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Abstract

In this paper we introduce a method to handle the chal-

lenges posed by image registration for placenta reconstruc-

tion from fetoscopic video as used in the treatment of Twin-

to-Twin Transfusion Syndrome (TTTS). Panorama recon-

struction of the placenta greatly supports the surgeon in

obtaining a complete view of the placenta to localize vas-

cular anastomoses. The found shunts can subsequently be

blocked by coagulation in the correct order.

By using similarity learning in training a Convolu-

tional Neural Network we created a novel feature extrac-

tion method, allowing robust matching of keypoints for im-

age registration and therefore taking the most critical step

in placenta reconstruction from fetoscopic video.

The fetoscopic video we used for our experiments was

acquired from a training simulator for TTTS surgery. We

compared our method with state-of-the-art methods. The

matching performance of our method is up to three times

better while the mean projection error is reduced with 64%
for the registered images. Our image registration method

provides the ground work for a complete panorama recon-

struction of the placenta.

1. Introduction

The Twin-to-Twin Transfusion Syndrome (TTTS) is a

condition that occurs in about 10% of the pregnancies in-

volving monochorionic twin (twins with a shared placenta).

In TTTS an unbalanced exchange of blood caused by vas-

cular anastomoses (shunts) in the placenta causes fatal com-

plications for both twins [11]. Fetoscopic surgery is a com-

mon technique used to separate the fetal circulations by co-

agulating the connecting vessels with a laser beam. This

technique has shown large improvements in the survival rate

over other treatments [5]; even though far from optimal, it

is currently a widely applied procedure [14].

One of the limitations that complicates the surgery is the

very limited view of the fetoscope and the lack of a com-

plete overview as the fetus is generally occluding large parts

of the placenta. Limitations on the endoscope diameter limit

the possibilities to improve this on the level of the surgical

instruments. A complete view of the placenta would greatly

support the surgeon in localizing all vascular anastomoses

and guiding the surgeon to coagulate these shunts in the cor-

rect order [14].

To obtain such a view, this paper presents a novel method

for image registration as this is the most critical step in the

construction of a panorama from fetoscopic video. Our ap-

proach uses similarity learning at training a Convolutional

Neural Network (CNN), to create a feature extractor that is

suited to the images from the fetoscope and invariant to the

transformations encountered by its movements. This fea-

ture extractor allows both robust matching of keypoints and

transform estimation.

2. Related Work

Reconstructing large view panoramas of the internal

anatomical structures has been a large field of research and

found many applications, such as retina [18], bladder [19]

and oesophagus [4] reconstructions, as well as in ex-uterin

endoscopic mosaicking [17, 12].

First, [17] shows the reconstruction of a small part of

an ex-vivo placenta, though the results show that the image

registration has a low accuracy and the reconstruction with-

out post-processing contains many artefacts. Furthermore,

the images are captured by moving the camera sideways in a

structured circular pattern. First of all this cannot be repro-

duced in an in-vivo setting, but also the transforms between

images now only consists of translations.

Second, in [12] they project endoscope images of a color

injected placenta on a 3D ultrasound model, which shows

accurate results in image registration. However, such a set-

ting with an ex-vivo color injected placenta is not compati-

ble with our goal of in-vivo surgery.

Third, there have been promising results in other appli-

cations such as bladder reconstruction [19]. There an ex-

vivo dye injected bladder is reconstructed from a flexible

endoscope with image registration, bundle adjustment and

spherical projection. However, also here this method is not
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suited for our setting, as no prior structure is available. Fur-

thermore, the encountered transformations here and in [18]

are also mostly translations which can be robustly estimated

with existing methods.

Last, in oesophagus reconstruction [4] an accurate recon-

struction is presented, however here pipe projection is used,

which is also not applicable to our setting. Furthermore,

spatial consistency is not required for this type of recon-

struction.

Although all above methods are not directly applicable

in our aimed setting, some successes have been shown.

2.1. Image Registration

The previously discussed applications all use image reg-

istration methods which try to find the transformation be-

tween two images [8]. They try to find corresponding pairs

of interesting points in both images by feature matching,

whereafter a transform is estimated based on the found

matches [22].

To find matching pairs, first interesting keypoints are

chosen using methods such as the maximum Difference of

Gaussians [13] as used in SIFT. Next, to find the corre-

sponding point in the other image, the selected keypoints

are described using a feature extraction method, such that

the features are similar regardless of the appearance changes

due to the transforms between the images. Obtaining such

features has been the source of many invariant methods such

as the Scale-Invariant Feature Transform (SIFT) [13] or Bi-

nary Robust Independent Elementary Feature (BRIEF) [3].

