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Abstract

Longitudinal image registration is commonly used to es-

tablish spatial correspondence between images when inves-

tigating temporal changes in brain morphology. Most im-

age registration methods have been developed to align im-

ages that are similar in appearance or structure. If such

similarity is not given (e.g., in the case of neurodevelopmen-

tal studies, which is the target application of this paper), (i)

local similarity measures, (ii) metamorphosis approaches,

or (iii) methods modeling longitudinal intensity change can

be used. Methods modeling longitudinal intensity change

have the advantage of not treating images as independent

static samples. However, missing or incomplete data can

lead to poor model estimation and, in turn, poor registra-

tion. Therefore, incomplete longitudinal data sets are often

excluded from analysis. Here, we propose a method to build

a longitudinal atlas of intensity change and incorporate it

as a prior into an existing model-based registration method.

We show that using the prior can guide the deformable reg-

istration of longitudinal images of brain development with

missing data and produce comparable registration results

to complete data sets.

1. Introduction

Studying brain development is of great interest to inves-

tigate the normal growth process or the influence of vari-

ous diseases on neurodevelopment. During the early stages

of development the brain undergoes great changes in size

and structure. Overall brain size nearly doubles during the

first year of neonatal development and reaches 80-90% of

its adult volume by age 2 [6]. This rapid increase in vol-

ume does not affect all brain structures equally. Gray mat-

ter, the cerebellum, and the lateral ventricles contribute the

majority of the brain volume increase during the first year

of development, while white matter volume increases only

modestly [6]. In addition to morphological changes, the

myelination of white matter proceeds rapidly during this

same period leading to non-uniform changes in the mag-

netic resonance (MR) appearance of white matter through-

out the brain [8].

age

Figure 1. Axial slices of MR brain images of monkey at ages 2

weeks, 3, 6, 12, and 18 months. White matter appearance changes

non-uniformly as axons are myelinated during brain development.

The combined morphological and appearance changes

(see Fig. 1) make longitudinal analysis of brain develop-

ment a challenging problem. Longitudinal analysis has to

be flexible enough to allow for the large non-uniform mor-

phological and appearance changes while at the same time

provide temporally smooth solutions.

As the brain changes shape during its development, spa-

tial correspondences need to be estimated over time. This

is typically done by image registration methods. To cap-

ture localized deformations (as occur in neurodevelopment)

necessitates deformable image registration methods. How-

ever, deformable image registration is a highly ambiguous

problem as many transformations may result in visually

good image alignment. Hence, regularity conditions are

imposed to favor spatially smooth transformations. For lon-

gitudinal analysis methods, temporal regularization can be

used to single out plausible solutions [3, 5, 13], but vari-

ous brain structures develop at different rates and temporal

regularization can introduce bias by restricting the temporal

evolution of the solution.

However, in conjunction with a suitable image similar-

ity measure successful deformable image registration can be

achieved in many instances. As image appearance changes

(in structural MR images; see Fig. 2) during neurodevelop-

ment standard similarity measures (such as mutual informa-

tion or cross correlation) are no longer appropriate and may

lead to incorrect estimates of deformation that regulariza-

tion alone cannot fully prevent. A way to improve align-

ment is to introduce meaningful constraints into the regis-

tration. In [2] white matter appearance over time is esti-
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mated locally and then used to create a predicted target im-

age for registration at a given time-point. By restricting in-

tensities to conform to a parametric model an improved reg-

istration performance can be obtained. While an improve-

ment over the standard registration model, the model in [2]

is fully data-driven and parameter-estimation may therefore

become unreliable if the number of images in the longitu-

dinal data set is low. To improve performance we therefore

propose to learn an atlas of expected models of intensity

change and to use it as a prior to better guide the deformable

registration for longitudinal data sets with missing time-

points. In addition, the prior can also aid the model-based

registration of complete data sets when the model cannot

be reliably estimated due to corrupted data or poor initial

alignment.

Furthermore, atlases are frequently used to aid various

image processing methods, such as registration [9] and seg-

mentation [4]. Therefore, the maturation atlas in itself could

be useful for other methods.

Contributions.

• A method to integrate the longitudinal intensity prior

into a deformable registration approach to aid the reg-

istration for data sets with missing time-points.

