
SimpleElastix: A user-friendly, multi-lingual library for medical image

registration

Kasper Marstal1, Floris Berendsen2, Marius Staring2 and Stefan Klein1

1Biomedical Imaging Group Rotterdam (BIGR), Department of Radiology & Medical Informatics,

Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, the Netherlands,

{kmarstal,sklein}@erasmusmc.nl
2Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center,

PO Box 9600, 2300 RC Leiden, the Netherlands, {f.berendsen,m.staring}@lumc.nl

Abstract

In this paper we present SimpleElastix, an extension of

SimpleITK designed to bring the Elastix medical image reg-

istration library to a wider audience. Elastix is a modular

collection of robust C++ image registration algorithms that

is widely used in the literature. However, its command-line

interface introduces overhead during prototyping, experi-

mental setup, and tuning of registration algorithms. By in-

tegrating Elastix with SimpleITK, Elastix can be used as a

native library in Python, Java, R, Octave, Ruby, Lua, Tcl

and C# on Linux, Mac and Windows. This allows Elastix to

intregrate naturally with many development environments

so the user can focus more on the registration problem and

less on the underlying C++ implementation. As means

of demonstration, we show how to register MR images of

brains and natural pictures of faces using minimal amount

of code. SimpleElastix is open source, licensed under the

permissive Apache License Version 2.0 and available at

https://github.com/kaspermarstal/SimpleElastix.

1. Introduction

In the past decade there has been an increasing interest in

relating information from different medical images spurred

by a growing availability of scanners, modalities and com-

puting power. This typically involves image registration

for transforming images into a common coordinate sys-

tem so corresponding pixels represent homologous biolog-

ical points. Clinical applications include segmentation of

anatomical structures, computer-aided diagnosis, monitor-

ing of disease progression, surgical intervention and treat-

ment planning.

A significant amount of research has focused on devel-

import SimpleITK as sitk

resultImage = sitk.Elastix(

sitk.ReadImage("fixedImage.nii"),

sitk.ReadImage("movingImage.nii")

)

Listing 1: Medical image registration in Python using

SimpleElastix.

oping the registration algorithms themselves. However, less

research has focused on accessibility, interoperability and

extensibility of these algorithms. Scientific source code is

typically not published [16], is lacking documentation or is

difficult to use because it has not been written with other

researchers in mind. This is a problem since image regis-

tration is a prerequisite for a wide range of medical image

analysis tasks and a key algorithmic component for image-

based studies. Open source, user-friendly implementations

of scientific software make state-of-the-art methods accessi-

ble to a wider audience, promote opportunities for scientific

advancement, and support the fundamental scientific prin-

ciple of reproducibility. To this end, we have developed the

SimpleElastix software package.

Elastix [19] is an open source, command-line program

for intensity-based registration of medical images that al-

lows the user to quickly configure, test, and compare dif-

ferent registration methods. SimpleElastix is an extension

of SimpleITK [21] that allows the user to configure and

run Elastix entirely in Python, Java, R, Octave, Ruby, Lua,

Tcl and C# on Linux, Mac and Windows. In addition, we

have developed an extensive test suite, online documenta-

tion, and a citable online software repository following rec-

ommended best practices for scientific software publication

[24], all within an online environment that stimulates com-

1134

Figure 1: Example of two registered images from the Hammersmith83 dataset using default registration procedure as shown

in Listing 1. Checkerboard pattern of fixed and result images (left) and overlay of associated segmentations (right).

munity involvement and contribution. SimpleElastix also

includes SimpleTransformix, an accompanying program for

subsequent warping of images, point sets and segmentations

using transformation fields computed with SimpleElastix.

The software contributions are three-fold.

• A low-level ITK-filter-based C++ interface for Elastix

and Transformix.

• A facade interface to these filters that enables Sim-

pleITK to build Elastix and Transformix bindings for

Python, Java, R, Ruby, Octave/Matlab, Lua, Tcl and

C# on Linux, Mac and Windows.

• Preconfigured registration methods that serve as start-

ing points for tuning registration algorithms to domain-

specific applications.

Together, these contributions lower the entry barrier for per-

forming image registration. For example, Figure 1 shows a

registration of two brains from a publicly available data set

consisting of 30 adult atlases each with 83 segmented re-

gions [14] using the method in Listing 1. A Dice Similarity

Coefficient (DSC) of 0.92 was obtained for the total brain

volume and a mean DSC of 0.74 was obtained for the indi-

vidually labeled regions for this particular example. In the

experiments section we present the full setup used to obtain

these results.

