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Abstract

We present a novel approach where we address image

registration with the concept of a sparse kernel machine.

We formulate the registration problem as a regularized min-

imization functional where a reproducing kernel Hilbert

space is used as transformation model. The regulariza-

tion comprises a sparsity inducing l1-type norm and a well

known l2 norm. We prove a representer theorem for this

type of functional to guarantee a finite dimensional solu-

tion. The presented method brings the advantage of flexi-

bly defining the admissible transformations by choosing a

positive definite kernel jointly with an efficient sparse rep-

resentation of the solution. As such, we introduce a new

type of kernel function, which enables discontinuities in the

transformation and simultaneously has nice interpolation

properties. In addition, location-dependent smoothness is

achieved within the same framework to further improve reg-

istration results. Finally, we make use of an adaptive grid

refinement scheme to optimize on multiple scales and for

a finer control point grid at locations of high gradients.

We evaluate our new method with a public thoracic 4DCT

dataset.

1. Introduction

Non-rigid image registration is a central problem in

many medical image analysis tasks. The aim of image reg-

istration is, to align two similar images in a way, that a tar-

get image can be expressed through a reference image by a

spatial transform mapping. To recover meaningful anatom-

ical changes, smooth transformations are often desirable. In

contrast to that, in abdominal imaging, sliding organ bound-

aries require discontinuous transforms for accurate align-

ments, which imposes challenges on defining proper trans-

formation models.

In this paper, we formulate image registration as a com-

bined l1-type and l2 regularized minimization problem,

whose regularization favors sparse solutions. We define the

space of admissible transform mappings as an infinite di-

mensional reproducing kernel Hilbert space (RKHS) and

prove the corresponding representer theorem in order to

guarantee a finite solution. The theorem states that a mini-

mizer of the discretized functional lies within a finite dimen-

sional linear subspace of the infinite dimensional RKHS,

and this subspace is spanned by the basis functions placed

at the spatially sampled finite number of points. To the best

of our knowledge, this has not been proven for this kind

of l1-type regularized functionals, so far. The application of

the functional to image registration is new as well. It has the

advantage that the desired properties of the resulting trans-

form mapping can be specified directly by a positive defi-

nite kernel function. To cope with cases, where discontinu-

ities in the transformation are desirable, we introduce a new

compactly supported kernel function that allows for such

discontinuous transforms and simultaneously has nice in-

terpolation properties. To demonstrate the flexibility of our

approach we further introduce a nonstationary kernel func-

tion that yields smoother transformations at locations with

bony structures and less smooth ones otherwise. For the

optimization, we adopt an adaptive grid approach, where

the control point grid is only refined where the parameters’

gradient magnitude is non-zero. We evaluate our method

on the publicly available 4DCT dataset of the POPI model

[21], where we achieve a state-of-the-art registration perfor-

mance without using manually defined image masks.

The parametric way to approach non-rigid image reg-

istration has been extensively studied for more than two

decades [11, 12]. Based on the introduction of the free-

form deformations (FFD) into registration [12], a lot of ad-

vanced registration approaches have been successfully ap-

plied to medical images. For a comprehensive overview

about non-rigid image registration methods, including non-

parametric and discrete approaches, we refer to the survey

[19]. Lately, discontinuity preserving attempts appeared in-

creasingly [1, 3, 5, 10, 14]. In [18], FFD have been applied

along with l1 regularization on the transform parameters in
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multiple scales jointly. In [22], total variation regularization

on the displacement field has been approximated. l1 regu-

larization causes the solution to be sparse. However, for

the continuous objective and the underlying infinite dimen-

sional function space, there is no finite solution in general.

Because of the parametrization therefore, an infinite dimen-

sional part of the solution space is lost.

l1 regularization has a long tradition in machine learn-

ing [13, 20] and specifically in kernel methods [24]. De-

spite their flexibility and profound theory, kernel methods

are rarely used for registration [7, 9, 16]. The flexibility

originates from the fact that the properties of the admissible

transformations can be modeled directly through a positive

definite kernel function. This stands in contrast to FFD-like

approaches, where standard regularizers specify the trans-

formation properties indirectly through differential opera-

tors and hence are conceptually rather rigid. Furthermore,

as stated above, with the help of reproducing kernel Hilbert

spaces, finite solutions are guaranteed by representer theo-

rems [2].

