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Abstract

Three-dimensional brain imaging through cutting-edge

MRI technology allows assessment of physical and chemi-

cal tissue properties at sub-millimeter resolution. In order

to improve brain understanding as part of diagnostic tasks

using MRI images, other imaging modalities to obtain deep

cerebral structures and cytoarchitectural boundaries have

been investigated. Under availability of postmortem sam-

ples, the fusion of MRI to brain histology supports more

accurate description of neuroanatomical structures since

it preserves microscopic entities and reveal fine anatomi-

cal details, unavailable otherwise. Nonetheless, histologi-

cal processing causes severe tissue deformation and loss of

the brain original 3D conformation, preventing direct com-

parisons between MRI and histology. This paper proposes

an interactive computational pipeline designed to register

multimodal brain data and enable direct histology-MRI cor-

relation. Our main contribution is to develop schemes for

brain data fusion, distortion corrections, using appropri-

ate diffeomorphic mappings to align the 3D histological

and MRI volumes. We describe our pipeline and prelimi-

nary developments of scalable processing schemes for high-

resolution images. Tests consider a postmortem human

brain, and include qualitatively and quantitatively results,

such as 3D visualizations and the Dice coefficient (DC) be-

tween brain structures. Preliminary results show promising

DC values when comparing our scheme results to manually

labeled neuroanatomical regions defined by a neurosurgeon

on MRI and histology data sets. DC was computed for the

left caudade gyrus (LC), right hippocampus (RH) and lat-

eral ventricles (LV).

1. Introduction

Cutting-edge MRI technology allows non-invasive ac-

quisition of structural brain images with sub-millimeter

resolution in clinical neuroscience [16]. However, mod-

ern scanners at maximum resolution still lack the average

1µm3, attained by conventional microscopy [14]. There-

fore, histology continues to be the gold standard for brain

anatomy, since MRI images are insufficient to support defi-

nition of cytoarchitectural boundaries and small inner brain

regions [6]. Many studies attempt to correlate MRI sig-

nal to tissue features to enable brain assessment in vivo and

deeper understanding of the nervous system. Precise MRI-

histology correlation represents a breakthrough in explor-

ing the neuronal basis of MRI signal [17], estimating neu-

roanatomical structures boundaries [5], investigating neu-

ropathology disease mechanisms [18] and aiding the con-

struction of histology based brain atlases [2], among others.
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Direct MRI-histology comparison is precluded by arti-

facts inherent to histological processing. Brain tissue bears

considerable local and global deformations caused by ma-

nipulation during procurement from skull and fixation. Se-

rial sectioning often perforates and tears the tissue, and also

compromises the original 3D geometry, for example, at-

tempts to simply stack back the slides often yield deformed,

twisted volumes, a phenomenon known as z-error [23].

Chemical processing, such as dehydratation and staining,

causes shrinking and uneven shading. The combination of

these artifacts lead to huge geometric differences between

MRI and histology image sets [27], requiring the use of in-

tricate non-linear deformation models for correction. More-

over, considerable contrast heterogeneity between MRI and

histology makes registration more complex, requiring the

calculation of robust similarity metrics [11]. These modal-

ities also have different acquisition and sectioning planes,

making direct alignment unfeasible. Moreover, full human

brain histological processing yields hundreds of images,

and processing this large data set can be computationally

intensive [5].

Histology to MRI registration is emerging as a power-

ful, yet challenging task. Several authors investigate this

problem applying linear and non-linear registration meth-

ods to tissue data from animals, such as mice [36, 4, 13] and

monkey [14]. Studies using human tissue are scarce, given

the difficulties in procuring and processing such material.

Singh et al. [28] use high order polynomial mapping to reg-

ister photographs of one human brain hemisphere to their

approximate whole head MRI slices. Instead, Osechinskiy

et al. [25] use thin-plate splines to register sparsely sec-

tioned slides from a human brain hemisphere to a whole

head MRI. Adler et al. [1, 2] use a graph-based registra-

tion method to register hippocampi tissue samples to their

respective MRI volume. Registration studies using whole

human brain histology are even more infrequent. To the

best of this authors knowledge, only two studies handle the

registration of whole human brain histology to MRI. Yang

et al. [35] combine 3D affine registration and 2D non-linear

section-to-section registration, but authors do not provide

information about the specific method used for registering

a whole human brain low-resolution histological volume to

its counterpart MRI, while Amunts et al. [5] use 2D affine

section-to-section registration and 3D diffeomorphic map-

ping to register a high-resolution whole brain histology to

its MRI.