The remainder of the paper is laid out as follows. First,

we introduce previous open source medical image regis-

tration libraries, discuss their influence on the design of

SimpleElastix, and present the contributions that enable

SimpleITK to link Elastix with other programming lan-

guages. We then outline the continuous integration (CI)

testing framework, online documentation framework and

online contribution process. Finally, we apply a built-in pre-

configured registration method to MR images of brains and

2D natural pictures of faces. The focus of the paper is on

reducing complexity of experimental setups for typical im-

age registration problems. All experiments in this paper are

available online.

1.1. Previous Work

A number of open source libraries are available online

and the scientific community has been thriving around the

use of these tools. The National Library of Medicine’s In-

sight Segmentation and Registration Toolkit (ITK) is a col-

lection of methods for image filtering, segmentation and

registration. It is widely regarded as the standard reference

for many medical image processing algorithms. Elastix is

based on ITK’s v3 registration framework [18] and makes

extensive use of ITK’s data structures for images, points,

spatial objects, and several basic image processing compo-

nents such as filtering, morphological operations, and in-

terpolation schemes. Elastix adds an additional configura-

tion layer that allows registration algorithms to be config-

ured via text-based files. This allows users without expert

programming knowledge to compare different registration

135

algorithms. However, command-line scripting and man-

ual editing of text-files typically needed for using Elastix in

larger studies makes experimentation time-consuming, dif-

ficult to reproduce and hard to maintain.

Recently, there has been considerable interest in devel-

oping bindings for other languages in order to streamline

the use of ITK and bring its algorithms to a wider audi-

ence. The SimpleITK project [21] was developed specifi-

cally with usability in mind to overcome the steep learning

curve of previous ITK wrapping efforts like WrapITK for

Python, Java and Tcl [2] and ManagedITK for the .NET lan-

guage family [23]. SimpleITK exposes simplified, native

interfaces to ITK algorithms in a variety of scripting lan-

guages following the facade design pattern [9]. Each ITK

algorithm is wrapped in facade bindings that hide imple-

mentation details such as the use of templates and the ITK

pipeline architecture. This allows a user to setup an ITK

pipeline in a programming environment of their choice and

without knowing anything about the underlying C++ imple-

mentation. For example, a researcher may choose to proto-

type image processing pipelines in high-level scripting lan-

guages like Python, R or Octave and enterprise developers

may choose to develop distributed computing software in

languages like Java or C#. In this work we aim to bring the

same level of versatility, convenience, and user-friendliness

to the Elastix community.

Libraries such as Nipype [10] and ElastixFromMatlab

[8] provide command-line wrappers for Elastix. Nipype

is a Python library that facilitates comparison stud-

ies by providing uniform access to many popular im-

age processing frameworks including ANTs, SPM, FSL,

FreeSurfer, Camino, MRtrix, MNE, AFNI, Slicer and

Elastix. ElastixFromMatlab makes it easier to use Elastix

from Matlab environments. However, the command-line

wrapping does not achieve the tight integration that Sim-

pleElastix offers and consequently suffer from disk I/O be-

fore and after each registration and manual bookkeeping of

intermediate files in the image processing pipeline. In this

work we aim to remove the layer of complexity associated

with command-line wrapping.

We opted to integrate Elastix with SimpleITK because

of the support for multiple languages, interoperability with

SimpleITK’s image processing algorithms and native in-

memory data structures for 2D, 3D and 4D images. We

do not make any assumptions about workflow and file han-

dling, as different approaches are preferred in different lan-

guages. Instead, we focus on providing a clean, flexible

interface that supports both functional- and object-oriented

programming paradigms so the user can setup experiments

in whatever way she prefers.

In the following section we describe how Elastix was in-

tegrated with SimpleITK.

Figure 2: Software architecture of SimpleElastix. Three

layers are built on top of Elastix, each wrapping the layer

below. ITK filters control the elastix library, facade classes

provide a simplified interface to ITK filters and SimpleITK

uses the facade classes to generate and compile code for

target languages.