In the following, we first define the transformation model

and the type of functional we consider for image registra-

tion. This is followed by concrete models where we intro-

duce kernels which lead to discontinuous transformations

and spatially varying smoothness properties.

2. Method

Let IR, IT : X → IR be a reference and a target image,

which map the d-dimensional input domain X ⊂ IRd to

the real numbers i.e. image intensities. Furthermore, let us

define a spatial transform mapping f : X → IRd. Image

registration can be formulated as a regularized functional

minimization problem

min
f

J [f ], J [f ] := D[IR, IT , f ] + ηR[f ], (1)

where D is a dissimilarity measure between the transformed

reference image and the target image. In this paper, we

focus on measures which integrate over a loss function

L : IR× IR → IR:

D[IR, IT , f ] :=

∫

X

L(IR(x+ f(x)), IT (x))dx. (2)

which could be e.g. the squared loss (s− s′)2. The regular-

izer R ensures certain properties of the transformations.

As transformation model, we define f through a repro-

ducing kernel Hilbert space (RKHS)

H :=

{

f

∣

∣

∣

∣

∣

f(x) =

∞
∑

i=1

cik(xi, x),

xi ∈ X , ci ∈ IRd, ‖f‖ <∞

}

,

(3)

where k : X × X → IR is a positive definite kernel and in-

duces H, cf. a comprehensive introduction to kernel meth-

ods and RKHS in [4]. As regularizer, the RKHS norm

R[f ] := ‖f‖ =
√

〈f, f〉, (4)

with the inner product 〈·, ·〉 of H, is usually defined which

measures the magnitude of f . This is no coincidence be-

cause using exactly (4) as regularizer, the standard repre-

senter theorem (see Section 2.2) allows for the discretiza-

tion of the original objective (1) without loosing the guar-

antee of a finite dimensional minimizer. However, we are

additionally interested in a sparsity inducing norm as a reg-

ularization, which we will define next.

2.1. Definition of an l1­type Norm

Without loss of generality, we focus on d = 1 to sim-

plify notation. All findings can be generalized to arbitrary

dimensions d ∈ IN+. Let X be the sample space where

xi ∈ X and H be an RKHS on X induced by the strictly

positive definite kernel k : X ×X → IR. Consider the sub-

set H0 ⊂ H for a set {xi}
N
i=1 of pairwise distinct samples

H0 =

{

f0 ∈ H

∣

∣

∣

∣

∣

f0(·) =

N
∑

i=1

cik(xi, ·), ci ∈ IR

}

. (5)

H0 is a finite dimensional linear subspace of H. Since k is

a positive definite kernel, the matrix K = (k(xi, xj))ij is

positive definite and therefore {k(·, xj)}
N

j=1
forms a basis

of H0 which can be orthogonalized to a basis {ψj(x)}
N

j=1

w.r.t. 〈·, ·〉. Hence, there exist {λk}
N
k=1

⊂ IR such that we

can write

k(·, xj) =

N
∑

k=1

λkψk(·), j = 1, ..., N. (6)

Let us define a projection P : H → H0 onto the subspace

H0 by

P (f) :=

N
∑

i=1

〈f, ψi〉ψi. (7)

P is well-defined, since 〈·, ·〉 is well-defined. It holds that

P (f) = f for all f ∈ H0 and P 2 = P . Now, every f ∈ H
can be decomposed by f = P (f) + v. It holds that

〈v, k(·, xi)〉 = 0, i = 1, ..., N, (8)

i.e. v ∈ H⊥
0 . To prove this, observe that for k = 1, ..., N :

〈P (f), ψk〉 =

〈

N
∑

i=1

〈f, ψi〉ψi, ψk

〉

=

N
∑

i=1

〈f, ψi〉〈ψi, ψk〉 = 〈f, ψk〉.
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This implies that

〈v, ψk〉 = 〈f − P (f), ψk〉 = 〈f, ψk〉 − 〈P (f), ψk〉 = 0.

