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Abstract

We present a new top-down and bottom-up saliency algo-

rithm designed to exploit the capabilities of coupled oscil-

lators: an ultra-low-power, high performance, non-boolean

computer architecture designed to serve as a special pur-

pose embedded accelerator for vision applications. To

do this, we extend a widely used neuromorphic bottom-up

saliency pipeline by introducing a top-down channel which

looks for objects of a particular type. The proposed channel

relies on a segmentation of the input image to identify exem-

plar object segments resembling those encountered in train-

ing. The channel leverages pre-computed bottom-up feature

maps to produce a novel scale-invariant descriptor for each

segment with little computational overhead. We also intro-

duce a new technique to automatically determine exemplar

segments during training, without the need for annotations

per segment. We evaluate our method on both NeoVision2

DARPA challenge datasets, illustrating significant gains in

performance compared to all baseline approaches.

1. Introduction

Advances in computer vision have led to a proliferation

of vision applications increasingly used by the general pub-

lic. These advances have coincided with a changing com-

putational landscape, with the majority of the public’s com-

puter usage taking place on mobile devices such as smart-

phones or tablets rather than personal computers [27]. Cam-

eras usually come standard on these platforms, resulting

in a greater than ever demand for real-time vision applica-

tions. However, the mobile platform poses its own unique

challenges for vision developers: significantly less mem-

ory is available, central processing units (CPUs) are slower,

network activity may be costly and slower, and power is

limited. Furthermore, because increases in CPU process-

ing speed require increased power usage, researchers have

noted that processing speed is unlikely to significantly in-

crease in mobile devices (due to battery life) and that cus-

tom special-purpose units will likely be devised for certain

tasks such as vision [40]. A recent example of this phe-

nomenon are the “Myriad” mobile computer vision proces-

sors which use architectural design features such as VLIW

(very-long instruction word) and numerous cores operating

at low frequencies to perform certain vector computations

with very low power consumption [3]. Specialized chips

may very well be the future of computer vision on mobile

devices.

Other researchers pursuing faster and more energy ef-

ficient computational mediums turn to the brain for inspi-

ration. The human brain performs the equivalent of 20

petaFLOPS while consuming 20 watts of power. In con-

trast, the IBM Sequoia supercomputer is capable of com-

puting at 16.3 petaFLOPS but consumes 8 megawatts [34].

Just as simulating the brain’s computational processes has

brought about performance improvements in a number of

machine learning tasks through artificial neural networks

[22, 38, 25, 37], researchers are attempting to replicate the

physical computational structure of the brain (rather than

merely simulating it) in the hopes of achieving both energy

efficiency and high performance [23, 43]. These neuromor-

phic or bio-mimetic computer architectures attempt to repli-

cate how the brain computes, relying on non-boolean, ultra-

low-power, massively distributed devices.

One such architecture that can accelerate computer vi-

sion tasks involves coupled arrays of nano-oscillators which

oscillate at certain frequencies dependent on the supplied

voltage [32]. Though a detailed discussion of their function

is beyond the scope of this paper, the basic idea is that inten-

sity values of an image can be translated to voltages, each

of which is input to an oscillator in a 2D array whose out-

puts are connected to other nearby oscillators. These con-

nections create a feedback loop which causes neighboring

oscillators to synchronize. This process is analogous to pat-

terns of neural firings in the brain and visual cortex [36].

This notion can be extended to arbitrary input vectors (not

just images) and the amount of convergence in the oscilla-

tions can function as a Degree-of-Match function between

the vectors or as a simple classifier [19]. In other words,

this means that we can use the coupling behavior of oscilla-
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tor networks to compute vector distances, segment images,

and perform convolutions faster and with much less power

than traditional computer hardware. However, new com-

puter vision methods need to be developed that can exploit

these advantageous hardware features.

One fundamental computer vision task is saliency pre-

diction. Saliency prediction algorithms attempt to predict

where in an image a person might look based on what

“stands out” (bottom-up influences) and on prior beliefs,

knowledge, and goals (top-down effects). Recently, object

recognition algorithms have been modified for acceleration

on coupled oscillators [10, 19], but these require the iden-

tification of regions of the visual field by a saliency algo-

rithm. However, no saliency algorithm designed for oscilla-

tory acceleration currently exists which takes into account

top-down information, which has been shown to dominate

real-world visual search [11]. We are the first to propose a

visual attention algorithm designed for acceleration on cou-

pled oscillators which considers both bottom-up and top-

down effects.

