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Abstract

Motivated by recent results on compressed sensing cam-

eras we consider cameras that perform an analog linear

transformation Φ on the signal, followed by scalar quanti-

zation. Specifically we ask: is it better to use compressed

sensing (Φ is an under-sampling random matrix) or direct

sensing (Φ is the sparsifying basis)? We compare the two

approaches using their energy-distortion tradeoffs: assum-

ing most of the energy consumed by such systems is in the

ADC and the energy of the quantizer doubles with each bit,

which system will give lower distortion for the same en-

ergy consumption? We present analytic expressions for the

energy-distortion curves for three signal models: signals re-

siding in a known subspace, sparse signals and power-law

signals. For all of these models, our analysis shows that

direct sensing results in lower distortion for a given energy

consumption. We also present simulation results for natural

images showing that direct sensing of Haar wavelet coeffi-

cients is preferable for these signals. Given the assumptions

of our model, direct sensing of Haar wavelets can achieve

high quality imaging (PSNR of 40 dB) with 6% the power

consumption of standard cameras using 8 bits per channel.

1. Introduction

In the third quarter of 2012, the worldwide smartphone

population surpassed 1 billion [1]. The smartphone has be-

come a popular and frequently used platform for both con-

sumption and creation of media. Mobile phones have be-

come increasingly performant, able to do real-time 3D ren-

dering and recording 1080p HD video. However, these de-

vices remain very power-constrained. Reducing power con-

sumption of various phone components has thus become an

important goal for manufacturers and researchers.

In [4] and [5], the authors showed that the camera sub-

system incurs a high power consumption. In fact, their re-

sults show that the camera is among the highest energy con-

sumers among a smartphone’s subsystems. In [20] the au-
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y :“ Φx qpyq :“ y ` w
x̂

Figure 1. Compression and reconstruction setup. A signal x with

continuous entries is measured using a linear transformation Φ,

quantized using a scalar quantizer qpyq “ pq1py1q, ..., qmpymqq
with w representing quantization noise, and then reconstructed.

thors show similar results for Google Glass.

The typical electronic components of a mobile imag-

ing system are the CMOS image sensor, which outputs,

per pixel, an analog signal corresponding to the light in-

tensity, an analog-to-digital converter (ADC) which quan-

tizes the signal, and a processing unit which performs post-

acquisition tasks such as white balancing and error correc-

tion [13]. It is well known that ADCs are often major power

consumers in such imaging systems [19]. In view of these

observations, optimizing the trade-off between energy con-

sumption and distortion may be of more interest to system

designers than the rate-distortion trade-off.

In recent years, compressed sensing (CS) [3, 2, 8, 26, 9]

has been suggested as a method to reduce power consump-

tion in imaging systems [17, 25, 21]. In [24], Oike and

El Gamal construct a CMOS image sensor with Σ∆ ADC

which implements a CS system for natural image acquisi-

tion. The authors show a monotonic relation between the

energy consumption and the CS compression ratio. Mo-

tivated by these results, we ask whether such CS systems

have an efficient energy-distortion trade-off, compared to

simpler acquisition and reconstruction methods.

Formally, consider a coding scheme for signals x P R
n,

that consists of a measurement step which is a linear trans-

formation, and a quantization step which converts the con-

tinuous measurement into bits. That is, we have a measure-

ment matrix Φ P R
mˆn, and for a signal x P R

n we have

a measured y :“ Φx. The measured signal then passes

through a scalar quantizer qpyq “ pq1py1q, ¨ ¨ ¨ , qmpymqq.

Fig. 1 shows this setup, including reconstruction. In this

work we are interested in the MSE distortion }x´x̂}2
2
. Note

that the system described in [24] is a special case of this
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Figure 2. A proposed variation on the design in [24], which allows

the system to multiply the pixel array with a ´1, 0, 1 vector at the

quantization stage. A multiplexer is controlled by the projection

vector φi, choosing between the values of x,´x and 0. The output

is passed to a Σ∆ ADC. For details see [24].

coding scheme, where Φ is sampled from the ensemble of

random binary matrices and quantization is performed per

measurement using a Σ∆ ADC.