2. Method

The proposed software package consists of three layers

on top of the Elastix library as depicted in Figure 2. The first

layer is an ITK filter-based C++ API that enables Elastix to

be used in a regular ITK pipeline. The filter is templated

over pixel types and dimensions of both the fixed and mov-

ing images. The second layer consist of two facade C++

classes, one for Elastix and one for Transformix, that de-

fine the external interface in target languages. This layer

also hides the internal Elastix and Transformix filters and

holds methods for passing data between SimpleITK and

Elastix. The third layer is responsible for compiling the

facade layer to target language libraries. It consists of an

extended version of SimpleITK’s build infrastructure that is

able to pass C++ template information from SimpleITK’s

factory methods to Elastix’ factory methods which are re-

sponsible for runtime instantiation of internal C++ registra-

tion algorithms.

In the following sections we briefly outline the registra-

tion formulation in Elastix and then describe the three API

layers in detail.

2.1. Elastix

The Elastix library is a collection of medical image regis-

tration algorithms that facilitates research on medical image

registration by allowing the researcher to quickly compare

and tune different registration methods for domain-specific

applications [19]. Elastix has been applied to many prob-

lems including multi-atlas segmentation of CT and MRI

images [1], early diagnosis of dementia [6], estimation of

pulmonary emphysema [25], groupwise registration [22],

2D-3D registration in x-ray guided interventions [26], ra-

136

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkElastixFilter.h"

#include "itkTransformixFilter.h"

elastixFilter->SetFixedImage(

fixedImageReader->GetOutput()

);

elastixFilter->SetMovingImage(

movingImageReader->GetOutput()

);

transformixFilter->SetInputImage(

movingLabelReader->GetOutput()

);

transformixFilter->SetParameterObject(

elastixFilter->

GetTransformParameterObject()

);

resultImageWriter->SetInput(

transformixFilter->GetOutput()

);

resultImageWriter->Update();

Listing 2: The C++ filter interfaces in a typical pipeline

setup. Typedefs and input/output filenames omitted for

brevity.

diotherapy treatment planning [20], liver segmentation [7],

cervical segmentation with shape regularization [4], auto-

matic localization of breast cancer in DCE-MRI [12] and

brain segmentation [27].

Elastix treats the registration problem as the process of

transforming a moving image IM (x) to a fixed image IF (x)
by finding a coordinate transformation T (x) that makes

IM (T (x)) spatially aligned with IF (x). A transformation

model Tµ(x) is defined, with parameters µ, and the regis-

tration problem is formulated as an optimization problem in

which the cost function C is minimized with respect to µ:

µ̂ = argmin
µ

C (Tµ; IF ; IM) (1)

The minization is solved by an iterative optimization

method embedded in a multi-resolution setting.

Elastix supports many choices for cost functions, regu-

larization terms, transformations, optimization methods, in-

terpolators, samplers, image pyramids and multi-resolution

strategies. The reader is referred to [19] for a complete

overview.

2.2. Elastix And Transformix Filters

The first layer on top of Elastix and Transformix consists

of a C++ API based on the ITK filter paradigm. The Elastix

filter takes ITK images, masks and a parameter data objects

as inputs, performs registration, and provides result images

and transform parameter data objects as outputs. The Trans-

formix filter can apply transform parameter data objects to

(NumberOfResolutions 4)

(Transform "BSplineTransform")

(GridSpacingSchedule 8.0 4.4 2.0 1.0)

(Interpolator "LinearInterpolator")

Listing 3: Text-based parameter file.

p = sitk.ParameterMap()

p["NumberOfResolutions"] = ["4"]

p["Transform"] = ["BSplineTransform"]

p["GridSpacingSchedule"] = ["8.0", "4.0", "2.0", "1.0"]

p["Interpolator"] = ["LinearInterpolator"]

Listing 4: Python parameters.

other images and point sets. It can also write the deforma-

tion field and transform Jacobian to disk. Advanced users

can integrate this layer directly into ITK image processing

pipelines and treat Elastix and Transformix as regular ITK

filters as shown in Listing 2.

The previous Elastix and Transformix C++ API ex-

posed only a subset of the functionality available via the

command-line interface. These filters bring the C++ API

on par with the command-line interface and allow SimpleE-

lastix to support all components, methods and settings avail-

able in Elastix.