We make several novel contributions: I.) we address the

lack of an oscillatory acceleratable top-down saliency algo-

rithm by developing the first such algorithm which can be

entirely accelerated by oscillators; II.) we leverage the in-

formation in the bottom-up saliency maps to create a novel,

scale-invariant segment descriptor with minimal computa-

tional overhead; III.) we are the first to use acceleratable

one-class support-vector machines (SVMs) for saliency es-

timation; and IV.) we develop a new technique for deter-

mining representative (exemplar) segments of objects dur-

ing training using cosegmentation. The novelty of our algo-

rithm is directly related to its target domain as currently no

top-down method can be hardware-accelerated, yet research

[11] says object search is driven by top-down effects. Our

paper fills that need.

If an oscillatory accelerator is available on a mobile

phone, algorithms capable of utilizing oscillatory opera-

tions as opposed to CPU operations will use less power,

run faster, and be able to do more computations with less

overhead. Because even CMOS-based accelerators can only

accelerate a subset of all CPU operations, specialized algo-

rithms are necessary for maximum performance gain.

The remainder of this paper is structured as follows. In

Sec. 2, we survey relevant research. In Sec. 3, we present

our proposed oscillatory-correlation-based visual attention

system and describe how it is trained. Sec. 4 illustrates how

our algorithm, SegSaliency, improves the performance of

other commonly used models. Sec. 5 concludes the paper.

2. Related Work

Primates’ innate ability to discard uninteresting parts of

an image and focus on those of importance is of great in-

terest to the computer vision community because of its

widespread applicability to a variety of tasks [6] includ-

ing object detection [5], tracking [7], recognition [41],

video compression [17], and many others. Visual atten-

tion research can be broadly categorized into 3 categories:

bottom-up algorithms, which find regions of the visual

field that “stand out” from the rest of the image; top-

down algorithms, which modulate the bottom-up effects

based on prior knowledge and current goals; and algorithms

which combine both top-down and bottom-up influences

[6]. Many neuromorphic models of bottom-up saliency

have been proposed, with perhaps the most well known be-

ing the Itti-Koch model [18]. This model has been shown

to correlate well with human eye-tracking data and has be-

come a standard baseline for evaluating saliency methods

[44]. The algorithm pools image intensity values and edge

and color detector responses to produce a “saliency map,”

where the intensity value of each pixel indicates its saliency.

Many bottom-up algorithms have extended [18], by pool-

ing additional channels, e.g. skin color, horizontal line, gist,

flicker, texture, and depth [6].

Top-down attention drives visual search in a goal-

oriented manner. While bottom-up saliency is a property

of the visual stimulus, top-down saliency depends on the

observer’s current goals, beliefs, and prior knowledge [6].

Many top-down attention algorithms have been proposed

which attempt to model a variety of phenomena (e.g., task

and context), but the closest to ours are those that focus on

object search (salient object detection) [14]. Various at-

tempts have been made to extend the Itti-Koch model in

[18] with top-down feedback by learning a channel weight-

ing scheme for each object class [29, 28, 30, 31]. For ex-

ample, if the system is searching for an apple, weights may

be increased on the red color channel causing red objects to

appear more salient.

A primary differentiator of our work from these is that

we do not represent top-down influences by weighting

bottom-up maps. Instead, we leverage the information com-

puted during the bottom-up saliency phase to produce seg-

ment descriptors used in classifiers trained to recognize ex-

emplar object segments. The top-down method described

in [20] also samples from bottom-up saliency maps (among

many other maps) to form a pixel-level descriptor. How-

ever, this descriptor also contains dimensions obtained from

multiple computationally expensive sliding window object

detectors, exactly what our work seeks to avoid. Further,

one descriptor is required for every pixel of the image,

whereas our system only produces one descriptor per seg-

ment, significantly reducing the number of classifications

and distance computations necessary. Additionally, the pur-

pose of [20] is to predict human eye saccades whereas we

perform coarse object search.