The main question we address in this work is whether,

in terms of energy-distortion trade-off, one should use an

under-sampling (m ď n) matrix Φ P R
mˆn with i.i.d. en-

tries sampled from a Gaussian, or should Φ be the sparsify-

ing basis of the signal. We focus our analysis on the context

of natural images.

We will study this question in three settings. We start

with a simple result for signals residing in a known sub-

space. In Section 4 we examine the standard k-sparse model

common in the CS literature, and in Section 5 we consider

signals obeying a power law decay, which is a good approx-

imation for natural images under common transformations

such as DCT and DWT. We show analytically that using

direct measurements with efficient rate allocation achieves

lower distortion than using random measurements. In Sec-

tion 6 we corroborate our analysis of the coding schemes

with experiments on natural images.

Proofs were omitted due to length constraints, and will

appear in the supplementary materials.

1.1. Linear transformations in the analog domain

This work was motivated by the work of Oike and El-

Gamal [24] who showed that it is possible to perform a

linear transformation on the image before quantization and

that the transformation is negligible in terms of power con-

sumption. This was achieved be performing summation and

quantization simultaneously in Σ∆ ADCs. The input to

each ADC is pixel block values multiplexed with ground,

where the multiplexer is controlled by the binary measure-

ment matrix Φ. Their system allows computing the dot

product of a pixel block with any binary vector with neg-

ligible power consumption. In analyzing the power con-

sumption of a prototype camera that they built, they found

that ADCs are main power consumers in the imaging sys-

tem, and that energy consumption decreases linearly with

the measurement ratio of the system.

We propose a small modification to the scheme which al-

lows for the elements of Φ to contain ´1, 0, 1 values, shown

in Fig. 2. This is done by adding an inverting amplifier and

using a 3-to-1 multiplexer instead of the 2-to-1 used in [24].

We expect that in our modification as well, the power con-

sumption of the system will be dominated by ADC opera-

tions.

2. Modeling assumptions and problem formu-

lation

2.1. Modeling assumptions

To study the energy-distortion behavior of ADCs, we

model them as uniform scalar quantizers [28]. We make

two strong assumptions in our model:

• The distortion function of fixed rate uniform quantizers

has the following form for the input signals we work

with:

DpRq “ cσ22´2αR, (1)

where σ2 is the variance of the signal and the constants

c, α depend on the quantizer.

• The power consumption of an ADC doubles with every

bit

EpRq92R. (2)

In the following we explain these assumptions and for-

mulate our question in the context of our model.

Goyal et al. [14] use the following generic distortion

function for uniform scalar quantization of signals with

bounded support and entropy coded high-resolution uni-

form scalar quantization of general signals:

DpRq “ cσ22´2R. (3)

This distortion model is less accurate for uniform quan-

tization of signals with infinite support. In [15] the authors

describe an asymptotically accurate distortion model of uni-

form quantization for generalized Gaussian signals. This is

done by choosing the optimal support of the uniform quan-

tizer given the number of quantization cells and the param-

eters of the distribution, and results in a fairly complicated

expression.

Our distortion model,

DpRq “ cσ22´2αR, (4)

was chosen as a generalization of (3) that is still easy to an-

alyze and can be used to approximate the results in [15].

An additional parameter α ą 0 allows us to configure the

model according to the quantization scheme and signal dis-

tribution. When α “ 1 the model reduces to (3), describ-

ing the distortion of a uniform quantizer for a signal with
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bounded support, and in the supplementary materials we

show empirically that for α « 0.85, this function approx-

imates optimal (according to [15]) uniform quantization of

Gaussian and Laplacian signals in the bit rate range 0 ´ 15,

which covers most ADC implementations [23]. The mul-

tiplicative constant c does not affect our analysis and we

ignore it for brevity.

The energy consumption of an ADC depends on its un-

derlying architecture, therefore modeling it accurately is

impractical. Instead, we use survey results [23] for ADCs

with bit rates in our region of interest as a guideline to de-

fine the energy consumption of a converter that outputs a bit

rate R as

EpRq “ c2R, (5)

where we ignore the multiplicative constant for brevity.