The user configures the registration procedure via the

parameter data object. The parameter data object is an

ITK data object that holds registration parameters in the

form of key-value pairs that atomically define the registra-

tion method, its components, and any settings it might re-

quire. Previously, a user would manually enter parameters

as text strings into a parameter file as shown in Listing 3,

save the parameter file to disk and pass the path to Elastix

via the command-line. This allows the user to configure

Elastix without any C++ programming knowledge. How-

ever, the text processing adds an additional layer of com-

plexity. Listing 4 shows the Python interface to the param-

eter data object. Using this approach, the parameter file is

an in-memory data structure that can be programmatically

manipulated as if it was a native data type in the target lan-

guage. This eliminates the need for intermediate disk I/O

and reduces bookkeeping code. It also allows multiple reg-

istrations to be run in parallel without having to take into

account disk access.

2.3. Elastix And Transformix Facade Interface

SimpleITK uses a facade design pattern to simplify the

interface to ITK algorithms. Each algorithm has a corre-

sponding facade class that provides a minimum viable inter-

face for configuring and running the algorithms, thus hiding

the internal instantiations, templates and pipeline mecha-

nisms. For SimpleElastix, facade classes were developed

that hold methods for controlling input and output and dis-

137

#include "SimpleITK.h"

namespace sitk = itk::simple;

// Functional-style interface

sitk::Image resultImage = sitk::Elastix(

fixedImage,

movingImage

)

// Object-oriented interface

sitk::SimpleElastix selx;

selx.SetFixedImage(fixedImage);

selx.SetMovingImage(movingImage);

sitk::Image resultImage = selx.Execute();

Listing 5: The C++ facade interfaces.

patching Elastix and Transformix filters when registration is

executed. The facade layer is also responsible for convert-

ing SimpleITK data structures into native ITK objects, pass

them to the filters and convert Elastix output to SimpleITK

format.

Following the design conventions of SimpleITK, we de-

veloped a functional-style interface designed for rapid pro-

totyping and an object-oriented facade interface suited for

more advanced use cases and scripting purposes. The

functional-style interface trades off flexibility for code sim-

plicity and allows images to be registered with a single line

of code as shown in Listing 1. The object-oriented inter-

face is more flexible and allows for subsequent warping of

points, meshes, segmentations, and automatic computation

of inverse transforms as shown in Listing 7 and 8. Listing 5

shows the C++ facade interfaces.

In the experiments section we show how the functional-

style interface, the object-oriented interface and Sim-

peITK’s image processing algorithms can be used together

in synergy.

2.4. SimpleITK Extensions

To compile Elastix and Transformix facade classes to

target languages, SimpleITK was extended in a number of

ways.

• The SimpleITK build system was enhanced to auto-

matically download and compile Elastix.

• SimpleITK’s type system was enhanced to be able to

provide type information to Elastix’ factory mecha-

nism.

• The Elastix- and Transformix facade classes were

developed and registered with SimpleITK’s factory

mechanism.

• Support for parameter maps was added to SimpleITK’s

code generation tools.

$ git clone https://github.com/kaspermarstal/

SimpleElastix

$ mkdir build && cd build

$ cmake ../SimpleElastix/SuperBuild

$ make -j4

$ cd SimpleITK-build/Wrapping/PythonPackage

$ sudo python setup.py install

Listing 6: Installation procedure on Linux.

• Support for 4D images was added in order to support

groupwise registration of 3D images with Elastix [22,

13].

With these extensions in place and the Elastix and Trans-

formix filters fully encapsulated in facade classes, Sim-

pleITK’s code generation tools can compile Elastix and

Transformix for the target languages. SimpleITK relies on

SWIG [3] (Simplified Wrapper and Interface Generator) for

generating target language binding code. SWIG inspects the

C++ facade header files and automatically generates script-

ing language interfaces from these declarations.

Users can download and install SimpleElastix by follow-

ing the commands in Listing 6. The build script will auto-

matically detect available target languages on the host sys-

tem and build packages for these languages.

2.5. Online Resources

SimpleElastix is developed as an open source project on

Github. Here, community members can post issues and con-

tribute code via pull requests (PRs). A PR is a unit of code

that anyone can submit for merging into the main codebase.

Before a PR is merged, it is reviewed by SimpleElastix de-

velopers and automatically tested against a comprehensive

test suite with over two thousand tests. A PR can be re-

viewed, edited and merged via the GitHub web interface

once everyone is satisfied with the changes.

