputeEnergy (Rl
NeRM ,X ,B)

7: Rl+1
NeRD = add(Rl

NeRM , i) ⊲ add new synaptic connectivity i to the set of synaptic connections Rl

NeRM

8: El+1 = ComputeEnergy (Rl+1
NeRM ,X ,B ) ⊲ Compute the energy of R

l+1

NeRM

9: if exp(−∆E
T

) ≥ U(0, 1) then

10: keep new Rl+1
NeRM

11: else

12: Rl+1
NeRM = Rl

NeRM

we test our algorithms on the Axis Q7436 Encoder1.

Our approach is implemented using C++ and compiled

with the Axis development SDK. The algorithm has two

main parts: StochasticNet (3 layers: convolutional, ReLU)

and Gaussian mixture model (GMM) modelling using the

deep features. Most deep neural networks employ float-

ing point computations for the convolutional layer. While

most desktop computers have a floating point unit (FPU) to

handle floating point operations, a majority of surveillance

cameras do not have a dedicated FPU. As a result, floating

point computations are significantly slower. To overcome

this issue, we form StochasticNets on servers using floating

points computations and port the networks to the camera us-

ing a 32 bit fixed point representation with a dedicated 16

bits for the decimal components. To reduce the computa-

tional complexity of the GMM modelling we employ only

two modes and the same fixed point representation as for

the convolutional layer.

3. Result & Discussion

The proposed NeRM framework is evaluated with the

CD.Net datasets [7] and compared with two other methods:

I) Gaussian mixture model based on RGB pixel intensity

(RGB), and II) Gaussian mixture model based on contrast

histograms (CHist) [3]. CHist extracts contrast histogram

texture features from the image based on blocks of 8 × 8.

For a fair comparison, all methods uses the same two-mode

GMM.

3.1. Dataset

The methods are evaluated comprehensively via CD.Net

dataset [7]. CD.Net is one of the largest datasets with a

variety of challenging scenarios such as bad weather con-

ditions, night vision, dynamic backgrounds, shadows and

thermal cameras. The dataset contains more than 90,000

manually labelled ground truth frames. The performance

1 http://www.axis.com/ca/en/products/axis-q7436

of the methods are compared with several quantitative mea-

sures including recall (Re), specificity (Sp), false positive

rate (FPR), false negative rate (FNR), percentage of wrong

classifications (PWC), precision (Pr) and F-Measure (FM)

as defined in [7].

3.2. Results

Tables 1 and 2 show the quantitative results of the com-

pared methods based on all evaluated measures. As seen

the proposed method outperforms other approaches in al-

most all quantitative measures. The F-Measure (FM) is a

balance between recall and precision and is used as a sum-

mary metric in other works [22]. Based on the overall FM,

NeRM has a 5% boost over RGB and CHist features.

Figure 2 and 3 demonstrates the qualitative results of

competing algorithms. It must be noted that the background

modeling for RGB framework has been done in 352 × 240
image resolution while the resolution of the frame is re-

duced since 8×8 non-overlapping texture extraction blocks

are used when extracting features in CHist (i.e., due to the

high computational complexity of overlapping approach),

and NeRM framework convolves the receptive fields with

stride 4 which resulted in a blockiness effect in the esti-

mated motion areas for CHist and NeRM methods. As seen,

the proposed NeRM framework can handle different condi-

tions and situations to detect motion in videos. Figure 2

shows the comparison of methods in three situations: I) bad

weather condition: snow is one of the main issue in the bad

weather conditions, first row and last rows demonstrate the

snow condition (moving cars or skating persons), II) Ther-

mal: videos are captured with thermal camera and the pixel

intensities are different compared to RGB domain in mod-

elling the background (i.e, rows 2), and III) Camera jitter:

in this situation camera have slight motion with high fre-

quency while capturing the scene. Results in Figure 2 show

that the proposed NeRM framework can detect all motion

while producing much less false alarms compared to RGB

or CHist approaches.
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Figure 2. The competing methods are compared with videos captured in bad weather conditions, when the camera has some slight motion

and with thermal cameras. Results show that the proposed method outperforms other approaches in these conditions. The blockiness

artifact in CHist and NeRM results is due to the shrinking procedure in feature extraction step.