Here we propose an interactive computational pipeline

designed to handle all the histology complexities and

register histological samples to their counterpart MRI.

The pipeline allows processing high-resolution histological

whole brain images, aiming to preserve near-microscopic

features. We describe our preliminary results running this

pipeline on a large distributed memory system, required to

deal with the data size. Finally, we estimate our proposed

registration scheme through visualizations and calculation

of Dice coefficients.

2. Materials and Methods

2.1. MRI and Histology Acquisition

This study uses a postmortem whole human brain do-

nated to research upon a signed informed consent and IRB

approval. The brain was scanned in-cranio (i.e. brain inside

the skull, without any chemical treatment) ex-vivo (right af-

ter death) in a 3.0 T Philips Achieva MR scanner using an

8-channel head coil. We acquired conventional clinical T1-

weighted Inversion-recovery 3D Fast Field Echo sequence

(TR = 6,3ms; TE = 2,9 ms; TI = 791 ms; 240 x 240; 1mm3

voxels; slices oriented to the mid-sagittal plane) stored in

DICOM format.

After MRI acquisition, the specimen was processed us-

ing a celloidin-embedding protocol [19, 32]. Briefly, the

brain was fixed in 10% buffered formalin for several weeks,

dehydrated in graded series of ethanol solutions, soaked

in 8% celloidin solution and celloidin-mounted by means

of a vacuum-assisted embedding procedure. The resulting

block was serially sectioned on a sliding microtome (Poly-

cut, Cambridge Instruments, UK) with section thickness of

400µm in the axial plane. The block was photographed dur-

ing the serial sectioning, before each microtome stroke, us-

ing a Canon 5D Mark III camera and 50mm AutoMakro

Olympus lens attached to a copystand (these images were

called ”blockface”). The camera was carefully placed over

the block to avoid motion during the sectioning process and

to enforce constant distance between block and sensor, thus

yielding images that were perfectly aligned within the data

set. This procedure also ensured that each histological slice

has a counterpart blockface image.

All sections were stained using a modified gallocyanin

(Nissl) technique optimized for highlighting neuronal bod-

ies [19] and mounted on glass slides. Each stained slide

was place over a portable light table with uniform white

backlight and imaged using a Fuji Finepix II camera and

a 50mm AutoMakro Olympus lens attached to the copy-

stand. All pictures were taken with the same magnifica-

tion and distance from the camera, assuring a standard scale

through the whole set. Rulers were placed near the tissue to

allow calculation of the true pixel resolution. The whole

data set spanned 279 images, each with 0.02x0.02x0.4mm

voxel resolution, stored in JPEG format. Figure 1 shows ex-

amples of the histology, blockface and MRI. The celloidin-

embedding method reduces the overall amount of artifacts

and prevents occurrence of tears. Further details on embed-

ding and staining protocols can be found in [19, 18].
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Figure 1. Example of histological slice (left), blockface image

(center) and MRI (right) as discussed in Sec. 2.

2.2. Pipeline description

Our core strategy for registering the 2D histological im-

ages to the 3D MRI volume includes: (1) to use the block-

face as a template for properly positioning the slices within

the histological data sets; (2) to create an intermediate 3D

volume, and finally (3) to use a 3D registration algorithm to

register histology to MRI. These three main steps include

several image processing algorithms applied to the histol-

ogy and MRI data in order to improve registration between

these modalities. Figure 2 shows an outline of the proposed

pipeline, and the following sections describe each pipeline

step.