The documentation includes installation instructions for

Linux, Mac and Windows, a general introduction to image

registration, how-to guides for using Elastix, and several ex-

amples for different registration methods.

The documentation is typeset using the Sphinx docu-

mentation system [5] and hosted online by Read the Docs

[15]. The text files reside in the main repository so users

can contribute to the documentation in the same way they

contribute code. When a PR is merged into SimpleElastix,

Read the Docs will download the repository, rebuild doc-

umentation and update the documentation website and the

accompanying PDF file. The documentation is available at

https://simpleelastix.readthedocs.io. In the next section, the

proposed software package is tested on two different data

sets.

138

import SimpleITK as sitk

import numpy as np

import os

Load fixed image and associated segmentation

fixedImage = sitk.ReadImage("fi.nii.gz")

fixedLabel = sitk.ReadImage("fl.nii.gz")

Turn the different brain regions into one

fixedBinaryLabel = sitk.Threshold(fixedLabel, 1.0)

selx = sitk.SimpleElastix()

selx.SetFixedImage(fixedImage)

overlapFilter = sitk.LabelOverlapMeasuresImageFilter()

images = os.listdir("images/")

labels = os.listdir("labels/")

totalDSC = []

meanRegionDSC.append = []

for image, label in zip(images, labels)

movingImage = sitk.ReadImage(image)

movingLabel = sitk.ReadImage(label)

Run registration

selx.SetMovingImage(movingImage)

selx.Execute()

Set interpolation scheme for labels

tp = selx.GetTransformParameterMap()

tp["ResampeInterpolator"] =

["FinalNearestNeighborInterpolator"]

Get mean DSC of brain regions

resultLabel = sitk.Transformix(movingLabel, tp)

overlapFilter.Execute(fixedLabel, resultLabel)

totalDSC.append(overlapFilter.GetDiceCoefficient())

Get total brain volume DSC

resultBinaryLabel = sitk.BinaryThreshold(

resultLabel, 1.0)

overlapFilter.Execute(

fixedBinaryLabel, resultBinaryLabel)

meanRegionDSC.append(

overlapFilter.GetDiceCoefficient())

print np.mean(totalDSC), np.std(totalDSC)

print np.mean(meanRegionDSC), np.std(meanRegionDSC)

Listing 7: Experimental setup for registration of brains in

Python.

3. Experiments

SimpleElastix can be used for many types of registra-

tion problems. Here, we present an intensity-based regis-

tration of 3D MR images and a point-based registration of

2D images faces. For both experiments, images are reg-

istered using a preconfigured registration method included

in the package. The method and its parameters have been

chosen conservatively and favor robustness over speed. The

experiments are implemented in Python but any of the other

supported languages could be used. Note that Listing 7 and

8 constitute the complete experimental setup used for this

paper.

The preconfigured registration method consists of a Mu-

tual Information (MI) similarity metric, a Transform Bend-

ing Energy Penalty metric, an Adaptive Stochastic Gradient

Descent (ASGD) [19] optimizer and a sequence of trans-

import SimpleITK as sitk

import numpy as np

import os

fixedImage = sitk.ReadImage("face1.png")

fixedPoints = np.genfromtxt("face1.pts", skip_header=2)

selx = sitk.SimpleElastix()

stfx = sitk.SimpleTransformix()

selx.SetFixedImage(fixedImage)

selx.SetFixedPointSetFileName("face1.pts")

Add the point metric

selx.AddParameter("Metric",

"CorrespondingPointsEuclideanDistanceMetric")

images = os.listdir("images/")

points = os.listdir("pointsets/")

distances = []

for image, pointset in zip(images, points)

movingImage = sitk.ReadImage(image)

Run registration

selx.SetMovingImage(movingImage)

selx.SetMovingPointSetFileName(pointset)

selx.Execute()

Compute inverse transformation

selx.ExecuteInverse()

Warp points

stfx.SetPointSetFileName(points)

stfx.SetTransformParameterMap(

selx.GetInverseTransformParameterMap())

stfx.Execute()

Get point distances

outputPoints = np.genfromtxt("outputpoints.txt")

resultPoints = outputPoints[:,(27,28)]

distances.append(np.linalg.norm(fixedPoints-

resultPoints))

print np.mean(distances), np.std(distances)

Listing 8: Experimental setup for registration of images of

faces in Python.

formation models of increasing complexity. First, a trans-

lation transform is applied followed by an euler- (transla-

tion, rotatation), affine- (translation, rotation, scaling, shear-

ing) and B-spline transform. For each transform a multi-

resolution strategy is used with four levels of image smooth-

ing. The B-spline transform additionally employs four res-

olutions of B-spline knots. The grid spacing is halved in

each subsequent resolution, resulting in a knot spacing of

10 mm in the final resolution. It takes around half a minute

to register a typical 3D volume with this procedure.