Recent work [10, 19] shows how the neuromorphic “Hi-

erarchical Model and X” (HMAX) object recognition al-
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Operation Supported By Oscillators

Low-Dimensional Convolutions Y [2]

High-Dimensional Convolutions N

Image Segmentation Y [42]

Nearest Neighbor Classifier Y [19]

SVMs N

Vector Degree of Match Y [10]

Table 1: Common computational operations in saliency al-

gorithms. Our algorithm uses the operations shown in bold.

gorithm can be modified for oscillatory acceleration by

using the previously discussed Degree-of-Match behavior

to calculate distance norms and function as a classifier.

Both studies note, however, that their algorithms comprise

the “back-end” of an image processing pipeline which re-

quires subregions of the image to be selected by an object

search saliency algorithm like SegSaliency. As our exper-

iments demonstrate, the inclusion of top-down information

substantially improves performance for object search over

purely bottom-up approaches.

Previous approaches have used oscillators to accelerate

object search [30, 33], but all of these works consider only

bottom-up saliency and ignore top-down effects. To the

best of our knowledge, our algorithm is the first that con-

siders top-down saliency designed for oscillatory acceler-

ation. The method presented in [33] is perhaps the clos-

est to ours. Their technique extends the standard Itti-Koch

pipeline by producing a segmentation of the input image

in order to reduce cases where the output bounding box

from the saliency map does not fully cover the salient ob-

ject, which could hamper an object recognizer. Unlike our

algorithm, this method provides no mechanism to tune the

visual search towards objects of interest and instead relies

solely on bottom-up saliency.

We provide a look at the computational capabilities of

coupled oscillators in the context of saliency algorithms in

Tab. 1. We show the operations used by our approach in

bold. Arrays of coupled oscillators can perform low dimen-

sional convolutions, such as the Gabor filters in the bottom-

up saliency phase of our algorithm, can perform image seg-

mentations, compute vector degrees of match, and serve as

nearest neighbor classifiers. These are the only computa-

tional operations which oscillator arrays have been shown

capable of.

Many top-performing algorithms on the MIT 300

saliency benchmark [8] are deep convolutional neural net-

works, but these models require high dimensional convo-

lutions and mathematical functions such as hyperbolic tan-

gent, sigmoid, and logit which are not acceleratable using

oscillators. Additionally, due to their high memory de-

mands, they are not good candidates for real-time accel-

eration on mobile platforms. [20], another top saliency

method, relies on SVMs, which cannot be accelerated by

oscillators. In contrast, our simple one-class SVM outputs

a degree of match between an input vector and a vector
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Figure 1: Itti-Koch saliency pipeline enhanced with an ad-

ditional top-down channel. Bottom-up saliency features are

reused to create descriptors for each segment to create top-

down object maps. The top-down and bottom-up maps are

combined to form an attention map.

learned to be a representative of the target class. The de-

gree of match calculation can be accelerated using oscilla-

tors [10].

3. Approach

The purpose of our algorithm is to serve as an object

detector, producing bounding boxes that likely contain

objects of interest for further processing by an object

recognizer. We provide an illustration of our algorithm in

Fig. 1. The Itti-Koch bottom-up pipeline [18] serves as

the base of our approach. In order to create the bottom-up

saliency map, the Itti-Koch model creates multiple interme-

diate “feature maps” to discover regions which have high

intensities or contrasting orientations and colors (Fig. 1(a)).

Our algorithm begins by computing the bottom-up saliency

map of [18] (Fig. 1(b)) and preserves the intermediate

feature maps for later re-use. Next, our algorithm performs

an oversegmentation of the original input image (Fig.

1(c)). Using the previously computed feature maps, a

segment descriptor is produced for each segment (Fig.

1(d)). Each segment is then classified by the classifier for

each object of interest and assigned a saliency value for

that object (Fig. 1(e)). These bottom-up and top-down

outputs are combined to form the final attention map (Fig.

1(f)). Because segmentation is such a core feature of our

algorithm, we call it SegSaliency.

3.1. Bottom­up Saliency Architecture

The Itti-Koch bottom-up phase consists of mostly low-

dimensional convolutions which can be accelerated with os-
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cillators [2], so it is an appropriate basis for our method.

Recent research has shown that it continues to achieve state-

of-the-art performance for salient object segmentation, even

outperforming some top-down methods [13].