Though feature extraction methods are designed to be

invariant to transformations, there are still challenges in ob-

taining appropriate matches. To handle incorrect matches,

transform estimation methods try to find a best fitting es-

timation by iteratively fitting on random subsets of the

matches and selecting the best fitting subset. RANSAC [6]

is robust to mismatches but finds a sub-optimal estimation,

where LMedS [16] finds a more accurate estimation but re-

quires at least 50% correct matches.

2.2. Problem statement

Our initial as well as other research [17, 19] showed that

the state-of-the-art methods have promising results but lack

application in a realistic setting, i.e. it cannot be applied

in real surgery. Hence, our research focusses on using feto-

scopic videos from a more realistic setting which introduces

challenges not encountered before.

First of all, there is the loss of contrast of the blood ves-

sels due to the inability to use dye injected placentas. Then,

most of the time complex perspective transforms are en-

countered as the endoscope has a fixed point entering the

uterus and the view is mostly changed by rotating about this

entry point. Finally, since reconstruction of the placenta has

to be done near real-time, long post-processing is not pos-

sible and therefore the transform estimation has to be fairly

accurate and also consistent.

Our initial research showed that on our fetoscopic im-

ages, state-of-the-art keypoint methods fail to extract robust

keypoints and features, partly because these methods are de-

signed for natural images and require unique and distinctive

structures. But in our case blood vessels on the placenta are

very similar and have a very limited structure.

2.3. Convolutional Neural Networks

In the fields of Machine Learning and Computer Vision,

deep-learning neural networks have found a wide range of

applications due to their ability to learn specific concise rep-

resentations from the raw image data [10, 20]. They out-

perform many state-of-the-art methods as well as the pre-

viously described keypoint description methods. Further-

more, inspired by the neural sciences on how humans learn,

a Convolutional Neural Network (CNN) can be trained

to extract invariant features by using similarity learning

[7, 21]. Consequently, these characteristics motivate us to

use CNNs to cope with the challenges encountered in feto-

scopic image registration.

3. Method

In contrast to keypoint feature extraction methods, con-

volutional neural networks have to be trained to learn a

mapping between the input image data and a feature vec-

tor. Our proposed method uses a two staged approach; first

a network is trained to extract features that are robust to

small perspective transforms. Second, training an extension

of this first network is performed to fine-tune the feature

extraction, in order to obtain features that can be matched

robustly.

To train any neural network, a loss function is used to ac-

quire the feedback for updating the internal state of the net-

work. Our method is described in detail in section 3.1. The

network for image registration is described in section 3.2

detailing the feature extraction and the matching and regis-

tration parts of the network. As the network is trained using

a training set, the creation of the training set is described

in section 3.3. Finally, the remaining sections describe the

experimental setup (3.4), the results (4) and a discussion of

the results (5).

3.1. Learning Method

CNNs learn a mapping between the input and required

output by updating internal weights based on feedback

given to the network. This feedback, also defined as the

error or the loss, is obtained by defining a function which

generally takes the current and the desired output of the

network as inputs. This function tries to minimize the er-

ror between output of the network and desired output, thus

using only feedback on similarity.
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Figure 1. (e) elephant label / features, (m) mouse label / features

a) Label based learning b) contrastive loss c) matching learning

A different approach is to also define feedback on dis-

similar inputs. This is achieved with the contrastive loss

function [7]. Which defines feedback to decrease the dif-

ference between similar pairs and to increase the difference

between dissimilar pairs, which results in a more easily sep-

arable and more evenly distributed feature space.

To describe the difference in feedback, consider a net-

work trained to classify images containing either a mouse

or an elephant. Suppose during training a sample of an

elephant is incorrectly described as a mouse. Normally

feedback is provided to decrease the difference between the

class label from the network and the label from the training

sample. This results in making the output more similar to

the elephant label, as shown in figure 1a where the feature

after learning is still closer to the incorrect mouse label.

For contrastive loss training, a siamese network [1] us-

ing two images is used to train the network. Generally, this

method is utilized to train a network for feature extraction

making the output a feature vector. In the case where a sam-

ple of an elephant and a mouse is used, the difference be-

tween their outputs is increased up to a defined margin, as

shown in figure 1b with the red dashed ellipse. However, in

the case two samples of the same label are used, the differ-

ence between the two outputs is minimized as shown with

the green solid ellipse. Hence improving the feature extrac-

tion towards their correct label, as well as making the two

features more dissimilar and more easily separable.