3.1. Brain Registration

For this experiment we used 30 adult brain atlases avail-

able at brain-development.org [14, 11]. We loop over

the population, register, warp associated segmentation and

compute the overlap as shown in Listing 7. An example can

be seen in Figure 1.

The experiment illustrates advantages of combining the

139

require ’SimpleITK’

fixed = SimpleITK.ReadImage(’fixed.nii’)

moving = SimpleITK.ReadImage(’moving.nii’)

result = SimpleITK.Elastix(fixed, moving)

Listing 9: Rapid prototyping in Lua.

library(SimpleITK)

fixed <- ReadImage(’fixed.nii’, ’sitkFloat32’)

moving <- ReadImage(’moving.nii’, ’sitkFloat32’)

result <- Elastix(fixed, moving)

Listing 10: Rapid prototyping in R.

import org.itk.simple.*
List<Image> movingImages

= Arrays.asList(ReadImage("image1.nii"),

ReadImage("image2.nii"));

movingImages

.parallelStream()

.forEach((moving) -> Elastix(fixed, moving));

Listing 11: Parallel processing in Java.

using itk.simple;

List<Image> movingImages

= new List<Image> {ReadImage("image1.nii"),

ReadImage("image2.nii")};

Parallel

.ForEach(movingImages, moving =>

Elastix(fixed, moving));

Listing 12: Parallel processing in C#.

native Python methods with the object-oriented interface,

the functional-style interface and SimpleITK’s image pro-

cessing algorithms. The object-oriented interface facilitates

re-use of the fixed image and registration parameters across

the entire population. This reduces bookkeeping code and

file handling. The transform parameters are edited with a

Python-idiomatic interface so the user does not have to in-

corporate text processing or manually editing parameter text

files, as is the case with Elastix. The procedural interface al-

lows segmentations to be transformed with a single line of

code. Lastly, the researcher can use the NumPy library to

work with the result DSCs.

The total brain volume DSC in Table 1 shows that the

preconfigured method can get new users up and running

quickly or serve as a starting point for expert domain-

specific tuning. For example, it is straightforward to add

an additional loop over a list of different B-spline grid spac-

ings or wrap the registration script in a function and use

dedicated hyperparameter optimization packages.

3.2. Face Registration

For this experiment we used 1513 images from the BioID

database [17] each annotated with 19 points as shown in

Experiment Result

Hammersmith83 (total) 0.92± 0.02 DSC

Hammersmith83 (regions) 0.72± 0.06 DSC

BioID 1.74± 2.25 pixels

Table 1: Results for registration of brains from the

Hammersmith83 data set and registration of images of

faces from the BioID data set.

Figure 3. The images are converted to PNG format and the

point sets are converted to Elastix’ PTS format. The pop-

ulation is then registered to a fixed reference image using

the same approach as above with the addition of a point set

similarity metric as shown in Listing 8. The point simi-

larity metric acts as the main driving force in the registra-

tion while mutual information and a transform bending en-

ergy penalty regularize the registration between points. The

metrics are weighted equally by default. The user could

force the points to be fully aligned by adjusting the relative

weights of the metrics.

To illustrate how the inverse transform can be obtained,

we measure the registration error in the fixed reference

frame. Elastix defines the transform from the fixed image

to the moving image, so the inverse transform is needed to

warp points from the moving image to the fixed image. This

is done using the ExecuteInverse function. The result

is calculated as the mean distance between corresponding

points after registration and shown in Table 1. The mis-

alignment is fairly small compared to the image size of size

384× 286 pixels (width × height).

4. Discussion

Image registration is a prerequisite for a wide range of

medical image analysis problems, but state-of-the-art meth-

ods are typically not made available or difficult to use.