2.2.1 Histology pre-processing

Blockface and Histology Segmentation: Blockface im-

ages can be compressed by eliminating the unnecessary

background. Any general purpose registration method, not

based on landmarks, will consider the alignment of the

entire histological image to the MRI, yielding inaccurate

results. Thus, background segmentation is a critical pre-

processing step. As part of our segmentation strategy, we

use an orthogonal color model that allows pixels to clus-

ter in specific regions in the colorspace, a computer vision

algorithm also applied to human skin image segmentation

[34]. This step transforms the blockface RGB images into

the YIQ space, such as Y is a luminance component and I

and Q are color components. Tissue pixels form clusters

on the IQ space and are modeled as a Gaussian mixture

model (GMM). We calculate two Gaussian distributions for

modeling tissue and background. Expectation maximiza-

tion (EM) is used for estimating the GMM parameters. As

a default, EM is initialized by randomly assigning pixels to

both classes. All image pixels are then classified using this

model, yielding an initial brain binary mask. Finally, we

use active contours [12] to further refine the mask. The re-

sulting mask is essential to segment the tissue region and

is stored for future processing. Users can, optionally, ini-

tialized the EM with pre-selected samples from tissue and

background. This option often improves classification re-

sults for difficult images. Users can also disable the active

contours refinement to speed-up processing at the cost of

obtaining less accurate results.

The stained histology images are simpler than their

counterpart blockfaces, being composed of large colored re-

gions over mostly empty background. However, they still

need to be segmented since this background may contain

dirt, bubbles and other undesired findings. Similarly to the

blockface images, histology tissue pixels also cluster in spe-

cific regions of the IQ space, so we extend the method from

the earlier to later.

All segmented images are converted to grayscale using

the transformation in 1, where x is a image intensity for

R,G and B, the red, green and blue channels, respectively.

G(x) = 0.2989R(x) + 0.5870G(x) + 0.1140B(x) (1)

All our input images are JPEG and output images are

saved as Nifti for it is a more suitable format for the next

processing steps. This segmentation method was imple-

mented in Matlab.

2D registration: The blockface data set preserves informa-

tion about correct slice positioning within the histological

image volume and is used as a template for correctly align-

ing those images. Our strategy is to register each histolog-

ical image to its corresponding blockface and stack them,

thus creating a histology volume free of z-effect. The block-

face, however, bears deformations caused by brain removal

and fixation, therefore unreliable to recover the brain origi-

nal shape.

Histology to blockface registration is performed using an

affine model and Mattes mutual information similarity [24],

which is tailored to handle multi-modality registration prob-

lems. Histological images are registered independently. All

transform matrices are stored for future use. We particularly

use ANTs [9] affine registration implementation in this step.

Intensity correction and stacking: Intensity inconsistency

is a common artifact among histology slices caused by dif-

ferent lighting conditions during imaging and variations in

staining concentrations. It causes a stripping effect orthog-

onal to the sectioning plane that can interfere with visual-

ization and analysis of anatomical structures and may result

in registration errors. We employ an iterative global his-

togram matching scheme [22] for intensity correction. It is

performed after 2D registration to correct any global inten-

sity change that may be introduced during the previous step.

All enhanced images are stacked to form an intermediate 3D

volume. This step was fully implemented in Matlab.

Sampling: Processing the histological images at their full

resolution involves registrations that require memory foot-

print larger than the 128GB available in our system nodes.

Due to this limitation, we sample the histology volume to

a lower resolution. We empirically found that 0.15mm3 is

the maximum resolution we could process, given our com-

putational pipeline. We used ITK cubic-spline interpolation

for downsampling the data set.

Next, the user manually initializes the data set orien-

tation matrix by roughly aligning the histology to MRI

through the FreeSurfer’s Freeview tool that computes an

196



Figure 2. Diagram of the proposed pipeline, with two main independent tasks: MRI processing and histology processing.

affine transform matrix. This step is necessary to create

an initial overlap between data sets, allowing the registra-

tion algorithm to work properly. Notice that this is the only

mandatory user intervention.

2.2.2 MRI Pre-processing

Field inhomogeneity correction: Since field intensity het-

erogeneity may reduce the overall processing quality, we

include the N3 algorithm [29], as a correction step to mini-

mize spurious variations.

Skull stripping: Any general purpose registration method

not using landmarks will register the histology to the MRI

as whole and will not consider only the brain tissue. Thus,

skull segmentation is a critical step. All structures not be-

longing to the brain must be removed otherwise the final

registration will be distorted. We used FSL brain extraction

tool (BET) tool [30] in our pipeline, which is a mature, well

tested segmentation tool.