Figure 3 demonstrates the results of competing meth-

ods in more complex situations: I) Shadow: in this situa-

tion, several regions in the scene are distorted by shadow

of other objects, II) Dynamic background: this category

examines the method when there are some objects in the

background which have motion; III) Low Frame Rate: sev-

eral surveillance cameras capture the scene with small num-

ber of frame per second due to the storage and computa-

tion, this category tests performance of competing meth-

ods for these situations; IV) Night Videos: detection of mo-

tion in both daytimes and low light nighttimes is important.

The reported results in Figure 3 support the effectiveness

of the proposed NeRM framework compared to the RGB

and CHist approaches. Overall results show that NeRM al-

gorithm detects motion with less noise while producing less

false alarms. It also demonstrates that the number of missed

motion areas by the proposed method is fewer than compet-

ing algorithm.

3.3. Running­Time

To validate the efficiency of the proposed frame-

work, NeRM approach was implemented on Axis Q7436

(ARTPEC-5 chip-set) Encoder. The experimental results

showed that it took about 470 ms to process a 352 × 240

video frames. This results in processing speed of about 2

FPS, which is still sufficient frame rate to detect motion in

order to determine when to record video. The performance

of the proposed approach is compared with the second best

method, GMM based on RGB features. RGB GMM takes

about 150 ms on the same video frame size. However, the

overall Fmeasure result of NeRM is 5% higher than RGB

implementation.

4. Conclusion

A new approach was proposed to address the computa-
tional complexity of deep convolutional networks to make
the use of rich deep features feasible on embedded sys-
tems. Here we addressed the motion detection problem
on embedded systems based on a neural response mixture
(NeRM) model. The proposed NeRM method takes advan-
tage of sparse synaptic connectivities and resolves the com-
putational complexity of running a deep neural network on
embedded systems while maintaining its performance and
accuracy. Experimental results showed that the extracted
neural response features in a Gaussian mixture model can
perform better than just using RGB pixel intensity or even
hand-crafted texture features. This new approach can open
a new avenue to facilitate the use of deep neural networks
on embedded systems which has huge applicability in dif-
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Figure 3. Qualitative results for complex situations. In this Figure, the competing methods are compared with video categories which are

considered as difficult conditions to motion detection. The comparison demonstrates that the proposed NeRM approach performs better

than other algorithms.

Table 1. Quantitative comparison via several performance measures; results shows that the proposed method outperforms other methods

overall in detecting movement. The results are reported based on the best threshold which maximizes the FMeasure per category.

Specificity (Sp) Recall (Re) Precision (Pr) FMeasure (FM)

RGB CHist NeRM RGB CHist NeRM RGB CHist NeRM RGB CHist NeRM

badWeathert 0.99 0.98 0.99 0.59 0.70 0.72 0.68 0.54 0.82 0.60 0.59 0.77

cameraJitter 0.96 0.89 0.97 0.40 0.54 0.46 0.40 0.21 0.54 0.39 0.29 0.48

dynamicBackground 0.98 0.97 0.98 0.40 0.37 0.60 0.37 0.20 0.49 0.35 0.21 0.49

intermittentObjectMotion 0.97 0.95 0.98 0.59 0.52 0.43 0.58 0.42 0.55 0.53 0.42 0.44

lowFramerate 0.92 0.94 0.97 0.53 0.66 0.54 0.26 0.44 0.50 0.30 0.40 0.39

nightVideos 0.95 0.97 0.95 0.51 0.60 0.61 0.31 0.39 0.29 0.34 0.45 0.35

shadow 0.97 0.96 0.98 0.70 0.81 0.75 0.56 0.55 0.68 0.60 0.64 0.70

thermal 0.99 0.89 0.97 0.67 0.87 0.77 0.81 0.45 0.60 0.71 0.57 0.65

turbulence 0.98 0.98 0.99 0.63 0.58 0.71 0.57 0.36 0.63 0.50 0.37 0.58

Overall: 0.96 0.94 0.97 0.55 0.62 0.62 0.50 0.39 0.56 0.48 0.43 0.53

ferent industrial problems.
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