The first step in the computation of bottom-up saliency is

the creation of multiple Gaussian pyramids of feature detec-

tor responses. The three features covered by the Itti-Koch

model are color, intensity, and orientation and were cho-

sen because they are known to have direct correlates in the

early primate vision system [18]. The color channel is fur-

ther subdivided into two sub-channels, designed to mimic

biological color opponencies. We denote these by FRG for

Red-Green, and FBY for Blue-Yellow. The FRG and FBY

feature pyramids are constructed by creating a Gaussian

pyramid of the original image and applying the following

transformations on a pixel by pixel basis:

FRG =
r − g

max(r, g, b)
, FBY =

b − min(r, g)

max(r, g, b)
(1)

Similarly, the intensity pyramid is constructed using the

formula FI = (r + g + b)/3, where r, g, b are pixel values

from the red, green, and blue color channels, respectively.

Finally, oriented Gabor filters at θ ∈ {0◦, 45◦, 90◦, 135◦}
are passed over the image pyramid to produce four orienta-

tion pyramids used to discover contrasting orientations.

The next phase of the process simulates the center-

surround mechanism of retinal ganglial cells. The purpose

of this process is to amplify the salience of regions (the cen-

ter) which contrast with their surroundings (the surround)

while muffling those which do not. This is done by subtract-

ing coarser-grained levels in the Gaussian pyramid (whose

pixels represent a larger area of the original image) from

finer-grained levels. The center takes on levels c ∈ {2, 3, 4}
and the surround is at levels s = c + δ, where δ ∈ {3, 4}.

The center-surround differences operation is denoted by the

symbol ⊖. This procedure produces six feature maps for

each type, denoted as Mtype for each feature type. These

feature maps are later used again by our top-down channel,

so they are preserved after computation. The feature maps

are produced by the following formula, where N(.) repre-

sents an iterative normalization routine designed to suppress

uninteresting noise within each map:

Mtype(c, s) = N(|Ftype(c) ⊖ Ftype(s)|) (2)

The above process results in forty-two maps (twelve for

color, six for intensity, and 24 for orientation). The feature

pyramids are then combined into three “conspicuity maps”

which represent the feature’s response across all scales of

the pyramid. The orientation conspicuity maps are created

by performing across scale addition for each orientation

and then summing all orientations. The overall bottom-up

saliency map S is created by taking a normalized average

of the three conspicuity maps. See [18] for more details.

3.2. Top­Down Attention Modulation

The bottom-up algorithm just described provides no

mechanism for biasing the search towards objects of inter-

est. In order to achieve this, we introduce a learning phase

to learn a profile of how target objects appear in the bottom-

up feature maps. As with [33], we use segments as the base

unit of attention. At a high level, our top-down channel

works by assigning each segment a saliency score based on

how similar the segment is to each learned object model.

Using these segment scores, we are able to produce top-

down object maps showing how strongly each segment re-

sponds to each object class. Much as the bottom-up saliency

algorithm combined multiple feature maps, our algorithm

combines all object maps to form a single top-down map.

This top-down map is then combined with the bottom-up

saliency map to produce the overall attention map. See Fig.

1 for an illustration of this process.

The channel begins by performing a segmentation of the

input image using a simplified version of the approach de-

scribed in [1]. The granularity of the segmentation is a tun-

able parameter of the algorithm and will depend on the de-

sired size of the target objects in the visual field, the distance

of the camera to the objects, etc. Automatically tuning this

parameter based on scene analysis is conceivable, but for

this study we set it to a constant. Any segmentation algo-

rithm capable of segmenting an image using coupled oscil-

lators, such as [33, 12], could be used for this process.

The next phase of the process is the computation of a de-

scriptor for each of the segments produced during the first

phase. The segment descriptor is computed according to

the following formula, where SDj
i is the segment descrip-

tor for segment i in image j, F̂Mtype are the feature maps

produced during bottom-up saliency (rescaled to the size of

the original image using a Laplacian interpolation), x, y are

the pixel coordinates of each pixel in the segment, c, s are

defined as in Eq. 2, and ⊙ is the vector concatenation oper-

ator (note that the parameter θ, the orientation of the Gabor

filters, does not apply to the color and intensity maps):

SDj
i =

4

⊙
c=2

c+4

⊙
s=c+3

⊙
t∈{C,I,O}

130
◦

⊙
θ=0◦

F̂Mt(c, s, θ)(x, y) (3)

Because there are 42 feature maps after center-surround

differences, each segment descriptor is of size 42n, where n
is the number of pixels in the segment. Since segments are

of unequal size, we reduce the dimensionality of the seg-

ment descriptor by performing principal component anal-

ysis (PCA) to obtain the 1764 (422) dimensional segment

descriptor used in our algorithm.