Hence:

〈v, k(·, xi)〉 =

〈

v,

N
∑

k=1

λkψk

〉

=
N
∑

k=1

λk〈v, ψk〉 = 0,

for i = 1, ..., N and thus (8) is proven.

We therefore conclude that for each f ∈ H there are

unique ci such that

f(x) =
N
∑

i=1

cik(xi, x) + v, (9)

where v is orthogonal to H0. Keeping that in mind, we

define the norm

‖f‖
1
:=

N
∑

i=1

|ci|+ ‖v‖, (10)

where f ∈ H and decomposed as described above. Since

‖·‖ is well-defined and the ci are unique, ‖·‖
1

is well-

defined. As ‖·‖ and |·| are norms, ‖·‖
1

is a norm as well.

2.2. A Representer Theorem

Theorem 1. Let the training data D = {(xi, yi) ∈ X ×
IR|i = 1, . . . , N}, a loss function L : X × IR × H →
IR∪{∞} and two functions g : IR → IR and h : IR → IR be

given. If one of the two functions g or h is strictly increas-

ing and the other one is nondecreasing, the minimization

problem

min
f∈H

N
∑

i=1

L (xi, yi, f(xi)) + g(‖f‖H) + h(‖f‖1) (11)

has a minimizer taking the form

f(x) =

N
∑

i=1

cik(xi, x), ci ∈ IR. (12)

In particular, we are interested in the case where g(x) =
0, h(x) = x (i.e. g nondecreasing and h strictly increasing)

and L (xi, yi, f(xi)) = L (IR(xi + f(xi)), IT (xi)). First,

we consider the case where h(x) = 0 and follow the ar-

gumentation of [15]. We call this part standard representer

theorem. This is followed by the proof for the full theorem.

Proof. We define a map from X into the space of functions,

mapping X into IR, denoted as IRX via

φ : X → IRX , x→ k(·, x). (13)

Since k is a reproducing kernel, evaluation of the function

φ(x) on the point x′ yields

(φ(x))(x′) = k(x′, x) = 〈φ(x′), φ(x)〉 ∀x, x′ ∈ X .
(14)

As described above in Section 2.1, we decompose f ∈ H
as f =

∑N
i=1

ciφ(xi) + v for unique c ∈ IRN and v ∈ H
satisfying 〈v, φ(xj)〉 = 0, j = 1, ..., N. Using (14), the

application of f to an arbitrary training point xj yields

f(xj) =

〈

N
∑

i=1

ciφ(xi) + v, φ(xj)

〉

=
N
∑

i=1

ci〈φ(xi), φ(xj)〉,

which is independent of v. Consequently, the loss function

term of (11) is independent of v.

Standard Representer Theorem Let h(x) = 0 and g be

strictly increasing. As for the second term in (11), since v
is orthogonal to

∑N
i=1

ciφ(xi), and g is strictly increasing,

we get

g(‖f‖) =g

(

∥

∥

∥

∑

i

ciφ(xi) + v
∥

∥

∥

)

=g

(

√

∥

∥

∥

∑

i

ciφ(xi)
∥

∥

∥

2

+ ‖v‖2

)

≥g

(

∥

∥

∥

∑

i

ciφ(xi)
∥

∥

∥

)

,

(15)

with equality occuring iff v = 0. Setting v = 0 thus

affects neither the first nor the third term of (11), while

strictly reducing the second term. Hence, any minimizer

must have v = 0. Consequently, any solution takes the

form f =
∑N

i=1
ciφ(xi), that is, using (14)

f(·) =

N
∑

i=1

cik(·, xi). (16)

Generalized Representer Theorem Let’s look at the

case where g is nondecreasing and h is strictly increasing.

The second case can be proved with exactly the same argu-

ment, just by switching g and h. Then, (15) is still valid.