Our goal is to train a CNN to extract invariant and ro-

bust features to describe key areas. To realise invariance to

perspective transforms, the error between different transfor-

mations of the same patch has to be minimized, while to

extract features that are separable, the error between differ-

ent patches has to be maximized. This can be achieved with

the contrastive loss function as is defined in (1). Where Xi

is the output of the network as feature vectors, m the mar-

gin, generally defined as 1, s the similarity of the pair with

1 as similar and 0 as dissimilar. For more details we refer to

the original work on contrastive loss [7].

L = s
1

2
(Dw)

2 + (1− s)
1

2
(max(0,m−Dw))

2 (1)

Dw = ‖X1 −X2‖2

In the process of image registration, extracted features

are matched on their Euclidean norm similarity. To train a

network to extract features that can be matched robustly, the

contrastive loss function is extended. The ground truth from

the training samples is used to select true matches. Next,

feedback is defined such that the error between incorrectly

matched features is increased and between correctly or sup-

posedly matched features is decreased. This is described

by (2), where f = 1 when the feature matching obtained a

false match and f = 0 when the feature matching was cor-

rect. Df and Dt are respectively the differences between

X1 and the feature vector obtained by feature matching Xf

or Xt obtained by the true transform.

L =
1

2
((1−f)Df +fDt)

2+f
1

2
(max(0,m−Df ))

2 (2)

Df = ‖X1 −Xf‖2
Dt = ‖X1 −Xt‖2

Function (2) is inspired by the contrastive loss function,

in minimizing the difference between correct matches and

increasing the difference between incorrect matches. But it

differs by introducing two reference features to match with;

the true match Xt and the feature based match Xf . In the

case where the feature matching was correct (f = 0), these

two references are the same, and (2) can be considered sim-

ilar to the case where s = 1 in (1) as the second term is can-

celled out. However, in the case where the feature matching

obtained an incorrect match (f = 1), additional feedback

is given based on the incorrect match. This has as effect

that not only the correct features are made more similar and

the incorrectly matched features more dissimilar, but also

that the specific aspects that form the difference between

the correct feature and the incorrect feature are improved.

To describe this effect, consider the previous example of

training a network describing images of a mouse and an ele-

phant. Imagine the feature vector describing some aspects

of the animals including colour and size. Suppose during

training an image of an elephant was mistakenly matched

with a feature of a mouse. The feedback will increase the

difference between these two features, in both colour and

size. Furthermore, feedback is given to reduce the differ-

ence between the correct feature and the extracted feature.

As the size of an elephant is large, the aspect of size is in-

creased even more. But as both animals are grey, the aspect

of colour is reduced. Even so, the importance of the colour

aspect is reduced over time up to the point that the network

will not use colour any more to describe the animals. This

is shown in figure 1c with the combination of the difference

between the incorrect feature and extracted feature Df as

well as the difference between the correct feature and the

correct feature Dt. Resulting in a much better separable

feature space as indicated with the black dotted line.
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Figure 2. CNN architecture.

It can be argued that the triplet learning from [21] is very

similar to our proposed method. However, there is one key

difference in the way how a dissimilar pair is chosen. In

[21] this is a fixed pair chosen at the moment the training

set is created, whereas our method dynamically obtains a

dissimilar pair based on the output of the network. There-

fore it is adaptive to what is learned in the network, creating

a much better separable feature space. Furthermore no dis-

similar pairs have to be selected when creating a training

set, reducing the training set size as well as training time

significantly.

3.2. Network Architecture

As stated before, the network is trained in two stages;

feature extraction training and robust matching training.

Both stages use a siamese network architecture, where two

parallel networks with the same architecture share their in-

ternal weights to process two simultaneous inputs [1].

For feature extraction, a network is designed such, that

an input image patch of 50×50 pixels is reduced to a feature

vector of size 32, by choosing the right number and filter

sizes for the convolution layers as shown in figure 2.

For training robust matchable features, the same network

is used, but instead of a single image patch, 961 patches

of 50 × 50 pixels are extracted in a 31 × 31 grid from a

500 × 500 image. Furthermore the contrastive loss layer

is replaced with the matching loss layer as described in the

previous section.