Sampling: Histology images have much higher resolution

than their MRI counterpart, so registration includes down-

sampling histological data, blurring out important boundary

information and small inner brain structures, while still re-

maining the essential features to allow fusion between the

modalities. We employ cubic spline sampling to bring the

MRI to an intermediate resolution space, preventing exces-

sive blurring of structures of interest during the registration

process. This step was implemented in ITK.

2.2.3 3D Registration

We use diffeomorphic non-linear 3D registration for align-

ing the histological volume to its counterpart MRI, thus re-

covering most of its original shape and allowing direct com-

parison between both modalities. Diffeomorphisms are dif-

ferentiable mapping with differentiable inverses. They are

onto, meaning that all elements in the domain are mapped

to elements in its range; and one-to-one, meaning that dif-

ferent elements in the domain can not mapped to the same

element in the range. These properties guarantee that con-

nected sets remain together, disjoint sets remain separate,

coordinates are transformed in a consistent way and topol-
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ogy is preserved. Thus, diffeomorphic registration ensures

that all pixels in the registered image are mapped to all pix-

els in the fixed image, in a one-to-one way [10]. The diffeo-

morphic registration framework is robust in the presence of

deformations and is suitable for registering data with com-

plex intensity relationships.

This paper uses the symmetric diffeomorphic registra-

tion method (SyN) described by Avants et al. [7] due to its

robustness to large deformations, symmetry property (i.e.

the registration map is invertible, so the order of choice be-

tween target and movable images does not bias the regis-

tration) and accurate results in registering brain images, as

in [20]. SyN models the transform function as a geodesic

(shortest path) in the space of diffeomorphic mappings φ

that connects I , the movable image (histology), and J , the

target image (MRI). The forward mapping can be written

as φI = I(φ(x, t = 1)) and inverse mapping as φ
−1(x, 1).

SyN splits the mapping in 2 equal length geodesics φ1 and

φ2, so that φ2 runs in opposite direction to φ1, making I and

J equally contribute to the registration mapping. The regis-

tration process minimizes the following objective function:

Ecc(I, J) = inf
φ1

inf
φ2

∫ 0.5

t=0

{‖v1(x, t)‖
2
L + ‖v2(x, t)‖

2
L}dt

+

∫
Ω

CC(I, J,x)dΩ (2)

Such that φi in the solution for the ordinary differential

equation
dφi(x,t)

dt
= vi(φi(x, t), t). Here x is a spatial coor-

dinate, t time, v1 and v2 are square-integrable, continuous

vector fields that represent the velocity of traversing φi (vi
is an approximately arc length parametrization, that guaran-

tees all φi are of the same length), ‖.‖L is a regularization

term that smooths the velocity field and CC(I, J,x) stands

for the cross-correlation computed using sliding windows

over I and J. The first term in the objective function intro-

duces enough smoothness on the vector field to force the re-

sulting map to be diffeomorphic. The second term measures

the similarity between mapped and target image. The vector

field is computed using the Euler-Lagrange equations de-

rived from 2 and an iterative optimization method described

in [8]. The original formulation uses cross-correlation as the

similarity metric; however, the diffeomorphic framework

allows the use of other metrics for driving the registration.

We use the ANTs toolbox [9] SyN implementation as

part of our pipeline. We superseded the cross-correlation

with Mattes mutual information (MI) [24]. We chose MI af-

ter tests with methods using local similarity measures, such

as DRAMMS [26] and SyN using CC, yield poor registra-

tion results with our data. All input volume is in Nifti for-

mat, however we use Nrrd file for format as output. This

format is particularly convenient for visualization as is can

be read in parallel by the visualization tool. The mappings

(φi) computed by SyN are saved and stored for later use in

color reconstruction.

2.2.4 Color Reconstruction and Scalable Visualization

Staining plays an important role in histology analysis as it

is used to identify specific cytoarchitectural features, chem-

ical components (i.e proteins), acidity levels and other at-

tributes. However, most registration studies in literature do

not include color in their final results. Furthermore, most

medical image viewers do not allow visualization of color

volumes or limit this functionality for specific aims, such as

displaying fMRI LUTs or pseudo-color PET scans. Most

medical image viewers are also not designed to be scalable,

failing to load and manage big data sets.