• An atlas-building method and the resulting atlas de-

scribing white matter maturation and its expected vari-

ation based on longitudinal data sets.

• A synthetic test case showing improved alignment for

the proposed registration approach over a deformable

registration method that includes a longitudinal inten-

sity model without any priors [2].

• An evaluation on a real data set showing that the pro-

posed method can achieve comparable registration re-

sults to registration with the full longitudinal image se-

quence even with missing time-points. The results are

validated with manually selected landmarks.

Our method aims to recover biologically plausible

changes in brain maturation. Sec. 2 integrates the atlas as

a prior into a registration method. Sec. 3 describes the ap-

proach to build the atlas of brain maturation. Experimental

results are shown in Sec. 4. The paper concludes with a

discussion and outlook in Sec. 5.

2. Using the Maturation Information

Given a longitudinal set of images that should be regis-

tered we have (following [2]) the equivalent of the sum of

squared difference intensity difference with respect to a fit

logistic model over all images

SSR({Ii}) =

n−1∑
i=0

∫
Ω

(I(Φi(x), ti)− Î(x, ti))
2 dx, (1)

where Ω is the image domain of the fixed image, Î is the

intensity-adjusted spatially fixed target image, and Φi is the

map from the moving image I to the target image Î . As we

want to make use of the prior information we augment this

similarity measure to

SSRP ({Ii}) =

n−1∑
i=0

∫
Ω

(I(Φi(x), ti)− Î(x, ti))
2 dx

+ γ

∫
Ω

∫
t

1

σ2(x, t)
(Ip(x, t)− Î(x, t))2 dt dx, (2)

where Ip is the intensity predicted by the prior model, σ2

is the variance of the image intensity values with respect

to the model intensity (see Sec. 3 for more details on the

model estimation), and γ > 0 a chosen balancing constant.

Hence, given a current estimate of the deformation we can

compute an estimate for the model Î locally by minimizing

Eq. 2 with respect to the parameters θ̂ of Î . The remainder

of the procedure stays unchanged.

3. Estimating the Prior from a Population

To build the atlas we make the following choices and

assumptions:

1. Locality of the model. We define the model over a

white matter mask only as the expected change in gray

matter intensity throughout neurodevelopment is neg-

ligible compared to the white matter.

2. Atlas space. As white/gray-matter contrast is best for

a fully matured brain, the atlas is defined on an av-

erage atlas image for the latest time-point in our data

set – where an automatic white matter segmentation

can be reliably obtained. The atlas model parameters

are resampled in the anatomical space of each subject

through registering the atlas to the latest time-point.

3. Temporal model type. Ideally, we would learn the

model fully from the data. However, given the limited

number of subjects typical for most neurodevelopment

studies we use a logistic model (as in [2]) with fixed

asymptotes (for minimal and maximal white matter in-

tensity). This way the temporal model is parameter-

ized by only two parameters capturing onset and rate

of maturation.

4. Spatial regularization. In order to provide robust es-

timates of the model parameters with respect to image

noise and small registration errors we enforced spatial

regularity on the estimated group-wise model parame-

ters via a 3× 3× 3 median filter.
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Figure 2. Example of an expert-defined anatomical landmark

within the same subject (top: axial slices; bottom: sagittal slices).

Data set. We make use of synthetic and real data sets for

evaluation and atlas-building. Our real data set consists

of longitudinal MR images with five time-points (scanned

at 2 weeks, 3, 6, 12, and 18 months) for 10 normal

rhesus macaques acquired at the Yerkes Imaging Center

(Emory University, GA). The subjects were scanned on a 3T

Siemens Trio scanner at the Yerkes Imaging Center, Emory

University with a high-resolution T1-weighted 3D magne-

tization prepared rapid gradient echo (MPRAGE) sequence

(TR = 3,000ms, TE = 3.33ms, flip angle = 8 , matrix = 192

× 192, voxel size = 0.6mm3, some images were acquired

with TE = 3.51ms, voxel size = 0.5mm3).

The images were inhomogeneity corrected [12] and reg-

istered into a standardized atlas space using an affine trans-

formation with a local cross correlation metric (ANTS [1]).

Skull stripping and tissue segmentation were obtained with

an atlas-based segmentation method [10]. Furthermore, 35

anatomical landmarks were defined by an expert for all 5

time-points (see Fig. 2).