However, equality can also occur when v 6= 0 since g is

nondecreasing. For h we observe that

h(‖f‖
1
) = h

(

N
∑

i=1

|ci|+ ‖v‖

)

≥ h

(

N
∑

i=1

|ci|

)

, (17)

with equality iff ‖v‖ = 0. Note that ‖f‖
1
= 0 ⇔ ‖f‖ =

0. Now, we conclude from Equations (17) and (15) that

g(‖f‖)+h(‖f‖
1
) can be minimized iff v = 0, which means

that any minimizer of (11) lives in H0 and the theorem is

thus proven.
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2.3. Compactly Supported Kernels

We have derived the framework in which we can choose

the positive definite kernel k to complete the transformation

model. A kernel which yields smooth interpolants is e.g. the

Gaussian kernel kg(x, y) = exp
(

−‖x− y‖2/σ2
g

)

, σg >
0. Since kg has infinite support, however, the computational

complexity of evaluating the objective (1) is O(N2) kernel

evaluations. Especially when dealing with large images, it

is therefore important that the applied kernel has compact

support to reduce the number of summands in f . A ker-

nel which has compact support and simultaneously yields

interpolants in C4 is e.g. a C4 Wendland kernel [23]

k4(x, y) = ψ3,2

(

‖x− y‖

σ4

)

,

ψ3,2(r) = (1− r)6+
3 + 18r + 35r2

1680
,

(18)

with σ4 > 0, d ≤ 3, a+ = max(0, a) and ψ3,2 being the

Wendland function of the second kind and positive definite

in three dimensions.

Since k4 yields basis functions in C4 and C4 functions

are closed with respect to linear combinations no discon-

tinuities can be represented in f . However, to still allow

for discontinuous transformations, we multiplicatively su-

perimpose a C0 Wendland kernel

k0(x, y) = ψ3,0

(

‖x− y‖

σ0

)

,

ψ3,0(r) = (1− r)2+,

(19)

with σ0 > 0, d ≤ 3 and ψ3,0 being the Wendland func-

tion of the zeroth kind and positive definite in three dimen-

sions. This kernel has a removable discontinuity at x = y
and hence enables discontinuous transforms f . Because the

multiplication of two valid kernels is again a valid kernel

function (cf. [17]), we profit from the properties of both ker-

nels and define

kc(x, y) = k4(x, y)k0(x, y).

The maximum support range of kc is min(σ4, σ0). In Fig-

ure 1, basis functions of k4, k0 and kc with different values

of σ4 and σ0 for k4 and k0 are plotted. With increasing σ0,

the combined kernel becomes similar to the C4 Wendland

kernel and if σ4 is large compared to σ0, kc becomes similar

to the C0 Wendland kernel.

Spatially Varying Kernels There is a great interest in

inhomogeneous transformation models, since tissues vary

among the spatial domain. Moreover, we think it is crucial

that the degree of smoothness can be influenced by the user.

Otherwise, an improper result has to be discarded which
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Figure 1: Samples of 2d basis functions at zero. For all

samples σ4 = 2. First row: k4, kc,σ0=16, kc,σ0=4. Second

row: kc,σ0=1.5, kc,σ0=1, k0,σ0=1.

could have been improved with inhomogeneous smooth-

ness. In [8], it is shown how to obtain spatially varying

kernels from stationary isotropic kernels. We will apply this

technique to our combined kernel function.

Let Σ(x) be a d×dmatrix-valued function which is pos-

itive definite for all x ∈ X , (Σi := Σ(xi)) and let us define

the quadratic form

Qij = (xi − xj)
T ((Σi +Σj)/2)

−1(xi − xj). (20)

Then, for a stationary isotropic kernel ks,

kns(xi, xj) = |Σi|
1

4 |Σj |
1

4

∣

∣

∣

Σi +Σj

2

∣

∣

∣

− 1

2

ks(
√

Qij) (21)

is a valid positive definite nonstationary kernel, which was

shown in [8]. For the C4 Wendland kernel k4 we only con-

sider diagonal matrices Σ(x) := σxId×d, σx > 0 and define

kns4 (x, y) = Ψσx,σy
ψ3,2

(

Φσx,σy

‖x− y‖

σ4

)

