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Abstract

This paper examines the shape collapse problem that

occurs when registering a pair of images or a population of

images of the brain to a reference (target) image coordinate

system using diffeomorphic image registration. Shape

collapse occurs when a foreground or background structure

in an image with non-zero volume is transformed into a

set of zero or near zero volume as measured on a discrete

voxel lattice in the target image coordinate system. Shape

collapse may occur during image registration when the

moving image has a structure that is either missing or

does not sufficiently overlap the corresponding structure in

the target image[4]. Such a problem is common in image

registration algorithms with large degrees of freedom such

as many diffeomorphic image registration algorithms.

Shape collapse is a concern when mapping functional

data. For example, loss of signal may occur when map-

ping functional data such as fMRI, PET, SPECT using

a transformation with a shape collapse if the functional

signal occurs at the collapse region. This paper proposes

an novel shape collapse measurement algorithm to detect

the regions of shape collapse after image registration

in pairwise registration. We further compute the shape

collapse for a population of pairwise transformations such

as occurs when registering many images to a common

atlas coordinate system. Experiments are presented using

the SyN diffeomorphic image registration algorithm. We

demonstrate how changing the input parameters to the SyN

registration algorithm can mitigate some of the collapse

image registration artifacts.

Keywords: shape collapse, diffeomorphic image regis-

tration

1. Introduction

Image registration is the process of finding a transforma-

tion that defines an optimal pointwise correspondence be-

tween a moving image and a target image. The transforma-

tion deforms the moving image into the shape of the target

image.

Durumeric et al.[4] were the first to investigated the

shape collapse problem in nonrigid image registration.

Shape collapse occurs when a foreground or background

structure in an image with non-zero volume is transformed

into a set of zero or near zero volume as measured on a

discrete voxel lattice in the target image coordinate system.

This may be a desirable property if the structure does not

exist in the target image, i.e., no correspondence exists if a

structure is present in the moving image but does not exist

in the target image. However, a collapse is not desirable

if a structure or part of a structure with non-zero volume

present in the moving image is mapped to a set of zero vol-

ume measured on a discrete voxel lattice rather than to its
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corresponding location in the target image. In the later case,

the estimated transformation defines an inaccurate point-

wise correspondence between the moving and target image.

Inaccurate correspondence is a problem when one wants to

map information from the coordinate system of the moving

image to the coordinate system of the target image. For ex-

ample, it is common to use the correspondence transforma-

tion to map object names/labels or functional data such as

fMRI, PET, and SPECT from one image coordinate system

to another.

The shape collapse problem is illustrated in Fig. 1 for

image registration of two MR images of the brain. Two 3D

T1-weighed MR images of the brain were registered using

the symmetric diffeomorphic image (SyN) registration [1]

method developed by B.B. Avants et al. and is distributed as

part of the Automatic Normalization Toolkit (ANTs)[2]. In

this example, the T1 image shown in Fig. 1a was registered

to the image shown in Fig. 1b. Figs. 1c and 1d show the

resulting deformed moving images. The red circles show

regions of shape collapse. Notice that the cerebral cortex

inside the red circles in the deformed image appear to have

collapsed in order to match the target image in these re-

gions. Small regions of shape collapse like these are often

hard to detect and are often over looked. However, if this

transformation is used to map information from the mov-

ing image coordinate system to that of the target image, any

information such as structure labels or functional brain re-

sponse would map to a much smaller region in the target

coordinate system. It is even possible that all information

could be lost if an entire region of interest in the moving

image of non-zero volume is mapped to a region of zero vol-

ume measured on a discrete voxel lattice in the target image

coordinate system. Another problem with transformations

that contain regions of shape collapse is that they produce

incorrect correspondences in the vicinity of the shape col-

lapse.

We note that shape collapse image registration artifacts

like those shown in Fig. 1 are produced by many diffeo-

morphic image registration algorithms. We chose to study

the SyN registration algorithm in this paper since it is pub-

licly available and because it is used in the BRAINS Au-

toWorkup pipeline (Brain Research: Analysis of Images,

Networks, and systems [7]) that is commonly used to non-

rigidly register brain images.

We use the simple 2D brain cortex phantoms shown in

Fig. 2 to illustrate one type of shape collapse that may oc-

cur using common diffeomorphic image registration algo-

rithms. The white object in these phantoms corresponds to

a simplified cortex shape in the transverse orientation. The

cortex in the moving and target images has a single sulcus.