So far, we have shown how the bottom-up feature maps

computed by the Itti-Koch algorithm can be paired with a

segmentation of the image to form a descriptor for each

segment. The next part of our algorithm uses this descriptor
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to determine how close each segment is to each object of

interest.

In the next phase, each segment descriptor is classified

by one-class SVM [35] classifiers to produce a saliency

score for each segment. These classifiers can be accelerated

similar to the oscillator accelerated nearest-neighbor classi-

fiers of [10, 19]. More details on how these are trained is

given in Sec. 3.3. The classifiers attempt to identify seg-

ment descriptors matching certain exemplar segments, or

segments common to many instances of the same class. Ex-

emplar segments can be, for instance, the wheels of a car,

the spokes of a bicycle, etc. The more positive the response

of a classifier is, the better the segment fits with the known

exemplar segments for that object class. Each pixel position

covered by the segment is then filled with the score from the

classifier. These filled segments serve as the object-based

top-down bias of the bottom-up saliency map.

We have discussed how a top-down object detection map

can be created and filled with scores from the classifier.

Our training procedure (Sec. 3.3) creates one classifier

per object of interest, which allows each classifier to fo-

cus on learning exemplar segments individually for each

object. Because there are multiple classifiers, we create one

object detection map for each object of interest by classi-

fying every segment by every classifier. For example, a

segment which is the wheel of a car should have a high

saliency value in the “car” object map but a lower value in

the “person” map. The value at each pixel position is a mea-

sure of the strength of how well the segment to which the

pixel belongs matches the learned object model. Because

some object classes are much more frequent than others,

the exemplar learning procedure in Sec. 3.3 will produce

higher values for some classes than others, which in turn

will cause the distribution of the values produced by each

classifier to be different. In other words, the “car” classi-

fier’s output value for a strong car detection may be much

higher than the “truck” classifier’s score for a strong truck

detection. To prevent objects with high value distributions

from dominating those with lower distributions, each ob-

ject feature map is normalized using the iterative normal-

ization technique proposed by [18], resulting in crisp, fo-

cused maps to mitigate the effects of uncertain predictions.

The object maps are then summed and normalized to pro-

duce the SegSaliency map. Just as the bottom-up saliency

algorithm combined multiple feature maps to produce a sin-

gle saliency map, our SegSaliency map combines all object

maps to produce a single top-down map.

At this point, the system has two maps: the bottom-

up saliency map and the top-down map. To combine

both bottom-up and top-down effects in a single map, the

SegSaliency map is added to the bottom-up map and an ad-

ditional normalization is applied. We call this map combin-

ing top-down and bottom-up methods the attention map.

All that remains for the algorithm to do is to extract ob-

ject bounding boxes from the attention map. A threshold-

ing procedure is applied to convert the 2D intensity image

that represents the attention map into multiple rectangular

bounding boxes believed to contain objects of interest. We

replace the winner-take-all neural network provided by the

Itti-Koch algorithm with a simpler, more efficient mecha-

nism. The original fixation prediction routine outputs fixed-

size circular regions from the image. However, for larger

objects or rectangular objects, the entire object may not be

captured in one fixation, and it is unlikely that only the ob-

ject of interest will be in the fixation region because the cir-

cular region size is fixed.

To address both of these problems, we again use a seg-

mentation which can be performed by oscillators. A coarse

segmentation of the attention map is first performed. Each

segment is then enclosed by the smallest possible rectangu-

lar bounding box. Bounding boxes which are deemed too

large by a tunable parameter are discarded and recursively

segmented at finer granularities. The average salience of

each box is determined and boxes above a threshold are out-

put by the algorithm. This pipeline attempts to ensure that

the regions output by the algorithm capture the entire object

with minimal background noise.

3.3. Exemplar Segment Learning

To perform the top-down biasing of the visual search

(Sec. 3.2), we need classifiers trained to recognize seg-

ments from target objects. Training the classifiers used

by the top-down saliency algorithm to recognize exemplar

segments requires first finding exemplar segments for each

object of interest. Our training dataset consists of images

with bounding boxes drawn around each object of interest.