We design a color reconstruction step in our pipeline to

allow inspection of histology original colors. In this step,

all original histological images are split in red, green and

blue channels. Each channel is registered to its correspond-

ing blockface by applying the affine transform previously

computed during the 2D Registration. Each channel of each

histological image is then stacked, corrected for intensity in-

consistency and resampled as described in the previous sec-

tions, yielding a red, green and blue image volume. Each

channel volume is registered to the MRI by applying the

diffeomorpic maps computed during the 3D registration. Fi-

nally, the registered channels are combined to form the reg-

istered color volume. This process is depicted in Figure 2,

where intermediate processing results for each color chan-

nel can be seen in the right part.

We perform visualization (volume rendering) of the reg-

istered grayscale and color volumes using ParaView, in-

stead of a standard medical viewer for its scalability, as it

is able to run on distributed memory computing resources

thus handling large data sets.

3. Results

All MRI processing and histology/blockface segmenta-

tion calculations ran on a standard workstation (Intel(R)

Xeon(R) 6-core CPU 2.40GHz E5-2620, 16GB RAM). All

the remaining histology processing steps (see Figure 2) exe-

cuted in one node (Intel(R) Xeon(R) 32-core CPU 2.30GHz

E5-2698, 128GB RAM) of a large shared memory system.

ParaView server ran on the same system using 24 nodes.

The upsampled MRI and pre-registration histology data sets

were stored in 8 bits, yielding about 9 Gigabytes (GB) each.

However, both datasets had to be converted to double preci-

sion during the registration process, yielding a 23GBs vol-

ume, each. The final registered grayscale and red, green

and blue volumes presented 23 GBs, each. All data sets had

their intensities rescaled and were converted back to 8 bits

due to storage constraints.
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The proposed pipeline processed the whole brain and the

registration result was evaluated qualitatively and quantita-

tively. Visual inspection of the volume rendering revealed

appropriate registration quality, according to the neurolo-

gists in charge. Figure 3 shows a checkerboard visualization

of the histology overlaid on the MRI, Figure 6 emphasizes

the 3D reconstruction for comparison with the MRI volume

and Figure 5 renders three different planes for further de-

tails. Inspection of the checkerboard views and 3D volumes

reveals coherence on the deformations. White matter and

gray matter boundaries are consistently matched, so are the

gyri on most of the images. Registration errors are visible,

especially in the inner brain region. This is also visible in

Figure 3a, where the left hippocampus shows a large differ-

ence when compared to the right hippocampus. The volume

rendering also allows to assess that our registered histology

is capable of resolving inner brain structures not visible on

the original and resampled MRIs, as shown in Figure 6: the

red nucleus boundaries are visible in histology (a), while

very fuzzy on the resampled (c) and original (d) MRIs. In-

tensity correction errors are visible near the cerebellum in

Figure 5 and (b).

Quantitative evaluation was performed by computing the

Dice coefficient (DC):

DC =
2|A ∩B|

|A|+ |B|

between stacks of masks manually labeled on the MRI and

original histology data sets. A and B are two sets of bi-

nary masks and |.| is the set cardinality. DC captures how

precise is the localization between A and B, which is com-

puted quickly and with straightforward interpretation. An

experienced neurosurgeon segmented the left caudate gyrus

(LC), right hippocampus (RH) and lateral ventricles (LV)

on the MRI images and on the original histology images

(these regions were selected because they have well-defined

boundaries on the MRI). The histology segmentations were

registered using the affine transforms pre-computed during

the 2D registration and mapped to the MRI using the diffeo-

morphic maps computed during the 3D registration. Finally,

they were thresholded into a binary set. Figure 4 shows a

3D reconstruction of the stacked binary masks. DC was

computed between MRI and registered masks sets for the

selected structures. RH DC was 0.59, LV DC was 0.65 and

LC DC was 0.75.

4. Discussion

This paper proposed an interactive computational

pipeline for registering high-resolution whole human brain

histological images and described our preliminary results. It

was tested with images of a whole brain and assessed reg-

istration quality by visualization and quantification through

Dice coefficient.