The cortex in the moving image does not fully overlap with

the cortex in the target image. When using symmetric dif-

feomorphic registration with normalized cross correlation

(a) Moving image (b) Target image

(c) Deformed moving image (d) Collapsed regions

Figure 1: Demonstration of shape collapse problem in pair-

wise 3D MR brain image registration. Panel: a. Transverse

slice of moving image, b. Transverse slice of the target im-

age, c. Deformed moving image, collapse regions shown

inside red circles, d. Closer view of panel c.

similarity cost function, the non-overlapped cortex in the

moving image collapsed to a set of zero volume measured

on the discrete voxel lattice and a new cortex grew out of

to match the non-overlapped cortex in the target image (see

Fig. 2e). The desired transformation to match the moving

image with the target image is a local rotation of the cortex

in the moving image. The reason why the shape collapse

problem exists in the above case is that the similarity cost

reduces immediately when the non-overlapped cortex col-

lapses or grows out instead of rotating when using greedy

cost function. Therefore, shape collapse is a common prob-

lem for image registration methods using greedy cost func-

tions.

The BRAINS AutoWorkup (BAW)[7], is a NiPype (Neu-

roimaging in Python Pipelines and Interfaces) based work-

flow that provides an automated procedure for large-scale

multi-center longitudinal MR image analysis; this includes

denoising, spatial normalization, intra-subject alignment,

tissue classification, bias-field correction, and structure seg-

mentation.

In this paper, we investigate the shape collapse prob-

lem in MR brain image registration using BRAINS Au-

toWorkup pipeline, for which symmetric diffeomorphic im-

age registration is part of its image registration process. We

also propose an algorithm to detect and measure the shape

collapse after image registration. By running shape collapse

measurement for each of 50 participants, we obtained a pop-
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(a) Moving phantom image (b) Target phantom image

(c) Final deformed grid;

zoomed on ROI

(d) Deformed moving image

(e) Intermediate deformed mov-

ing image; zoomed on ROI

(f) Final deformed moving im-

age; zoomed on ROI

Figure 2: A simple 2D cortex phantom example to explain

shape collapse when using diffeomorphic image registra-

tion. The cortex in this example has a single sulcus which

we will call the region of interest (ROI). Notice that panels

b and d look similar and do not appear to have a collapse.

Zooming in on the ROI in panels e and f show that sulcus in

the moving image did not rotate to match the target sulcus,

but rather it compressed (collapsed) at the bottom and grew

from the top. A small collapse artifact that is often over

looked or ignored can be seen in panel f at the bottom part

of the deformed sulcus. The deformed grid shows the col-

lapse. Red arrows in the intermediate deformed moving im-

age shows the direction of cortex in the moving image col-

lapsed and green arrows indicate the direction of new cortex

grew out (i.e., the background collapsed to a set of zero vol-

ume measured on the discrete voxel lattice) to match the

reference image.

ulation probability map of shape collapse to predict regions

that are more likely to collapse when using deformable im-

age registration.

2. Methods

2.1. SyN, Symmetric Diffeomorphic Image Regis­
tration

The SyN symmetric diffeomorphic image registration

algorithm [1] registers two images by mapping each im-

age to a midpoint coordinate system. Let I0 : Ω → R

and I1 : Ω → R represent two images to be registered

where Ω ⊂ R
n is the domain of the images. Define

φ0 : Ω × [0, 1] → Ω to be a homotopy between the func-

tions φ0(·, 0) = f and φ0(·, 1) = g such that f = Id is

the identity map and g is the mapping that deforms I0 into

the shape of I1 via the action g · I0 , I0(g
−1). Define

φ1 : Ω × [0, 1] → Ω similarly such that φ1(·, 0) = Id and

φ1(·, 1) · I1 = I1(φ
−1
1 (·, 1)) maps I1 into the shape of I0.

Let v : [0, 1] → V be a time-dependent velocity vector field

where V is a Hilbert space of smooth, compactly supported

vector fields on Ω. The diffeomorphic properties of the

transformation φ0 and φ1 comes from the fact that each is

constrained to satisfy the O.D.E d

dt
φi(x, t) = vi(φi(x, t), t)

for i = {0, 1}, t ∈ [0, 1], x ∈ Ω, and the velocity fields

vi ∈ L2([0, 1], V )[3].