For evaluation with image registration, the matching loss

layer is replaced with a matching and rigid transform esti-

mation layer. This layer outputs the estimated rigid trans-

form found by RANSAC or LMEDS [6, 16] and the mean

projection pixel error between the true transform and the

estimated transform.

Algorithm 1 Training data

Step 1: Create image patches.

Step 2: Discard similar patches

Step 3: Select only interesting patches

Step 4: Create transformed patches

Step 5: Similarity pairing

Figure 3. Image from fetoscope and crops for learning

3.3. Training data

To train any CNN, a dataset has to be created that is as

small as possible to reduce the training time. As well as

a complete and an evenly distributed representation of the

variations to be encountered, in order to achieve robustness

and avoid over-fitting. In algorithm 1 the steps for creating

these training sets are shown and detailed below.

First, a subset of images from the fetoscopic videos are

selected to decrease the amount of training data. As the

motion within one second is expected to be small, only 5

images each second are selected. Next, for the first training

stage, patches of 50 × 50 pixels (figure 3 right bottom) are

extracted and for the second stage patches of 500 × 500
pixels (right top) are extracted at an interval of 50 pixels

from the valid area of 550×550 pixels of the source images.

Steps 2 and 3 are to improve the quality of the extracted

patches used in the dataset. First, the absolute pixel differ-

ence between all patches is obtained. Patches that are too

similar are discarded, such that reoccurring variations are

not presented multiple times. As a result, the dataset con-

tains an evenly distributed representation of the variations.

To further improve the information density of the dataset, all

patches with below average gradient energy are discarded.

This results in a set of patches that are above average de-

scriptive and makes sure that non-descriptive patches are

excluded.

In order to have invariance to the expected transforma-

tions, every patch is rigidly transformed. For the training

sets, fixed step sizes are chosen for every component of the

perspective transform, related to the observed transforms

occurring between two successive frames. Similarly, for the

evaluation sets, random transforms are chosen.

For similarity training, pairs are created in the final step

where every patch is paired with their variations. Further-

more for the first training stage also dissimilar pairs have to

be selected. Therefore every patch is paired with 25 of their

most similar patches based on the absolute pixel difference

obtained in step 2.
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Figure 4. Left: Simulator, Right: inside of simulator with placenta

3.4. Experimental Setup

To evaluate the introduced image registration method, fe-

toscopic videos were utilized from a TTTS surgery simula-

tor used to train surgeons as shown in figure 4 [15].

It has to be noted that the artificial model of the placenta

as shown in figure 5, is a close as possible representation

of a real placenta. This is unlike the much easier dye in-

jected placentas that are used in the current state-of-the-art.

Furthermore, the positioning of the placenta and use of the

fetoscope is similar to that of in-vivo surgery (figure 4).

The image registration method has been implemented on

a Dell precision M4700 with the Caffe [9] and OpenCV li-

braries. The videos have been acquired with a medical cam-

era capturing a circular image of 880×880 pixels represent-

ing an area of about 8× 8 mm as shown in figure 3.

4. Results

For performance evaluation of image registration in a re-

alistic setting, a video taken from the simulator operated by

an expert is processed. Three sections of the video have

been chosen with similar length of about 75 seconds, rep-

resenting different areas of the placenta. Training is per-

formed on one of the videos and compared with the other

two. Patches are extracted for both the first and second

stage of training and evaluation as described in section 3.3.

By changing the training set, three combinations of training

and evaluation could be obtained.

4.1. Experiment 1

First the invariance of the novel feature extraction

method is evaluated in respect to the different transforma-

tions and compared to the state-of-the-art keypoint descrip-

tors. In table 1, the average performance is shown together

Figure 5. Artificial placenta

Table 1. Correctly matched points

Method SIFT BRIEF CNN1 CNN2

Translation 28.2% 29.5% 67.5% 81.4%

±24.0% ±10.1% ±15.6% ±13.6%

Rotation 22.1% 31.5% 53.4% 74.5%

±19.0% ±7.8% ±13.1% ±12.6%

Scale 21.1% 36.1% 57.8% 72.9%

±16.9% ±7.9% ±11.6% ±12.2%

Perspective 13.7% 27.4% 51.4% 68.4%

±9.8% ±7.2% ±7.1% ±12.2%

All 13.8% 26.2% 50.9% 62.8%

±4.7% ±6.7% ±3.9% ±6.1%

with the standard deviation of the correctly matched points

out of the total keypoints. CNN1 represents the perfor-

mance trained only with the first stage, while CNN2 was

trained with the novel matching learning method.