In the general case we have m sources (e.g., sensors

corresponding to pixels, or wavelet coefficients) which are

quantized independently using scalar quantization. Denot-

ing the rates of the codes tRiu
m
i“1

, the total energy con-

sumption of the system is

EpRq “
m
ÿ

i“1

2Ri . (6)

The minimal possible energy consumption according to

this model is m, corresponding to an allocation of 0 bits

to every element of the quantizer. While a model with 0

minimal energy consumption would be more accurate, the

simplicity of (6) allows for easier analysis. We will assume

that E ě m throughout the paper.

For a scalar source, the bit rate corresponding to an en-

ergy budget E is R “ log
2
E, from (6). For a source in

R
m, a scalar quantizer qpyq “ pq1py1q, ¨ ¨ ¨ , qmpymqq and

an energy budget E, one can achieve an energy consump-

tion equal to E with different bit allocations, resulting in

different distortions. We define the distortion DpEq of qp¨q
using the allocation which achieves minimal distortion:

min
Ri

m
ÿ

i“1

DipRiq

subject to EpRq ď E

Ri ě 0,@i,

(7)

where Dip¨q is the distortion-rate function of qip¨q for the

specific source distribution, and EpRq is defined in (6). This

is similar to rate-distortion formulations for parallel sources

constrained by total rate, and is solved using the common

”reverse water-filling” algorithm [7]. We note the following

observation which we will use in the sequel.

Lemma 1. Let E ě m. If Dip¨q are defined as in (4) and

all σi are equal, then all the rate allocations tRiu
m
i“1

of the

solution to (7) are equal to log
2
pE{mq.

Equipped with these definitions, our analysis will con-

sist of calculating the measurement distortion DpEq “
E}y´qpyq}2 according to (7) for the measurement schemes

described in the following section. From the measurement

distortion we infer the reconstruction error E}x ´ x̂}2.

2.2. Quantization systems and problem formulation

Let x P R
n be an input signal with some known distribu-

tion. In this work we examine the energy-distortion trade-

off of three quantization schemes of the form portrayed in

Fig. 1:

1. Random under-sampling measurements. m ď n,

Φij „ N p0, 1{mq and a fixed-rate uniform quantizer.

2. Direct measurements. Φ “ Ψ: with a fixed-rate uni-

form quantizer, where Ψ is the basis in which x is

sparse, and Ψ: “ pΨTΨq´1ΨT is the Moore-Penrose

pseudoinverse. Since the basis size is smaller than n,

m ď n in this case as well.

3. Direct measurements and improved quantization.

Again, Φ “ Ψ:, followed by a simple variable-rate

quantizer, which we call threshold-vr coding.

Given an energy budget E, the signal x is measured with

each of the schemes. It is then quantized and then recon-

structed as x̂. The quantizer bit allocations are given by

the solution to (7). We ask which scheme achieves minimal

MSE distortion E}x ´ x̂}2
2
.

3. Distortion-energy of signals in a known sub-

space

We begin with the simple case in which x P R
n is given

by x “ Ψθ, where Ψ P R
nˆk is a matrix of orthonormal

columns, and θ „ N p0, Ikq. We will assume that the spar-

sifying basis Ψ is known to both the quantizer and the re-

construction method. Similarly to [14], we show that direct

quantization with fixed-rate codes is better than using ran-

dom measurements. In this case the variable-rate approach

threshold-vr is not needed.

3.1. Direct measurements

In the direct approach we have m “ k, and we directly

measure the vector θ “ Ψ:x. The elements of θ are i.i.d..

Therefore, given a total energy budget E ě m, the bit rate

allocation of each of the k quantizers is log
2
pE{kq, from

Lemma 1. Thus, the distortion for this approach is:

DdirectpEq “ k

ˆ

E

k

˙´2α

. (8)

38



3.2. Random measurements

To analyze the random measurement distortion, we first

note that random matrices Φ P R
mˆn with zero mean

Gaussian i.i.d. entries Φij are orthogonally invariant [10,

Section 4.2]. Therefore if Ψ̄ P R
nˆn is some basis com-

pletion of Ψ, then Φ and ΦΨ̄´1 have the same distri-

bution. Thus, we will assume in the rest of the paper

that the sparsifying basis is the identity Ψ “ In and that

x “ pθ, 0, . . . , 0qT P R
n.