The SyN registration algorithm is stated as: Minimize

the following cost function with respect to v0 and v1

E(v0, v1) =

∫ 0.5

0

{

||v0(x, t)||
2
V + ||v1(x, t)||

2
V

}

dt

+

∫

Ω

CC
(

I0(φ
−1
0 (x, 0.5)), I1(φ

−1
1 (x, 0.5))

)

dx

(1)

where CC(·, ·) is the normalized cross correlation and

||v(x, t)||V is a Sobolev norm on the velocity field. No-

tice that the normalized cross correlation is computed in a

mid-point coordinate system that is half-way between the

coordinate systems of I0 and I1, i.e., in the t = 0.5 coordi-

nate system.

Following the notation of [1], the normalized cross

correlation is defined in the following way. Define

the images with their local mean subtracted as Ī(x) =
I0(φ

−1
0 (x, 0.5)) − µI0

(x) and J̄(x) = I1(φ
−1
1 (x, 0.5)) −

µI1
(x) where µIi

is the the local mean of the intensity cen-

tered at x in a 5 × 5 × 5 window. The normalized cross

correlation is then defined as

CC(Ī , J̄) =
< Ī, J̄ >2

< Ī >< J̄ >
=

A2

BC
(2)

where the inner products are taken over a 5×5×5 window.

The inner-product of two vector fields in the vector space

V is defined through a differential operator L given by:

< f, g >V ,< Lf,Lg >L2=< L+Lf, g >L2 (3)

where L+ is the adjoint of operator L.
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From the above construction of the vector space V , a

compact self-adjoint operator [3] K : L2(Ω,R) → V is

uniquely defined by

< a, b >L2=< Ka, b >V (4)

The operator K is a Gaussian filter in the implementation

of SyN algorithm in ITK.

Following the derivations in Beg et al.[3] and Avants et

al. [1], the gradients of the energy functional with respect

to v1(t) and v1(t) are given as

∇v0
E = 2v0(x, t) +K

(

2A

BC

×
(

J̄(x)−
A

B
Ī(x)

)

|Dφ0(x, 0.5)|∇Ī(x)

)

(5)

∇v1
E = 2v1(x, t) +K

(

2A

BC

×
(

Ī(x)−
A

C
J̄(x)

)

|Dφ1(x, 0.5)|∇J̄(x)

)

(6)

2.2. Collapse Detection

Let Ω0 and Ω1 be two differentiable manifolds that repre-

sent the domains of images I0 : Ω0 → R and I1 : Ω1 → R,

respectively. Define the transformation ϕ : Ω0 → Ω1 to

be the transformation that acts on I0 to transform it into the

shape of I1 via the action ϕ · I0 , I0(ϕ
−1). Note that

ϕ−1 : Ω1 → Ω0 is a mapping from the domain of I1 to the

domain of I0. We say that a collapse happens at y ∈ Ω0

when ϕ maps an open set U ⊂ Ω0 containing y to an open

set ϕ(U) ⊂ Ω1 of near zero measure. Alternatively, we say

a collapse happens at x ∈ Ω1 if there exists an open (round)

ball V ∈ Ω1 containing x such that ϕ−1(V ) is mapped to an

almost disconnected set (concentrated in at least two differ-

ent regions joined by thin connectors, such as an hourglass)

in Ω0.

Theoretically, shape collapse occurs in regions of near

zero Jacobian determinant with respect to the push forward

transformation ϕ. But in practice we will not use Jacobian

determinant as a measure of shape collapse for two main

reasons: (1) We do not have access to the vector field at

each time point from the SyN algorithm; (2) If we could

calculate the Jacobian in the continuum, we would still have

the problem that the region of points of near zero Jacobian

determinant would be a thin region in between the voxel

lattice samples in the fixed image coordinate system. Thus,

we can not calculate the Jacobian on the discrete lattice of

the fixed image coordinate system.

The second definition of shape collapse above is more

convenient for detecting points of collapse in image regis-

tration since ϕ−1 is used to compute the deformed image of

I0 into the shape of I1. In the case of the SyN registration

algorithm, we define ϕ−1 , φ−1
0 (·, 0.5) ◦ φ1(·, 0.5) and

Ω0 = Ω1 = Ω to be consistent with Eq. 1.