Because the object annotations in our dataset are not at the

segment level, segments containing background and even

other objects of interest inevitably leak into the annotations.

For example, in the NeoVision2 DARPA dataset used for

this study we observed that many segments of trees, people,

and the road also appear in the boxes humans drew and

labeled “car.”

Because these background segments cause confusion

by our classifiers, we need to remove segments contained

within the human annotations which are not part of the ac-

tual object. To solve this problem, we use a novel super-

vised cosegmentation procedure to find discriminative “ex-

emplar” segments shared over many instances of each ob-

ject class. Since training is done offline, power usage and

performance are not critical issues. Thus, it is not necessary

to constrain our approach to those amenable to oscillatory

acceleration. While a number of techniques exist to per-

form unsupervised cosegmentation [39], the dataset used in

this study is highly cluttered and contains extraneous ob-

jects which appear in every image. In such a situation, it
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is impossible to distinguish objects of interest from other

objects without some degree of supervision.

Our procedure starts by picking a human-drawn bound-

ing box around an object from the training set. Segments

within this bounding box are matched with segments within

bounding boxes of the same object class from other im-

ages. We do this to determine which segments lying within

the original bounding box are most representative of the

object. For example, for the class “car”, one would ex-

pect the segments containing tires to match other annota-

tions of cars more frequently than do background segments.

To perform the matching between segments, we compute a

speeded-up robust features (SURF) [4] descriptor for inter-

est points found in each bounding box. SURF is a classic

scale-invariant, local neighborhood feature descriptor. We

associate each segment with zero or more SURF descrip-

tors that lie within it.

We then scan the dataset and locate other images con-

taining bounding boxes of the same class. Note that the

latter do not need to be segmented. We then match the seg-

mented image’s descriptors to all other annotated patches

using the technique described in [26]. Every time one of

the SURF descriptors associated with a segment matches a

SURF descriptor in another bounding box of the same class,

a counter associated with the segment is increased by 1.

These counts enable us to determine which segments have

matched most with other annotations of the object, hence

which segments are most representative of the class of in-

terest. Segments with lower counts are either background

or are not representative of the object class.

At this point, the algorithm knows how often each seg-

ment in the bounding box annotation matched with other

object instances. We compute a segment descriptor for

each segment in the annotation using the approach de-

scribed in Section 3.2. With each segment descriptor, we

also store the number of matches that segment had. These

counts will be used later to remove the descriptors associ-

ated with low-performing segments. This process of seg-

menting an annotation and matching it against other anno-

tations is performed repeatedly over thousands of object in-

stances. When this process finishes, a large list of segment

descriptors and counts is obtained.

To weed out segments which are not representative of

the object, we perform a k-means clustering on the stored

counts. We chose k = 2 based on our observation that this

procedure tends to produce a large number of segments with

low counts (non-representative or background segments)

and a few segments with very high counts (the exemplars).

In other words, the clustering procedure splits the highest-

performing segments and the poorly-performing segments.

The cluster with the higher-valued count centroid is the

cluster of the exemplar counts, and segments in the other

cluster are discarded. While more advanced techniques

(such as per-cluster weighting schemes) could be used

rather than k-means for discarding background segments,

we found k-means performed well in practice. Using these

segment descriptors, we train a one-class SVM classifier

[35] with a radial basis function (RBF) kernel and weight

each segment descriptor with its count. Thus, segment de-

scriptors whose segments were matched the most (better ex-

emplars) have the most weight in training the classifier.

The entire training procedure is repeated for each ob-

ject class in the training set, creating one classifier for each

known object type. The classifiers produced by this process

are used to assign segments a top-down saliency value at

runtime. These values are used to create the object maps

which provide the top-down bias towards objects of interest

in our algorithm. We qualitatively observed a large differ-

ence in the quality of the segments in our training data when

we implemented the cosegmentation-based training.

4. Evaluation

We used the entire DARPA Neovision21 dataset to evalu-

ate our model. The Neovision2 dataset is a standard bench-

mark dataset for evaluating neuromorphic object detection,

recognition, and tracking algorithms [21, 9, 24] and is com-

prised of two separate collections: Tower and Heli. Ground

truth annotations are provided with the dataset for ten ob-

ject types: cars, trucks, tractor-trailers, buses, containers,

boats, planes, helicopters, people, and cyclists. Each object

is annotated with a tight polygonal bounding box.