To build our maturation atlas we first perform intra-

subject elastic deformable registration to the latest time-

point using the previously developed longitudinal SSR reg-

istration [2]. Inter-subject registration is then established by

registering the oldest time-point of each subject to a com-

mon atlas space. This establishes correspondences between

all subjects for all time-points. We thin the white matter

mask to avoid model estimation errors for the logistic inten-

sity model near tissue boundaries due to partial voluming,

segmentation errors, or registration errors. For each point in

the thinned white matter mask the logistic models are then

estimated as follows.

Model estimation. We point-wise estimate logistic

curves. We considered (i) a direct fit of the logistic model

to all data points (disregarding their longitudinal nature),

(ii) a full longitudinal estimation procedure, and (iii) fitting

individual logistic curves for each subject followed by the

computation of the median of these logistic curves. Since

different subjects of the same age may be at slightly dif-

ferent stages of neurodevelopment the first two approaches

would require a simultaneous estimation of this time-shift

to avoid underestimating the maturation rate. We there-

fore chose the latter approach as it is robust to such time-

shifts, is simple, and provides a parametric model. We lo-

cally compute the median curve over the population using

the approach proposed for calculating the functional box-

plot [11], where we replace all the measured values by the

values of their individual logistic model fits. As the me-

dian curve will be a curve from the data set we thus ob-

tain a median logistic curve. (This is fundamentally dif-

ferent from computing a point-wise median.) The indi-

vidual logistic models are fit using ordinary least squares1

[θ̂j = argmin
θ

∑
i(Ij(ti) − logistic(ti, θ))

2], where Ij(ti)

is the intensity at time-point ti for subject j and θ denotes

the coefficients for the logistic model. The logistic model is

defined as

logistic(x, t;α, β(x), k(x)) =
α

1 + e−k(x)(t−β(x))
, (3)

where α is a global parameter (intensity change between

unmyelinated and myelinated white matter), β (onset: time

of maximum rate of intensity change) and k (maximum

rate of intensity change) are spatially varying model pa-

rameters (see Fig. 3). We further compute the variance

of the actual measured values with respect to the me-

dian logistic model (θ) at our ages of interest [σ̂2(ti) =
1

N(ti)

∑
j(Ij(ti)− logistic(ti, θ)))

2], where N(ti) denotes

the number of measurements at time-point ti. This allows

us to introduce local weights into the registration method

(see Sec. 2).

t

i

2w 3m 6m 12m 18m

α

Figure 3. Logistic intensity model. The model parameters are es-

timated for five time-points.

As maturation is expected to be locally smooth we

smoothly extend the estimated parameters of the logistic

model to the full white matter mask. Fig. 4 shows sam-

ple slices with the color-coded coefficients for onset and

maturation rate. The maturation atlas captures the expected

maturation patterns [8] with areas deeper in the brain either

reaching their matured intensity early or already being fully

matured at two weeks of age (first time-point).

1This could be easily replaced by a weighted least squares model ap-

proximating for example a Rician noise model [7].
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Figure 4. Estimated onset (in months) and rate of maturation overlaid on three axial slices of the structural atlas (columns 1-3: inferior to

superior). Note that this is the initial estimate in the thinned white matter mask. The parameters follow an expected pattern of maturation.

The plots show the individual (red) and median (blue) logistic curves and the intensity values (black dots) for the ten subjects for two

different voxels.

Shortcomings of the model estimation. Time-shift un-

certainties are only implicitly accounted for in our model as

the computed variances will be a combination between im-

age noise, registration errors, and time-shifts of the matura-

tion trajectories. An improved estimation procedure could

also estimate the time-shifts, however at the cost of greater

model complexity. Our observations indicate that these

shifts (if present) are relatively minor and therefore chose

not to explicitly model them. However, the effect of time-

shifts should be investigated as part of future work.

4. Experimental Results

To assess the utility of incorporating the white mat-

ter intensity prior into the longitudinal similarity measure

SSR we i) validated the proposed method on a synthetic 2D

data set, ii) for the real 3D monkey data, showed that affine

registration alone is not sufficient to align developmental

image sequences, and iii) tested the utility of the prior for

incomplete real data sets.