We have addressed this issue with the development of the

SimpleElastix software package. The experiments demon-

strates how to combine the object-oriented interface, the

procedural interface and SimpleITK’s existing image pro-

cessing algorithms. Previously, a user would manually enter

parameters as text strings in parameter files, save the files to

disk and pass image and parameter file paths to Elastix and

Transformix via the command-line. With the proposed soft-

ware package, the command-line interface and text-based

parameter files are superseded by native libraries and id-

iomatic data structures in target languages, requiring less

boilerplate code and reduced disk I/O.

Bringing Elastix other programming languages allow

users to call Elastix from environments suited for their par-

ticular use case. For example, the Python, Lua, and R inter-

faces facilitate rapid prototyping as shown in Listing 1, 9,

140

Figure 3: Example of two registered faces from the BioID dataset (left) and the mean of 1513 registered faces (right).

and 10, and the Java and C# interfaces provide langauge-

specific constructs for easily processing many images in

parallel as shown in Listing 11 and 12. It should be noted

that it is still the responsibility of the user to select regis-

tration methods and appropriate parameters for a particular

application.

SimpleElastix can also be used to automatically trans-

fer additional or new registration functionality to supported

languages. For example, a researcher developing a new

registration metric can extend Elastix itself, after which

SimpleElastix can be rebuilt with the extended version of

Elastix. The new metric is then automatically available in

all target languages.

Accessibility, extensibility and reproducibility has been

the goal of SimpleElastix since development began. The

development process is online, transparent and encourages

contributions from users from all around the world. The

source code is freely distributed under a license that allows

anyone to use the code for any purpose.

Since SimpleElastix is based on SimpleITK and Elastix,

both the underlying build infrastructure and registration al-

gorithms are maintained upstream. Future work will there-

fore focus on ease of adoption by the user community. We

will make binaries and target language packages available

in order to remove the initial hurdle of compiling the soft-

ware and provide updates as new versions of SimpleITK

and Elastix are released.

5. Conclusion

We have developed a medical image registration soft-

ware package that is easy to use in a wide variety of pro-

gramming languages. We have applied the method to two

registration problems and shown how to setup experiments

using minimal amount of code. The software package, ex-

amples and documentation are available online.

6. Acknowledgement

The authors would like to acknowledge Bradley

Lowekamp and fellow developers of SimpleITK without

whom this work would not have been possible. The

work was supported by The Dutch Technology Founda-

tion (Stichting Technische Wetenschappen), grant number

13351, and the Netherlands Organisation for Scientific Re-

search NWO, grant number 184033111.

References

[1] X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz-de

Solorzano. Combination strategies in multi-atlas image seg-

mentation: Application to brain MR data. IEEE Transactions

on Medical Imaging, 28(8):1266–1277, 2009.

[2] R. Beare, R. Beare, G. Lehmann, and G. Lehmann. The wa-

tershed transform in ITK - discussion and new developments.

Insight journal, pages 1–24, 2006.

[3] D. Beazley. SWIG. http://www.swig.org/.

[4] F. F. Berendsen, U. A. Van Der Heide, T. R. Langerak, A. N.

T. J. Kotte, and J. P. W. Pluim. Free-form image registration

regularized by a statistical shape model: Application to organ

segmentation in cervical MR. Computer Vision and Image

Understanding, 117(9):1119–1127, 2013.

[5] G. Brandl. Sphinx. http://www.sphinx-doc.org/.

[6] E. E. Bron, R. M. E. Steketee, G. C. Houston, R. A. Oliver,

H. C. Achterberg, M. Loog, J. C. van Swieten, A. Hammers,

W. J. Niessen, M. Smits, and S. Klein. Diagnostic classifica-

tion of arterial spin labeling and structural MRI in presenile

early stage dementia. Human Brain Mapping, 35(9):4916–

4931, 2014.

141

[7] P. Campadelli, E. Casiraghi, and A. Esposito. Liver segmen-

tation from computed tomography scans: A survey and a new

algorithm. Artificial Intelligence in Medicine, 45(2-3):185–

196, 2009.

[8] A. Coron, J. Mamou, E. Feleppa, and P. Laugier.

ElastixFromMatlab: Register image with Elastix within Mat-

lab. https://sourcesup.renater.fr/elxfrommatlab/, 2012.

[9] E. Freeman, E. Robson, B. Bates, and K. Sierra. Head first

design patterns. ” O’Reilly Media, Inc.”, 2004.

[10] K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O.