The Tower dataset was acquired from a fixed camera on

top of the Stanford Hoover tower and consists of variable

lighting conditions (sunny and overcast). Additionally, the

camera is rotated to the side in some videos, introducing

rotational variance into the training and test sets. Because

the camera is high on the building, many objects below are

quite small. Further, the images are extremely cluttered,

with light poles, park benches, a water fountain, and other

distractions present. Only cars, trucks, buses, people, and

cyclists appear in the Tower dataset.

The Heli dataset was acquired from a helicopter flying

over the Los Angeles metro area. The data represents a

variety of different settings, including the ocean, beaches,

freeways, airports, train stations, etc. The data is highly

variable from image to image and contains all ten object

classes in a variety of settings and orientations. As such, it

is a more realistic and challenging.

To simulate realistic operating conditions, we merged the

Heli and Tower datasets together into one large training and

test set (rather than developing two distinct top-down mod-

els for each), which greatly increased the experiment’s dif-

ficulty. The training and test sets are disjoint and do not

1Available online at: http://ilab.usc.edu/neo2/, accessed

2014.
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(a) (b) (c) (d) (e) (f)
Figure 2: A variety of saliency maps computed on an image from our dataset. Airplanes are a target object class in our

dataset. The ground truth of this image would have the airplanes covered with a high saliency value (in red) and little else

covered (most similar to (b)). (a) Original Image (b) SegSaliency Object Map (looks for all target objects) (c) SegSaliency

Airplane Object Map (looks for airplanes) (d) Itti-Koch [18] (e) Graph Based Visual Saliency [15] (f) Signature Saliency [16]

share even the same capture locations (except for Tower, in

which the camera is at a fixed location and rotated). Be-

cause many target objects appear very small in some im-

ages, we set the single segmentation threshold of [1] to 0.01
in order to produce a very fine-grained segmentation so that

even small objects are composed of multiple segments. Our

training and evaluation sets are comprised of approximately

40,000 images each. Due to the large size of the Neovision2

dataset, we sampled one image from every 20 images from

the training and evaluation sets (provided by the dataset)

to form our train and test sets. In practice, this amounts

to sampling approximately one image per second of video.

Note that because the camera position frequently changes in

both data sets (it is explicitly flipped in the Tower dataset),

rotation and scale variance are implicit in the data.

We performed experiments to test how well our algo-

rithm, SegSaliency (SS), performs object detection, and

compared it to several unguided bottom-up search methods:

Graph-Based Visual Saliency (GBVS) [15], Itti-Koch [18],

and Signature Saliency (SigSal) [16]. Examples of saliency

maps produced by these algorithms are shown in Fig. 2. We

performed two sets of experiments, one designed to test the

algorithms on unmodified test data, and a second designed

to test the scale-invariance of our method by randomly re-

sizing the same input data while keeping the training data

constant. We combined SegSaliency with each bottom-up

method by normalizing and adding SS’s top-down atten-

tion map to the bottom-up saliency map produced by each

method. Each method’s final attention map was then used

to output a number of bounding boxes around regions cal-

culated to be salient using the method described in Sec. 3.2.

Using the bounding boxes produced by each algorithm,

we then determined whether each box overlaps with the

human-provided bounding boxes. We computed the stan-

dard intersection over union metric between the output

bounding box and each manually annotated region in the

image. If the overlap exceeded a fixed region-of-interest

(ROI) threshold noted below, the output was considered a

correct detection of that object. Bounding boxes which did

not contain any ground truth annotations above the ROI

threshold parameter were considered false positives. Us-

ing the boxes output by each algorithm, we also deter-

mined which manually annotated objects in each image

were found (true positives) and which were missed (false

negatives). We swept the ROI threshold at 20 positions

between 0.4 (40% overlap) and 1 (100% overlap) on the

X-axis in Figs. 3, 4, and 5. Our cutoff choice of 0.4 for

Figs. 3 and 4 was based on our observation that bounding

boxes which had less than 40% overlap contained so little

of the target object that they were essentially useless. Due

to space limitations, we only present results at the four clos-

est to equally spaced ROI threshold positions we tested in

Figs. 3 and 4. The omitted values are intermediates between

these positions and follow the same general pattern (as can

be seen in Fig. 5).