4.1. Registering synthetic 2D data set

To test the influence of prior brain maturation infor-

mation when used within the registration we used a syn-

thetic test case shown in Fig. 5 and compared the model-

based similarity measure SSR without prior to the new

measure SSRP. The five synthetic images I1, . . . , I5 repre-

sent simplified MR images of the developing brain at times

ti = 0, 0.5, 0.6, 0.7, 1.0 with logistic white matter inten-

sity change over time (the onset and rate of intensity change

spatially varies within the white matter) and a Rician noise

model. A small longitudinal deformation was added to the

moving images I1, . . . , I4 to simulate a non-linear growth

process (described in Sec. 4.2.1). The red outline shows

the tissue gray/white matter boundary of the target image.

The small misalignment of the tissue boundaries is repre-

sentative of the misalignment seen in the real images after

an initial affine registration. The intensity model estimation

often fails to recover a reasonable model in these regions

due to the mixed gray and white matter voxels in the same

spatial location at the various time-points. The goal of the

experiment is to recover the true deformation Φ−1
i for each

time-point t1, . . . , t4.

Table 1. Registration error for synthetic data experiment with vary-

ing prior weights and number of time-points used for model esti-

mation. The error is the average pixel-wise difference between the

known true deformation and the recovered deformation within the

mask of the target image (in pixels). The minimum for each row

is highlighted in bold.

prior weight (γ)

time-points 0 0.01 0.1 0.5 1

1 5 1.78 0.96 0.61 0.24 0.09

1 2 5 0.92 0.69 0.39 0.27 0.22

1 2 3 5 0.49 0.47 0.38 0.31 0.28

1 2 3 4 5 0.25 0.25 0.25 0.24 0.24

In this experiment the true intensity model is known for

the synthetic images and it is used as the prior. The regis-

tration experiments were run with varying the prior weight

parameter γ = 0, 0.01, 0.1, 0.5, 1 (with γ = 0 SSRP re-

duces to the standard SSR registration; the results converge

at γ = 1) and the number of time-points available for the

model estimation from 2 up to all 5 (total of 20 experi-

ments). Fig. 6 shows the registration results for two prior

weights (γ = 0, 1) and two different number of time-points

for the model estimation. Using only two time-points for

the model estimation step without the prior results in a poor

121



age

I1 I2 I3 I4 I5

gray matter

myelinated white matter

unmyelinated white matter

d
ef
or
m
at
io
n
Φ

Figure 5. Synthetic data set with logistic white matter intensity change and longitudinal deformation over time. I1, . . . , I4 are source

images, I5 is the target image. The red outline shows the white matter gray matter boundary of the target image (top row).

model and subsequently in poor registration. Adding the

prior with a lot of weight results in a greatly improved

model and registration. Note that when all the time-points

are available for the model estimation the prior has less of

an influence since the model can be estimated well from the

data alone. Table 1 shows the registration errors for all the

20 experiments. The registration errors are computed as the

average pixel-wise difference between the known true de-

formation and the recovered deformation within the mask of

the target image. The prior considerably improves the regis-

tration results when the model is estimated from only a few

time-points, but has less of an effect when all time-points

are available. However, using the prior improved registra-

tion even with the complete data set. This is due to the

improved model estimation near tissue boundaries where

initial misregistration can result in mixing gray and white

matter voxels and therefore lead to poor model estimation.

Note that since the true prior is known for this experiment,

the best results is obtained with largest overall weight on the

prior (with two time-points the data is weighted less than

with all the time-points).

4.2. Registering real 3D data set

The real monkey data set is described in Sec. 3 and

shown in Fig. 1 for a single subject. We assessed the quality

of the registration results using manually placed landmarks.

4.2.1 Accuracy of affine registration

While the non-uniform growth of various brain regions [6]

indicates that affine registration should not be sufficient to

align the longitudinal images and therefore a deformable

registration method is necessary, our experience suggests

that affine registration alone can produce a good alignment

even between I2wk and I18mo. To test the within-subject ap-

propriateness of a simple affine image-alignment, for each

subject we first affinely registered the longitudinal images

(I2wk, . . . , I12mo to I18mo) using a normalized cross corre-

lation similarity measure which has previously been found

effective [2] even in the presence of image intensity changes

as expected during brain maturation. Then we performed

an additional deformable registration of the affinely aligned

images using SSR [2].