, (22)

where

Ψσx,σy
= |σx|

1

4 |σy|
1

4

∣

∣

∣

σx + σy
2

∣

∣

∣

− 1

2

,

Φσx,σy
=

√

2

σx + σy

and σx, σy act as weights on the smoothness. Accordingly,

we define the nonstationary C0 Wendland kernel

kns0 (x, y) = Ψσx,σy
ψ3,0

(

Φσx,σy

‖x− y‖

σ0

)

and knsc = kns4 kns0 . To control the local amount of smooth-

ness, we finally define a weight image σ : X → IR>0.

Larger values of σ(x) result in transformations f which are

locally smoother.
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Figure 2: Random samples of admissible 1d transforma-

tions f assuming a zero-mean Gaussian process with co-

variance function kns4 with σ4 = 3 and a 1d weight image

σ(x) = 10.5− 10e−(
|x|
4 )

8

.

In Figure 2, we show one-dimensional random samples

of f using the nonstationary C4 Wendland kernel. By re-

ducing the value σ(x) in the middle of the interval, the

smoothness locally decreases.

Using the weight image σ, prior knowledge about local

smoothness of the transformation can be incorporated. In

our experiments (see Section 3), we will construct weight

images, where strong smoothness is enforced for bony

structures and less smoothness otherwise.

2.4. Optimization

Since the registration functional (1) is non-convex, we

locally optimize (1) using a first order variant of the pro-

jected subgradient method of [13] (Example 11.8), which

can handle the non-differentiable regularizer.

Two-Metric Subgradient Projection Iteration Consider

the objective

min
c∈IRdN

L(c) +
N
∑

i=1

λi|ci|, (23)

where L is differentiable and corresponds to our dissimi-

larity measure, which depends on the parameters c and the

scalars λi ≥ 0. Note that we set all λi to the regulariza-

tion weight η. The minimum-norm subgradient zki at the

kth iteration is computed as

zki =



















∇iL(c) + λi sgn(ci), |ci| > 0

∇iL(c) + λi, ci = 0,∇iL(c) < −λi

∇iL(c)− λi, ci = 0,∇iL(c) > λi

0, ci = 0,−λi ≤ ∇iL(c) ≤ λi.
(24)

We define the two-metric projection step as

ck+1 = PO[c
k − αzk, ck], (25)

where the orthant projection is defined as

PO(y, x)i =

{

0, if xiyi < 0

yi, otherwise.
(26)

The parameter α is the step-size for the current iteration. We

adjust α in an adaptive manner [6], while we approximate

L by uniformly sampling n image points {xi}
n
i ⊂ Ω.

Multiple Scale Optimization To reduce local optima, we

successively approximate the transform mapping f with de-

creasingly scaled transforms f ≈ f̃0 + f̃1 + · · ·+ f̃l. In our

case, we decrease the width parameters σ4, σ0 of the kernels

in each level. Thus, the transformations tend to be smoother

in lower levels than in the succeeding ones. Note, since we

perform stochastic sampling of L we do not scale the im-

ages.

To reduce the computational demand, we sample con-

trol points on a uniform grid and place the basis functions

onto these grid points. Furthermore, each control point can

be enabled or disabled similar to the non-uniform grid ap-

proach [11]. We define the refinement measure ξ(xi) =
∣

∣

∣

∂
∂ci

J [f ]
∣

∣

∣
, where ci is only enabled if ξ(xi) exceeds a

threshold τ . As we perform gradient based optimization,

we assume that the registration cannot be improved signif-

icantly where ξ(xi) is small, since exactly the derivative of

J [f ] is considered to proceed a decent step. This is cer-

tainly not always true.

3. Results

We evaluate our new Sparse Kernel Machine (SKM) on

a synthetic example to first investigate sliding boundaries.