The following algorithm is used to detect where points of

collapse occur in the domain Ω1 of the image I1. Let G1 ⊂
Ω1 denote the discrete collection of voxel center locations

corresponding to the centers of the voxels of image I1.

Repeat the following steps for each x ∈ G1.

1. Let Nx ⊂ G1 be a neighborhood of x.

2. Let Dx = {ϕ−1(y) − y|y ∈ Nx} be the set of dis-

placement vectors in the neighborhood of x.

3. Compute the 2-means clustering of the set Dx. Let

µ1 and µ2 denote the values of the two means, respec-

tively.

4. Let dx = ||µ1 − µ2|| denote the Euclidean distance

between the two means.

Form the image of collapse points C : Ω1 → R using the

rule C(x) = dx for x ∈ G1.

The results in this paper used a 3×3 voxel neighborhood

for the 2D results and a 3 × 3 × 3 voxel neighborhood for

the 3D results.

3. Experiments and results

3.1. Imaging data

Anatomical images from a study of bipolar disorder were

used in this analysis including images from 25 participants

with bipolar disorder (14 male: 11 female; age m = 38.6, sd

= 13.06) and 25 healthy control participants (14 male: 11

female; age m = 38.36, sd = 13.23). Participants provided

written informed consent prior to participation in the study.

T1-weighted images were acquired with 1mm3 isotropic

resolution using a 3T Siemens scanner. T1-weighted im-

ages were acquired using a 3D magnetization-prepared

rapid gradient echo sequence in the coronal plane (FOV:

256x256x256 mm3; matrix = 256x256x256, TR=2530ms;

TE = 2.3ms; TI = 909ms; flip angle = 10; bandwidth = 180

Hz/pixel; and R=2 GRAPPA).

3.2. Image Registration Using BRAINS Au­
toWorkup

BRAINS AutoWorkup [7] provides a framework for au-

tomatically analyzing MRI scans that incorporates several

steps to provide well defined mappings between each sub-

ject scan and a common brain atlas (NAC HNCMA Atlas

2013 [6]). First, the anterior commissure (AC) point, poste-

rior commissure (PC) point and 49 other fiducial points are

automatically detected by the BRAINS Constellation De-

tector [5] for both the atlas and the subject images. A rigid

transformation for each data set is computed that aligns the
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AC point to (0,0,0) and sets the PC point to (0,−|AC-PC|,0),

and the mid-sagittal plane (MSP) is identified by optimizing

the plane that maximally correlates intensity values from

the right hemisphere to the left hemisphere (as if reflected

in a mirror). The rigid transformation is incorporated into

the physical space definition of image headers to avoid in-

troducing interpolation errors. This results in both the atlas

and the subject being aligned at the AC point, along the AC-

PC line, and within the MSP. Subsequent to this initializa-

tion phase, the previously identified 51 landmark points in

atlas and subject space are used to estimate an affine trans-

form used to initialize the symmetric diffeomorphic image

registration. In this work, we use the inverse transformation

estimated from BAW to register T1 AC-PC aligned image

to the common atlas space.

3.3. Shape collapse measurement results

By computing the Euclidean distance dx for each point x

in the atlas space, we can generate a shape collapse map for

each participant. Fig. 3 is a shape collapse map for one of

the 50 participants. In this example, we use a color overlay

to visualize areas where our algorithm detected shape col-

lapse (red regions in Fig. 3b). These regions are consistent

with the areas where shape collapse was visually apparent

in the deformed image (Fig. 3a), confirming that our al-

gorithm has successfully detected regions where shape col-

lapse occurred during image registration.

3.4. Population Shape­Collapse Probability Map

The shape collapse algorithm was used to compute the

shape collapse maps for all of the 50 participants (25

healthy controls and 25 people with bipolar disorder). For

each participant, a universal threshold T was applied to the

corresponding map of shape collapse, and the average of all

the 50 thresholded maps gives a population shape-collapse

probability map for the whole brain. Let Ci : Ωr → R

denote the map of shape collapse measurement for the ith

subject, where Ωr is the domain of reference image. Let

Prob : Ωr → R denote the population probability map of

shape collapse, for any point p ∈ Ωr we have

Prob(p) =
1

50

50
∑

i=1

Thres(Ci(p))) (7)

where Thres : R → {0, 1} is a function defined as

Thres(a) = 0 if a < T , and Thres(a) = 1 if a ≥ T .