Halchenko, M. L. Waskom, and S. S. Ghosh. Nipype: A

flexible, lightweight and extensible neuroimaging data pro-

cessing framework. Frontiers in Neuroinformatics, 5(13),

2011.

[11] I. S. Gousias, D. Rueckert, R. A. Heckemann, L. E. Dyet,

J. P. Boardman, A. D. Edwards, and A. Hammers. Automatic

segmentation of brain MRIs of 2-year-olds into 83 regions of

interest. Neuroimage, 40(2):672–684, 2008.

[12] A. Gubern-Mérida, R. Martı́, J. Melendez, J. L. Hauth, R. M.

Mann, N. Karssemeijer, and B. Platel. Automated localiza-

tion of breast cancer in DCE-MRI. Medical Image Analysis,

20(1):265–274, 2015.

[13] J.-M. Guyader, W. Huizinga, V. Fortunati, J. F. Veenland,

M. M. Paulides, W. J. Niessen, and S. Klein. Groupwise

image registration of multimodal head-and-neck images. In

Biomedical Imaging (ISBI), 2015 IEEE 12th International

Symposium on, pages 730–733. IEEE, 2015.

[14] A. Hammers, R. Allom, M. J. Koepp, S. L. Free, R. Myers,

L. Lemieux, T. N. Mitchell, D. J. Brooks, and J. S. Duncan.

Three-dimensional maximum probability atlas of the human

brain, with particular reference to the temporal lobe. Human

Brain Mapping, 19(4):224–247, 2003.

[15] E. Holscher, C. Leifer, and B. Grace. Read the Docs.

https://readthedocs.org/.

[16] D. C. Ince, L. Hatton, and J. Graham-Cumming. The case for

open computer programs. Nature, 482(7386):485–8, 2012.

[17] O. Jesorsky, K. J. Kirchberg, and R. W. Frischholz. Ro-

bust Face Detection Using the Hausdorff Distance. In Proc.

Third International Conference on Audio- and Video-based

Biometric Person Authentication, (June):90–95, 2001.

[18] H. J. Johnson, M. M. McCormick, and L. Ibanez. The

ITK Software Guide Book 1: Introduction and Development

Guidelines-Volume 1.

[19] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and

J. P. W. Pluim. Elastix: A toolbox for intensity-based medi-

cal image registration. IEEE Transactions on Medical Imag-

ing, 29(1):196–205, 2010.

[20] S. Leibfarth, D. Mönnich, S. Welz, C. Seigel, N. Schwen-

zer, H. Schmidt, D. Zips, and D. Thorwarth. A strategy

for multimodal deformable image registration to integrate

PET/MR into radiotherapy treatment planning. Acta Onco-

logica, 52(October 2015):1353–1359, 2013.

[21] B. C. Lowekamp, D. T. Chen, L. Ibáñez, and D. Blezek. The

Design of SimpleITK. Frontiers in neuroinformatics, 7(De-

cember):45, 2013.

[22] C. T. Metz, S. Klein, M. Schaap, T. van Walsum, and W. J.

Niessen. Nonrigid registration of dynamic medical imaging

data using nD + t B-splines and a groupwise optimization

approach. Med Image Anal, 15(2):238–249, 2011.

[23] D. Mueller. ManagedITK: .NET Wrappers for ITK. 2007.

[24] T. Poisot. Best publishing practices to improve user confi-

dence in scientific software. Ideas in Ecology and Evolution,

8(1), 2015.

[25] M. Staring, M. E. Bakker, J. Stolk, D. P. Shamonin, J. H. C.

Reiber, and B. C. Stoel. Towards local progression estima-

tion of pulmonary emphysema using CT. Medical physics,

41(February):021905, 2014.

[26] I. M. J. van der Bom, S. Klein, M. Staring, R. Homan, L. W.

Bartels, and J. P. W. Pluim. Evaluation of optimization meth-

ods for intensity-based 2D-3D registration in x-ray guided

interventions. Proceedings of SPIE, 7962(1):796223–

796223–15, 2011.

[27] F. Van Der Lijn, M. De Bruijne, S. Klein, T. Den Heijer, Y. Y.

Hoogendam, A. Van Der Lugt, M. M. B. Breteler, and W. J.

Niessen. Automated brain structure segmentation based on

atlas registration and appearance models. IEEE Transactions

on Medical Imaging, 31(2):276–286, 2012.

142