The registration error was calculated as the distance be-

tween the transformed and the target landmarks. Signifi-

cance was calculated with a paired-sample t-test at a sig-

nificance level of α = 0.05. The boxplots in Fig. 9 show

the landmark alignment errors per time-point for both affine

(a) and deformable (d) registration methods using all land-

marks (left plot; 350 landmark pairs per time-point) and us-

ing only a subset of six landmarks (right plot; 60 landmark

pairs per time-point).

What is clear from both plots is that the registration er-

ror for both affine and deformable registration is inversely

proportional to age, but there is no clear benefit of us-

ing deformable registration when aggregating the results

over all the landmarks (the mean registration error for

I2wk, . . . , I12mo are 1.95, 1.57, 1.04 and 0.65 mm for affine

and 1.82, 1.44, 0.98, 0.74 mm for deformable registration,

respectively; the means of the two methods are significantly

different for each age). This would suggest that the poor

affine alignment of I2wk is not the result of an insufficient

transformation model, but possibly increasingly inaccurate

landmark placement due to poor tissue contrast at earlier

time-points (see Fig. 2).

However, taking a closer look at individual landmarks

revealed that only a small subset was not well aligned af-

ter affine registration. Fig. 7 shows four landmarks after

affine and deformable registration. Landmarks 28 and 4

were well aligned after affine registration and thus did not

change after deformable registration; however, landmarks 7

and 32 moved closer to the target 18 month locations. Out

of the 35 landmarks we chose a subset of 6 that have signif-

icantly changed after the deformable registration (improve-

ment was not a criteria when choosing the subset). The high

variability across subjects of certain landmarks may be at-

tributed to the inaccuracy of the landmarks at the earlier

time-points due to poor tissue contrast or anatomical varia-

tions in those brain regions.

122



I1 I2 I3 I4 I5 I1 I2 I3 I4 I5
m
o
d
el

Î
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Figure 6. Registration results with no prior (left set of images) and use of the prior with weight 1 (right set of images) and the number of

time-points used for the model estimation. For the two different number of time-points: top row: estimated model; middle row: the target

tissue boundary (red) and the registered boundary (yellow) are overlaid on the registered images and should be close for good registration;

bottom row: the deformation field field is overlaid on the registered images.

Once we restricted our analysis to a subset of the 6 land-

marks previously described the benefit of the deformable

registration became apparent (see right plot in Fig. 9; the

mean registration error for I2wk, . . . , I12mo are 2.44, 2.03,

1.24, 0.59 mm for affine and 1.97, 1.24, 0.86, 0.72 mm for

deformable registration, respectively; the means of the two

methods are significantly different for each age). In fact,

these results are consistent with the longitudinal deforma-

tions seen in the images. Fig. 8 shows the typical deforma-

tion of the brain seen in the data sets: an upward bending of

the brain about the brain stem along the anterior-posterior

line. This finding is consistent with the known develop-

mental growth trajectories of the centrally located lateral

ventricles and the cerebellum that contribute the majority

of the subcortical brain volume increase during early post-

natal development [6]. The landmarks that have changed

significantly are located in the regions that the bending de-

formation affected the most (superior-anterior and inferior-

posterior regions).

4.2.2 Influence of prior with missing data

In this experiment we tested the utility of the proposed

method that incorporates a prior into the model-based de-

formable registration method.

We registered a subset of the four early time-points

I2wk, . . . , I12mo to the target image I18mo with the pro-

posed model-based method for each of the 10 sub-

jects. The subsets either contained {I2wk}, {I2wk, I3mo},

{I2wk, I3mo, I6mo}, or all four, {I2wk, . . . , I12mo}, moving

images (the last subset corresponding to no missing data).

The missing time-points were not used for the model esti-

mation. For each of the four subsets, the registration ex-

periments were repeated with five different prior weights

γ = 0, 0.01, 0.1, 0.5, 1 (with γ = 0 SSRP reduces to the

standard SSR registration) totaling 20 experiments (as in

Sec. 4.1).

As in Sec. 4.2.1, the registration error was computed as

the distance between registered and the target landmarks.