All methods use a fixed grid of 31 × 31 points with a

spacing of 10 pixels, therefore always having 961 keypoints

for feature extraction. This was also chosen for SIFT and

BRIEF to guarantee that keypoints were available that rep-

resented the same area in both images. For both SIFT and

BRIEF, a match was only accepted if the distance ration

to the second best match was below a threshold as shown

in [2]. This threshold was adjusted such that only the best

matches, but also enough matches could be retained for the

next experiment.

4.2. Experiment 2

For performance evaluation of image registration in a re-

alistic setting, comparable to in-vivo surgery, table 2 shows

the image registration error as the mean pixel error of the

estimated transform together with the standard deviation.

For state-of-the-art keypoint description methods,

RANSAC is used for transform estimation, whereas for the

proposed methods also LMedS is used, as more than 50%
of the matches are correct matches.

It should be noted that even by adjusting the thresh-

old, for both SIFT and BRIEF, in 10-25% of the images

the matching ratio was so low that less than the required

4 matches were found. Furthermore, for about 15-25%,

no reasonable transform estimation could be found. These

have all been excluded from this comparison, as they influ-

enced the average pixel error drastically.

4.3. Experiment 3

Using 26 sequential registered images from the previ-

ous experiment, a partial reconstruction of the placenta, as

shown in figure 6, has been made of the same area shown in

figure 5. In this reconstruction, no post-processing or blend-

ing methods were used, but still giving promising results.
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Table 2. Mean pixel error of estimated transform. 1) RANSAC 2) LMeDS

Method SIFT BRIEF CNN1 1) CNN1 2) CNN2 1) CNN2 2)

Translation 4.0 ±1.7 px 3.5 ±1.7 px 3.2 ±3.4 px 2.6 ±1.8 px 2.6 ±1.5 px 2.4 ±1.4 px

Rotation 7.1 ±1.9 px 8.0 ±2.0 px 6.6 ±5.0 px 4.0 ±2.6 px 4.3 ±2.8 px 2.4 ±1.7 px

Scale 7.1 ±1.8 px 8.6 ±1.4 px 5.3 ±3.7 px 3.6 ±2.0 px 4.6 ±3.1 px 2.6 ±1.6 px

Perspective 9.9 ±3.1 px 9.8 ±2.8 px 6.6 ±3.9 px 4.2 ±2.6 px 5.7 ±3.2 px 2.9 ±1.6 px

All 8.3 ±3.0 px 8.5 ±2.7 px 7.5 ±4.0 px 5.2 ±2.9 px 6.6 ±3.1 px 3.0 ±1.6 px

5. Discussion

In this paper an image registration method is introduced

to handle the challenges posed by fetoscopic videos. The

main challenge in image registration is to obtain invariant

features that can be matched robustly. With the experiments

it was shown that feature extraction with a CNN trained in

a novel way, allows for more robust features and improves

image registration of fetoscopic images.

The first experiment shows that depending on the ap-

plied rigid transformation, for the novel approach of using

learned feature extraction, up to 67.5% of the features can

be matched. The key behind this, is that the network learns

to extract the essential components to describe an area, such

that it is still invariant to the applied transforms.

The remarkable low matching performance of state-of-

the-art methods can be explained by the ratio between the

robustness to variations and the difference between different

keypoints. For both SIFT and BRIEF, as they are designed

to be invariant to these type of rigid transformations, the

difference between extracted features of similar keypoints is

small. Thus, for robust keypoint matching, it requires a very

different type of keypoint, which is also the reason why it

is advised to only accept matches by a distance-to-second-

best ratio. However, as having different type of keypoints

is not feasible with fetoscopic images, since blood vessels

look very similar, the result is a low matching performance.

This also explains the two causes why many of the

matching samples for SIFT and BRIEF had to be excluded

from the results. This had two causes. First, the distance-

Figure 6. Reconstruction of placenta

to-the-second-best-ratio threshold rejects the majority of

matches, resulting in less than 4 matches. Second, the fea-

tures are too similar and are matched incorrectly.

In contrast to state-of-the-art keypoint descriptors, our

novel matching learning method increases the difference be-

tween different areas on top of the invariant feature extrac-

tion. This is shown in the improvement in matching per-

formance between CNN1 50.9% and CNN2 62.8% for all

transforms.