Figs. 3 and 4 show each algorithm’s F1 score as a func-

tion of the ROI-threshold parameter on the test set. The F1

score is a weighted average of precision and recall. Fig. 3

shows the results of the first set of experiments on the un-

modified data set. Fig. 4 shows the results of the second ex-

periment, where each test image is randomly resized to ei-

ther half or double its original size. In each chart, SS refers

to the top-down map produced by our algorithm and used

to complement the bottom-up maps. We first show the per-

formance of each algorithm without modification. Next, we

use SegSaliency’s top-down modulation to bias the search

of the bottom-up map and show the results next to the orig-

inal. The introduction of our top-down channel always im-

proves performance over the original bottom-up algorithms

(compare the F1-score of each algorithm to the algorithm’s

name+SS). Despite the random resizing of the test images,

Fig. 4 shows that our technique still significantly improves

the performance of the bottom-up algorithm.

One possible explanation for the decrease in perfor-

mance observed on the resized dataset (which affected all

algorithms) compared to the non-resized dataset is that

the parameters of the bounding box extraction process de-

scribed in Sec. 3.2 were kept constant rather than adjusted

to account for possible changes in scale of the objects. An-

other possibility is that the bottom-up saliency algorithms

had difficulty finding salient regions in the resized images

and needed to have their parameters tuned (i.e. wider or
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Figure 3: F1-Scores for unmodified dataset

Figure 4: F1-Scores for randomly resized dataset

Figure 5: SegSaliency without bottom-up information

smaller filters) to produce consistent results to reflect scale

differences. In all cases, SegSaliency still results in signif-

icant performance gains on both tests and never decreases

the performance of the bottom-up algorithms.

In Fig. 5, we illustrate the performance of the top-down

attention map when used without a bottom-up saliency map,

on the two test sets. We first observe that the performance

on the resized set is somewhat worse than on the unmodi-

fied test set. However, when SegSaliency’s F1 scores on the

resized test set (the blue line) are compared to the scores in

Fig. 4, one notices that they are still higher than the best

results obtained by combining the bottom-up and top-down

map. In other words, top-down influences are sufficient to

capture attention. We also observe that SegSaliency’s F1

score (the green line) slightly outperforms the best com-

bined approach in Fig. 3. One may ask, why bother com-

bining top-down and bottom-up at all? The answer to this

question is probably largely dataset dependent. Top-down

saliency will not always outperform bottom-up saliency be-

cause not all datasets have the same properties, see [13].

Because the NeoVision2 dataset is an extremely cluttered

dataset, bottom-up saliency returns numerous visually inter-

esting regions which are not objects of interest. SegSaliency

on the other hand, has the benefit of having been trained to

look for those objects and can bias the search. This elim-

inates some unnecessary visual search while also finding

objects which may not have originally appeared salient. For

instance, objects with highly variable appearance could be

missed by the top-down channel, only to be found by the

bottom-up channel. In such situations, combining both top-

down and bottom-up effects may yield superior results.

5. Conclusion

In this paper, we presented SegSaliency, a visual atten-

tion system designed for coupled oscillator acceleration.

Our algorithm extends a widely used bottom-up saliency

algorithm by providing top-down modulation and object-

based binding via segmentation, making it a useful candi-

date as a front-end to an object recognition pipeline. Specif-

ically, we extend the pipeline presented in [18] by adding a

new top-down channel. We have shown how the feature

maps computed by bottom-up saliency can be leveraged

along with an image segmentation to determine segment-

based top-down biases with little computational overhead.

Additionally, a novel technique to identify these exemplar

object segments using only bounding boxes was proposed.

We demonstrated the benefits of our techniques through

evaluation on a cluttered and challenging dataset.

Note that unlike existing saliency methods, ours can

be fully accelerated using oscillators, so it can be used to

perform efficient object search in embedded settings. De-

spite our algorithm’s relative simplicity, SegSaliency’s de-

ployment resulted in substantial gains in performance when

bootstrapped to a number of saliency pipelines, illustrating

the vital role top-down attention plays in making sense of

our cluttered visual world.

In our future work, we will explore the novel idea of dy-

namically tuning the filters used to produce the bottom-up

map based on learned object models. For example, regions

containing a suspected car could have their orientation fil-

ters adjusted to those known to respond strongly to cars.

In this scenario, top-down biases would be implicitly ex-

pressed in the bottom-up saliency map.
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