Figure 3. Registered histology overlaid on MRI images.

Figure 4. 3D reconstruction of the stacked binary masks. a) his-

tology binary masks after registration; b) MRI binary masks. The

right hippocampus (red), left caudade nucleus (blue) and lateral

ventricles (yellow) can be seen in both images.

Our ultimate goal is to be able to register and visual-

ize the histology in its full resolution of 0.02x0.02x0.4mm.

However, our first prototype can only register images up

to 0.x15mm3, given that this is the highest resolution our

tools support without running out of memory, even though

we used a system with big memory nodes (128 Gigabyte

RAM). The reason is that SyN, as well as most of the

large deformation diffeormorphic metric mappings meth-

ods, stores big vector fields in memory thus having a large

memory footprint [33]. Furthermore, these methods were

not designed to scale up to a GB, so it does not take advan-

tage of distributed memory systems. Henceforth, we aimed

to find what was highest attainable resolution running ANTs

toolbox without any modification. Despite some loss in res-

olution, our registered histology showed enhanced struc-

tures, otherwise not well resolved in MRI. Figure 6 em-

phasizes the case: the inner brain structures in (a), such as

the red nucleus, have sharp boundaries, which are fuzzy in

the MRI (b and c). We are aware that the MRI resampling
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Figure 5. Histology 3D reconstruction using ParaView (0.15mm
3 resolution). a) coronal plane; b) sagittal; c) axial plane.

Figure 6. Histology 3D reconstruction using ParaView and visualization of the brain inner structures with 0.15mm
3. a) Histology recon-

struction; b) Corresponding MRI reconstruction for comparison. c) Axial view of the histology side-by-side with MRI; d) Original MRI

slice located in the same region displayed in c.

causes loss of details, however notice that the MRI image

did not present this structure in the raw data at all. We in-

cluded the original MRI slide (Figure 6d) of that particular

region for comparison.

We obtained Dice coefficients of 0.59 for right hip-

pocampus, 0.65 lateral ventricles and 0.75 for left caudate

gyrus. DC indicated the localization between two sets,

however there is no fixed standard for an ”accurate” value.

Some authors consider DCs greater than 0.6 appropriate for

small brain structures and 0.8 accurate for big ones [15, 31].

Other authors consider values above 0.7 as appropriate for

localization in general purpose comparisons [3]. Our pre-
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liminary results were sub-optimal if considering these val-

ues as standards, probably due to poor initial centralization.

Manual centering of the histology volume was a burden-

some (given the site of the high-resolution data set) and

often inaccurate task that requires visual inspection. DC,

nonetheless, does not give accurate information regarding

shape and also, our analysis was biased towards few inner

brain structures. Improvements on quantification of the reg-

istration quality will include more brain regions as well as

shape metrics, such as [21], that can assess brain structures

geometry.

We performed visualization of the registered grayscale

and color volumes using ParaView. We chose this tool in-

stead of a standard for medical viewer for its scalability,

as it is able to run on distributed memory computing re-

sources and to handle extreme large data sets. ParaView is

also very versatile allowing visualization of color images,

surfaces, 2D and 3D objects in the same scene. To the best

of our knowledge, this is the first time a whole brain high-

resolution histology visualization is performed using a mas-

sive parallel scientific visualization tool. By using ParaView

we were able to visualize the color high-resolution histol-

ogy overlaid on MRI, as well as the grayscale volumes and

also pseudo-color representations.

Our preliminary results are promising since we were ul-

timately able to register a whole human brain histology vol-

ume to its counterpart MRI, with resolution higher than

what a modern MRI scanner can acquire in clinical prac-

tice. We were able to render inner brain structures, oth-

erwise unresolved in standard clinical MRI in a scalable

fashion, by using a non-specific scientific visualization tool.

Future work will address full resolution histology, includ-

ing new registration methods that are capable of scaling

to take advantage of distributed memory systems, an au-

tomatic method for centralization of the histology volumes

and inclusion of different imaging modalities, such as PET.