In [17] they showed a matching performance of 68% for

SIFT matching. This is quite different from the results pre-

sented in this paper. But, this difference can be explained

by three aspects. First, the field of view of their endoscope

is larger, showing much more structure. Second, they use

a dye injected placenta, which results in much more con-

trast allowing for better features to be extracted. Third, the

motion they used during recording consists mostly of trans-

lation. SIFT obtains a 2 times better matching performance

in experiment 1 for translation (28.2%) compared to the re-

alistic transforms encountered during surgery which it only

matches 13.8%.

The results of experiment 2 show that having more cor-

rect matches makes for more robust and precise transform

estimation. This is reasonable because of the well known

correlation between the amount of matches and the trans-

formation error. It should also be noted that LMedS will

give an optimal estimation, where RANSAC will give the

best estimation of its iterations. This can be seen from the

results of CNN1 with LMedS and CNN2 with RANSAC for

all transforms. The latter has more correct matches, 62.8%
compared to 50.9%, but also a higher estimation error of

6.6 compared to 5.2 pixels. Furthermore, looking at the in-

dividual matching results, it can be seen that RANSAC will

sometimes give an estimation that is quite far off.

Another aspect that is often not considered is the consis-

tency of the image registration process. With conventional

keypoint matching methods some of the images could not

be registered. The same problem has been reported in [17].

With our proposed method, 100% of the test images could

be matched, as the features and matches obtained were very

robust to the variations in the image data and the perspec-

tive transform between two successive images. Therefore,

continuous and complete panorama reconstruction should

be obtainable with this novel method.
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In experiment 3 an attempt is made towards reconstruct-

ing large view panoramas, using images from a fourth se-

quence. Unfortunately, motion blur and lack of structure in

small areas, limited the length of the sequence and therefore

the area that could be reconstructed. However, the consis-

tency of the obtained transform estimation shows that large

view panoramas can be reconstructed. Furthermore shows

that the quality of the videos is important as well.

One aspect of keypoint based image registration that is

not covered in this paper is the detection of these keypoints.

In this work, a grid of 31 × 31 is used as keypoints, where

generally these are detected, such as in the detection part of

SIFT. In future work, this aspect will also be included, but

the exclusion of this aspect can be explained.

First, as stated before, it cannot be guaranteed that the

detection will obtain keypoints that are matchable between

the two images. In a grid of keypoints, this can be guaran-

teed with an increased distance, where the maximum pos-

sible distance between matchable keypoints, excluding the

transformation, is half of the interval between the points on

the grid.

Second, a placenta, consisting of a network of blood ves-

sels, has very limited unique features. Moreover, the edge

between a blood vessel and the underlying tissue of the pla-

centa is very similar along the whole edge. As a result,

a keypoint is generally arbitrarily detected along this edge

and consistent keypoint detection cannot be guaranteed. For

future work, a keypoint or an interesting area should be

selected on the structure of this edge and not the gradient

around a point on this edge.

6. Conclusion

In this paper, a novel method is described for the first and

most crucial step in panorama reconstruction. This method

can extract robust matchable features using a Convolution

Neural Network, which is trained with a novel matching

similarity learning method.

This approach largely improves the number of correctly

matched features over the state-of-the-art methods. The fea-

ture matching, which is almost three times better, gives a

64% increase in transformation estimation accuracy. Fur-

thermore, consistent registration can be achieved, because

for every image, a reasonable transform estimation could be

obtained, which is of great importance for the reconstruc-

tion of large view panoramas.

These improvements are achieved while fetoscopic im-

ages from a more challenging and realistic setting are used,

in contrast to commonly used ex-vivo and dye injected set-

tings. Furthermore, a partial reconstruction could be ob-

tained, showing a 4 by 2 times larger view of the placenta

while containing only minor visual artefacts.

Based on the obtained results, some recommendations

can be made for future research. First, the detection of in-

teresting points based on learned CNN for keypoint detec-

tion should be evaluated, as this is one of the main aspects

that was not covered in this paper. Furthermore, on-the-

fly bundle adjustment of the image registration using mul-

tiple locally overlapping images should be used to improve

the reconstruction accuracy and its spatial consistency for a

complete reconstruction of the placenta.

Furthermore recommendations towards implementation

in surgery can be made. The current image data is cap-

tured from a single artificial model. The transferability of

the trained network between the artificial model and an in-

vivo setting as well between patients should be evaluated.
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