The probability map of shape collapse across 50 subjects is

shown in Fig. 4.

The population, shape-collapse, probability map gives

information about the regions where shape collapse prob-

lem is more likely to occur for this population during dif-

feomorphic image registration. This information can be

used to determine whether or not there is functional signal

(a) Deformed T1 image

(b) Collapse measurement

Figure 3: Shape collapse detection for one participant. (a)

same deformed image as in Fig. 1c; (b) color coded collapse

image superimposed on image shown in (a) where green

corresponds to a collapse value of 0 mm and to red corre-

sponds to a collapse value of 3 mm. Red regions are regions

with shape collapse after registration.

loss when mapping functional data to a reference coordinate

system, develop algorithmic solutions to reduce shape col-

lapse problems and to determine the validity of population

shape measurements when using nonrigid image registra-

tion methods.

3.5. Gaussian Smoothing Kernel Analysis

We investigated the influence of the Gaussian smooth-

ing kernel K (see Eq. 4) for the SyN registration algorithm

using the 2D moving and target phantom images shown in

Fig. 2. The SyN registration algorithm was used to regis-

ter the moving brain phantom to the target brain phantom

using a Gaussian smoothing kernel with different variances

σ2. Results of these experiments are shown in Fig. 5. Notice

that there is more shape collapse for smaller sigmas than for

larger sigmas in this figure.

Table 1 shows the sum of squared differences between

the deformed moving image and the target image for var-
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(a) Axial view

(b) Sagittal view

(c) coronal view

Figure 4: Orthogonal views of the 3D population, shape-

collapse, probability map in the atlas space (includes 25

normal controls and 25 euthymic individuals). The prob-

ability map was obtained with threshold value T = 1 (i.e.,

the threshold value of the Thres function in Eq. 7 was set to

1). This population, shape-collapse, probability maps was

thresholded at 0.6 (i.e., regions with value less than 0.6 mm

are not visualized). Regions of red and orange show areas

of collapse that occur across at least 60% of the individuals

in the population.

(a) Deformed image, σ2
= 1 (b) Collapse map, σ2

= 1

(c) Deformed image, σ2
= 1.5

(d) Collapse map, σ2
= 1.5

(e) Deformed image, σ2
= 2 (f) Collapse map, σ2

= 2

Figure 5: Registration results for three SyN registrations

that registered the moving and target images shown in

Fig. 2. The variance σ2 of the Gaussian smoothing ker-

nel used for registration is shown under each panel. Each

collapse map was thresholded at a value of 2.0 mm for bet-

ter visualization. Notice that more collapse happens using a

kernel with a smaller variance than with a larger variance.

ious Gaussian smoothing kernels. This table shows that

when smooth variance is very small, the shape collapse is

small but the registration result is not desirable, i.e., there is

a large sum of squares intensity difference between the de-

formed moving image and the target image. As the variance

increases, the shape collapse increases and the registration

result is getting better. But when variance becomes too large

(i.e., variance = 3), the shape collapse still goes down, but

the registration result gets worse. This shows that there is

a trade-off between the amount of shape collapse and the

accuracy of the registration result.
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Variance, σ2 Collapsemean Collapsemax Sqrt(SSD)

0.5 1.57 3.48 3627

1.0 1.70 5.25 2597

1.5 1.71 6.24 1544

2 1.66 4.90 1152

2.5 1.58 3.01 1293

3 1.55 3.17 1180

3.5 1.54 3.06 1245

4 1.53 2.97 1606

Table 1: Results of SyN registration with different smooth-

ing kernels. The first column shows the different smoothing

variances used for the Gaussian smoothing kernel. The sec-

ond and third columns show the mean and maximum values

of voxels with value greater than 1 mm in the collapse map,

respectively. The last column shows the square roots of the

sum of squared differences between the deformed moving

image and target image.