Acknowledgments

Funding was provided by the National Institute of Health

(NIH) grant R01AG040311 to Lea T. Grinberg and Hospital

Israelita Albert Einstein, Sao Paulo, Brazil. This work was

partially supported by the Director, Office of Science, Ad-

vanced Scientific Computing Research, of the U.S. Depart-

ment of Energy. Ushizima’s Early Career Research project

is under Contract No. DE-AC02-05CH11231. This re-

search used resources of the National Energy Research Sci-

entific Computing Center, which is supported by the Office

of Science of the U.S. Department of Energy under Contract

No. DE-AC02- 05CH11231. We thank FAPESP, LIM-22

Faculdade de Medicina Universidade de São Paulo and staff

for their invaluable contributions to research. We also thank

E. Wes Bethel for supporting the investigation and develop-

ment of scientific analysis software tools.

References

[1] D. H. Adler, A. Y. Liu, J. Pluta, S. Kadivar, S. Orozco,

H. Wang, J. C. Gee, B. B. Avants, and P. A. Yushkevish.

Reconstruction of the human hippocampus in 3d from his-

tology and high-resolution ex-vivo mri. IEEE International

Symposium on Biomedical Imaging, 2012. 2

[2] D. H. Adler, J. Pluta, S. Kadivar, C. Craige, J. C. Gee,

B. Avants, and P. A. Yushkevish. Histology-derived vol-

umetric annotation of the human hippocampal subfields in

postmorten mri. NeuroImage, 84, 2014. 1, 2

[3] A. Akbarzadeh, D. Gutierrez, A. Baskin, M. R. Ay, A. Ah-

madian, N. R. Alam, K. O. Loevblad, and H. Zaidi. Evalu-

ation of whole-body mr to ct deformable image registration.

Journal of Applied Clinical Medical Physics, 14, 2013. 7

[4] L. Alic, J. C. Haeck, S. Klein, K. Bol, S. R. van Tiel, P. A.

Wielepolski, M. Bijster, W. J. Niessen, M. Bernsen, J. F.

Veenland, and M. Jong. Multi-modal image registration:

matching mri with histology. SPIE, 7626, 2010. 2

[5] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg,

T. Dickscheid, M. Rousseau, S. Bludau, P. Bazin, L. Lewis,

A. Oros-Peusquens, N. Shah, T. Lippert, K. Zilles, and

A. Evans. Bigbrain: an ultrahigh-resolution 3d human brain

model. Science, 340(6139), 2013. 1, 2

[6] J. Annese. The importance of combining mri and large-scale

digital histology in neuroimaging studies of brain connectiv-

ity and disease. Frontiers in Neuroinformatics, 6(13), 2002.

1

[7] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee.

Symmetric diffeomorphic image registration with cross-

correlation: Evaluating automated labeling of elderly and

neurodegenerative brain. Medical Image Analysis, 12, 2008.

5

[8] B. B. Avants, P. T. Schoenemann, and J. C. Gee. La-

grangian frame diffeomorphic image registration: Morpho-

metric comparison of human and chimpanzee cortex. Medi-

cal Image Analysis, 2005. 5

[9] B. B. Avants, N. Tustison, and G. Song. Advanced normal-

ization tools (stnava.github.io/ants). March 2015. 3, 5

[10] M. F. Beg, M. I. Miller, A. Trouve, and L. Younes. Comput-

ing large deformation metric mapping via geodesic flows of

diffeomorphisms. International Journal of Computer Vision,

61(2), 2005. 5

[11] C. Ceritoglu, L. Wang, L. D. Selemon, J. G. Csernansky,

M. I. Miller, and J. T. Ratnanather. Large deformation dif-

feomorphic metric mapping registration of reconstructed 3d

histological section images and in vivo mr images. Frontiers

in Human Neuroscience, 43(4), 2010. 2

[12] T. Chan and L. A. Vese. Active contours without edges. IEEE

Transactions on Image Processing, 10(2), 2001. 3

[13] A. Cifor, L. Bai, and A. Pitiot. Smoothness-guided 3d recon-

structioin of 2d histological images. NeuroImage, 56, 2011.

2

[14] J. Dauguet, T. Delzescaux, F. Condé, J. F. Margin, N. Ay-
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