We used the most challenging registration between I2wk

and the I18mo to assess the quality of the registrations (note

that some of the immediate time-points were used for the
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Figure 7. A subset of landmarks (7, 28, 4, 32) are shown on the structural atlas. For each landmark, we show the location on the axial

(top row) and the sagittal (bottom row) plane. The landmark locations are color coded by age (2wk: cyan; 3mo: magenta; 6mo: green;

12mo: blue; 18mo: red). For each landmark, the first two columns show all 50 locations (10 subjects × 5 time-points) for affine (a) and

deformable (d) registrations. Columns 3 and 4 show the mean location for each age for affine (a) and deformable (d) registrations. Note that

the I18mo (target) images were affinely registered to the atlas before the within subject affine and deformable registrations, but variations

in anatomy and landmark placement across subjects can be seen as the spread in landmark locations.

Figure 8. Cartoon depiction of the typical anterior-posterior de-

formation seen between the 2 week and the 18 month images (in

the sagittal plane). The deformation is a result of the non-uniform

growth trajectories of various brain regions. Landmarks located

near the anterior and posterior regions (red) are affected more by

the deformation than centrally located landmarks (blue).

model estimation for three of the subsets). Similarly to the

previous experiment, we chose a new subset of 6 landmarks

(different from the one used in Sec. 4.2.1) in the central re-

gion of the brain where using a prior had noticeable impact.

The following results were computed using the subset of

landmarks.

Table 2 shows the registration errors for all 20 experi-

ments. For each moving image subset with a non-zero prior

weight (columns 2-5) the registration errors were compared

to the zero prior weight errors (column 1). The prior signif-

icantly improved the registration results by 0.21 mm for the

data sets with three missing time-points (top row) at prior

weight 1 (highlighted in bold). Additionally, there were sig-

nificant improvements with the prior for two and no missing

data sets. However, all improvements were at a sub pixel

level.

Table 2. Registration error (in mm) for monkey data experiment

with varying prior weights and number of time-points used for

model estimation. The registration errors are computed for the

I2wk to I18mo registrations for all 4 subsets of moving images and

5 prior weights. For each row, statistically significant improve-

ments with respect to the first column (γ = 0) are highlighted in

bold.

prior weight (γ)

time-points 0 0.01 0.1 0.5 1

1 5 2.08 2.11 2.07 2.02 1.87

1 2 5 1.96 1.91 1.91 1.84 1.86

1 2 3 5 1.88 1.89 1.91 1.86 1.86

1 2 3 4 5 1.90 1.93 1.84 1.88 1.89

The synthetic experiments show a clear benefit when us-

ing the prior with missing data, but the improvement for the

real data is difficult to show globally. While the prior has

a clear impact on the estimated model images (Î), the ben-

efit of using a prior only becomes evident when restricting

the landmarks to the central region of the brain where the

model estimation is most influenced by the prior. Note that

while these improvements are only measured at sparsely

placed landmarks, when trying to measure subtle volumet-

ric changes during development the small improvements are

integrated over large structures.

124
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Figure 9. Landmark errors per time-point for all 10 subjects after registering the earlier time-points I2wk, . . . , I12mo to the oldest I18mo

image within subjects using affine (2a,. . . ,12a) and deformable (2d,. . . ,12d) registration. While the deformable registration slightly im-

proves alignment for I2wk, . . . , I6mo (and worsens it for I12mo), the changes are negligible when aggregating over all landmarks (left plot),

but are more prominent when only considering a subset of the landmarks (right plot).

A more in-depth analysis of the subtle improvements

should be part of future work, but we list a few possible

explanations of why the benefit of using a prior is not as

evident for the real data as was for the synthetic data set:

(i) the landmarks are placed in easily identifiable regions

with prominent structures, therefore these regions are eas-

ily registered even without a prior; (ii) the landmarks are

inaccurate in the earlier time-points due to the poor tissue

contrast and noisy images (see Fig. 2); (iii) the morpholog-

ical changes, other than affine, between the 2 week and the

18 month images are too subtle to be measured by sparse

landmarks and only affected a small subset of the 35 land-

marks.

5. Conclusions

We proposed to incorporate a longitudinal intensity at-

las into a model-based longitudinal similarity measure. The

atlas is used as a prior and can guide the registration when

the model cannot be reliably estimated due to missing data.

While the similarity measure uses a logistic model, the for-

mulation is general and other models can be used. We

showed that using a prior can improve registration with

missing data. In the future, we will investigate the benefit

of using a prior with data sets containing larger non-linear

morphological changes.
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