3.6. Retrospective Comparison of Two Sets of Pa­
rameters Used for SyN Registration in BAW

In this section, we discuss a retrospective comparison

between two sets of parameters used for SyN image reg-

istration using the BRAINS AutoWorkup (BAW). The SyN

registration parameters used in the BAW pipeline are hard

coded in the scripts. We noticed some collapse registra-

tion artifacts in registration results generated two years ago

using BAW that appeared to disappear or become less no-

ticeable using a newer version of the BAW. Figure 3 shows

the collapse artifacts for one participant using the old BAW

and Fig. 6 shows the corresponding collapse map using the

new parameters for the same participant. Figure 7 shows the

population shape-collapse probability map using the results

from the new BAW. Comparing Figs. 3 and 7 shows that

the overall probability of shape collapse for the population

was substantially reduced during registration using the new

BAW.

When we investigated what was different between the

old and new BAW, we found that the variance of the Gaus-

sian kernel K in Eq. 4 used to smooth the update velocity

field at each iteration stayed the same between the two sets

of parameters. The gradient step size decreased by 50%

in the new BAW compared to the old BAW. This change

makes the convergence of the gradient descent of the new

method slower, but, should not contribute to image collapse

registration artifacts.

This meant that the main difference between the old and

new SyN registration parameters was the multi-resolution

scheme used to estimate the transformation. The old ver-

sion of BAW uses a four level multi-resolution scheme for

optimization while the new BAW uses multi-stage, multi-

(a) Deformed T1 image with

old parameters

(b) Deformed moving image

with new parameters

(c) Collapse measurement with

old parameters

(d) Collapse measurement with

new parameters

Figure 6: Shape collapse map for the same participant

shown in Fig 3 when using new BRAINS AutoWorkup. The

same color scale is used as in Fig 3 where orange regions

are regions with large shape collapse after image registra-

tion. Notice that panels c and d show that the shape collapse

was dramatically reduced using the new BAW for the same

participant.

resolution registration scheme with two stages and two lev-

els for each stage. In the old scheme, the two images are

down sampled by 5, 4, 2, 1 (full resolution) and registered

for 10000, 500, 500, and 200 iterations or until convergence

at each resolution, respectively. In the new scheme, the two

images are down sampled by 8 and 4 and registered for 500

and 500 at each resolution or until convergence in the first

stage, respectively. Incorporating the results from the first

stage, the two images are down sampled by 2 and 1 (full

resolution) and registered for 500 and 70 at each resolution

or until convergence in the second stage, respectively.

Table 2 shows that although the shape collapse was miti-

gated with the new SyN parameters, the registration results

got worse as measured by the normalized cross correlation.

This table suggests that the reason that the new SyN reg-

istration parameters produce less shape collapse is because

the algorithm stops before convergence at the full image res-

olution. Allowing the SyN image registration algorithm to

iterate more than 70 iterations at the full image resolution

would result in a reduction in the normalize cross correla-

tion and an increase in shape collapse. This shows that one

has to find a balance between the amount of image registra-

tion accuracy and the amount of shape collapse.
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(a) Axial view

(b) Sagittal view

(c) coronal view

Figure 7: Orthogonal views of the 3D population, shape-

collapse, probability map in the atlas space using new

BRAINS AutoWorkup. The probability map is obtained

with threshold value 1 (sets threshold value T of function

Thres in Eq. 7 to 1). And three views are thresholded at

0.6 (regions with value less than 0.6 mm will not show up).

Regions of red and orange show areas of collapse that occur

across at least 60% of the individuals in the population.

ID CCold CCnew Collapseold Collapsenew

1 0.63 0.57 3.91 2.88

2 0.63 0.56 4.25 2.47

3 0.62 0.54 4.19 3.63

4 0.66 0.58 3.87 2.37

5 0.66 0.59 4.47 3.04

6 0.64 0.59 3.84 2.69

Table 2: Summary statistics for six participants chosen ran-

domly from the population for the old and new SyN reg-

istration parameters. The largest value of shape collapse

using the old and new parameters for these participants are

shown in the forth and fifth columns, respectively. For each

participant, the normalized cross correlation between the

deformed and reference images using the old (CCold) and

new (CCnew) SyN registration parameters is shown in the

second and third columns, respectively.

4. Summary and Conclusions

We presented a new method to detect shape collapse in

pairwise nonrigid image registration. We extended this al-

gorithm to compute the population, shape-collapse proba-

bility map. This map can be used to determine whether or

not there is functional signal loss when mapping functional

data to a reference coordinate system, develop algorithmic

solutions to reduce shape collapse problems and to deter-

mine the validity of population shape measurements when

using nonrigid image registration methods.
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