Then we register a publicly available 4DCT dataset, where

ground truth landmarks are available. The challenges here

are mainly the sliding organ boundaries, e.g. the pleural cav-

ity between the lung and the vertebrae.

For all experiments, we used the squared loss function

and exclusively performed l1-type regularization. Further-

more, we have scaled k4 by 560 such that k4(x, x) =
1, ∀x ∈ X and we set the threshold τ = 0.

3.1. Synthetic Example

For this experiment, we have been inspired by the syn-

thetic examples of [14]. The reference and target images are

depicted in Figure 3. First, we experimentally confirm our

previous statement that non-differentiable basis functions

are superior to differentiable ones in representing discon-

tinuous transformations. For that, we discretized the ground

truth transformation fgt ∈ IRN×2 and projected it into our

parametric space H0 by

cgt = fgtK
−1. (27)
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(a) Target: IT (b) Reference: IR

(c) Warped reference (d) Warped checkerboard

Figure 3: Synthetic example: IT (x) =
x×e1
π

, where e1 is a

unit vector and the origin is in the center of the image. In

the reference image, the circular inner as well as the outer

region have been rotated by 10 degrees but in opposite di-

rection.

For comparison, we define the error ε := 1

N
‖fgt−c

T
gtK‖

and evaluate (27) on a resolution of 120× 120 px and pixel

spacing 0.3× 0.3 mm2. The Gram matrix K was computed

using the C4 Wendland kernel k4 with different σ4 (first

curve) and the introduced combined and non-differentiable

kernel kc having fixed σ4 = 30 and with a varying σ0 (sec-

ond curve), see Figure 4. With the upper values of the sig-

30 25 20 15 10 5 1
10−15

10−8

10−1

kernel parameter: σ4

er
ro

r
ε

k4
kc,σ4=30

1000 500 100 50 10 5 1

kernel parameter: σ0

Figure 4: Comparison of projection error between the ker-

nel k4 and the combined kernel kc with fixed σ4 = 30.

Table 1: Average TRE [mm] and maximum TRE (subscript)

of the first 40 landmarks with respect to image 1.

# No reg. FFD pTV SKM ns. SKM

0 0.48 2.4 0.79 1.5 0.72 0.67 1.6 0.66 1.5

2 0.49 2.6 0.81 2.2 0.71 0.65 1.7 0.65 1.7

3 2.19 6.6 1.14 2.8 1.12 1.17 2.5 1.17 2.9

4 4.33 10 1.11 2.4 1.01 1.05 2.1 1.07 2.3

5 5.75 12 1.11 3.2 1.11 1.11 3.1 1.13 3.1

6 6.01 14 1.20 3.2 1.03 0.99 2.7 1.00 2.6

7 5.03 12 1.20 3.0 1.06 1.08 3.2 1.05 3.1

8 3.68 6.2 0.88 2.3 0.84 0.76 1.6 0.75 1.7

9 2.07 4.5 0.92 2.0 0.81 0.83 2.1 0.83 2.1

Ø 3.35 14 1.02 3.2 0.93 0.92 3.2 0.92 3.1

mata, where the two kernels have almost the same shape,

the average error for the combined kernel kc was six orders

of magnitude smaller, which indicates that it is better suited

as transformation model for this kind of problem.

We additionally registered this example on a resolution

of 240 × 240 px and 0.3 × 0.3 mm2 pixel spacing us-

ing the combined kernel kc. We optimized on four scales

with σ4 = {100, 50, 25, 10}, σ0 = {12, 8, 4, 2} and η =
{10−9, 10−8, 10−7, 10−7}. The isotropic control point grid

spacing was {2, 1.3, 0.6, 0.3}. The number of image sam-

ples n was set to the full image resolution. The inner and

outer part have been accurately and smoothly matched, cf.

Figure 3. However, there is room for improvement in a

thin band near the discontinuous border. The average dis-

placement error was 1.24 mm. To avoid local optima, a

small step-size was needed. Hence, the convergence rate

was rather weak.

3.2. POPI Model

The POPI model [21] is a temporal sequence of 10 tho-

racic CT images having dimensions 482 × 360 × 141 and

pixel spacing 0.97 × 0.97 × 2 mm2. All the background

has been removed by the publishers and set to −1000HU.

The target registration error1 (TRE) is computed using the

40 ground truth landmarks which are available as well. We

compare our SKM with the classic FFD [12] where the

transformations have been taken from the POPI homepage2.

Additionally, we compare to a recent method pTV [22],

where we have taken the TRE values of their publication

(see Table 1). We manually optimized parameters for the

image 6 and used the same configuration for all other time

steps. The target image IT is image 1. We optimized on

three scales with σ4 = {64, 44, 32}, σ0 = {500, 100, 20}
and η = {0.01, 0.005, 0.001}. The isotropic control point

1Mean Euclidean distance between ground truth target landmarks and
reference landmarks which have been warped by the resulting f .

2http://www.creatis.insa-lyon.fr/rio/popi-model
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Figure 5: Magnitudes [mm] of the resulting f of a coronal

slice for sample image 6. In (b), the effect of the weighting

image σ can be clearly seen along the vertebrae, the ribs and

the scapulae.

grid spacing was {16, 11, 5} resulting in {24k, 74k, 775k}
parameters, where on average {18%, 22%, 30%} of them

where zero. The average number of sampled image points

n was {7k, 16k, 112k}. We performed the experiments on

two Intel Xeon E5 CPUs at 2.4GHz with an average pro-

cessing time of {0.2, 1.1, 10.7} hours. Concerning the TRE,

we achieved state-of-the-art results (see Table 1).

In a second run, we considered a weighting image for

inhomogeneous regularization. The weighting has been

generated considering the temporal intensity variance of a

point and two threshold values indicating bone structure and

lung tissue. For bone structure, the weight was set to 0.1
and to 1 otherwise. The image pairs were registered with

the same parameters except for the regularization weight

η = {0.005, 0.001, 0.0004}, resulting in {21%, 19%, 28%}
zero parameters. Although the derivation of the weighting

image is rather ad hoc, it illustrates how the following prob-

lem can be tackled. Let us consider the registered image 6 in

Figure 6. The lowest vertebra in the non-weighted method

is teared down along with the lung and liver and is distorted

in an unnatural way. With the different weighting of bony

structures, one can see in the weighted version that the dis-

tortion could be reduced without an increase of the TRE.

4. Conclusion

In this paper, we presented a novel image registration

framework where for the transformation model we made

use of an infinite dimensional reproducing kernel Hilbert

space. We defined an l1-type norm and showed that it is well

defined in this RKHS. We additionally proved a representer

theorem for the derived functional in order to guarantee a

finite dimensional solution. The new l1-type norm induces

sparsity in the transform parameters and hence yields an ef-

ficient representation of the found solution.

To target the alignment of sliding organ boundaries

we investigated a kernel for discontinuous transforma-

tions which is based on Wendland functions. Further-

more, we presented a spatially varying kernel for inhomoge-

neous transformation models. With this kernel, an adapted

smoothness level for different anatomical structures such as

bones or tissues is achieved. We reached a state-of-the-art

registration performance on the 4DCT POPI dataset. By

incorporating an inhomogeneous transformation model, we

could improve the quality of the registration while keeping

the TRE low.

From a theoretical perspective, it would be interesting

to further generalize the representer theorem. As in [2] the

standard representer theorem was proven for nondecreasing

g, the generalized representer theorem may be generalizable

to nondecreasing g as well as nondecreasing h. For discon-

tinuity preserving problems, direction dependent weighting

images for direction dependent regularization [14] would

be very interesting. In the experiments, we saw, that there

is no winner among our method and pTV, however, we have

confirmed a proof of concept. Our current implementation

has not been optimized for a particular platform. An effi-

cient implementation which is tailored to GPU architectures

would not only speed up the computations but would also

enable a systematic parameter search. Finally, a second or-

der stochastic gradient optimizer would potentially increase

the convergence speed.
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