Note that the variances of the elements of y :“ Φx are

equal to σ2

y “ k{m. Thus, given an energy budget E ě m

the distortion of any element of y is given by

DypE{mq “ σ2

y

ˆ

E

m

˙´2α

“
k

m

ˆ

E

m

˙´2α

, (9)

according to Lemma 1. We now use the rate-distortion

results from [6] slightly modified by replacing distortion-

rate functions with distortion-energy functions. This oracle-

assisted approach, in which the support of the signal is

known to both coder and decoder, provides the following

lower bound for reconstruction of randomly measured sig-

nals.

Theorem 1. [6]. Assume that the support of x P R
n is

known at the decoder, and that m ą k ` 3. Assume the

measurement matrix is Φij „ N p0, 1{mq. Let E be the

total energy budget of the code, and let DypEq be the dis-

tortion function of each element of y. Then the distortion

E}x ´ x̂}2 of the reconstruction has the following lower

bound

Dcs´oraclepEq “
km

m ´ k ´ 1
DypE{mq. (10)

In our case, the support is indeed known, and so this

result gives the MSE of using random measurements. Of

course, a real CS system would not know the support of the

source signal at the decoder, but simulations show that this

result acts as a good lower bound on the reconstruction error

of CS algorithms [6].

Note that in both the direct and random approaches, the

quantized elements are Gaussian. Thus, the α parameter in

(8) and (9) has the same value. Using (8), (9) and Theorem

1 we obtain the following simple result.

Corollary 1. Let x be a signal drawn from a known sub-

space as described above, and let α ą 0.5. If m ą k ` 3

then:

DdirectpEq ă Dcs´oraclepEq. (11)

The result is intuitive – there is no reason to mix a signal

with i.i.d. entries when one knows its support exactly.

4. Distortion-energy of sparse signals

Next, let x P R
n be a k-sparse signal, where the k in-

dices are chosen uniformly from the
`

n

k

˘

possible sets, and

the non-zero entries are independently sampled from the

standard normal distribution.

In this section we show analytically that under reason-

able assumptions, the threshold-vr method achieves lower

distortion than any reconstruction algorithm which uses ran-

dom Gaussian measurements.

4.1. Direct measurements

We start with the fixed-rate direct method. In this method

the quantization consists of n scalar quantizers, to which we

allocate bit rates according to (7). It is easy to see that the

variance of any xi is k{n so that according to Lemma 1

the rate of each quantizer is R “ log
2
pE{nq. Assuming

a distortion model parameter α0 for this signal, the recon-

struction error is:

DdirectpEq “ n

ˆ

k

n

˙

2´2α0R “ k

ˆ

E

n

˙´2α0

. (12)

In terms of rate-distortion, it is easy to see that the di-

rect approach is not optimal for high rates since most of the

bit-rate is wasted on elements equal to zero. In [14], the au-

thors address this with a simple adaptive approach in which

coding consists of spending R0 “ log
`

n

k

˘

bits to code the

support indices, and the rest for coding their values, result-

ing in a distortion of k2´2αpR´R0q{k, where R " R0 is the

total amount of bits.

Our energy model applies only to quantization, so mod-

eling the energy consumption of coding the support is out

of our scope. Instead we assume an oracle model where the

support is known to the encoder and decoder. The resulting

distortion

DadaptivepEq “ k

ˆ

E

k

˙´2α

, (13)

is equivalent to (8) and serves as a lower bound for the fol-

lowing approach, which we can model entirely within our

framework.

A simple solution for the wasted bits in the direct method

is a coding scheme we call ”variable rate threshold code”

(threshold-vr) which sends the bit ’0’ when the source is un-

der a negligibly small threshold and otherwise uses a fixed

rate code prefixed by the bit ’1’. Since the thresholding can

be implemented using a simple comparison and separately

from the actual quantization, we get that each quantizer uses

energy equal to 21 for thresholding, and the remaining en-

ergy pE ´ 2nq is available for the k active quantizers.

Given an energy budget of E, the rate of each quantizer

is R “ log
2
ppE ´ 2nq{kq, from Lemma 1. Assume the

thresholding correctly identifies the support. From (4) we
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get

Dthreshold´vrpEq “ k2´2αR “ k

ˆ

E ´ 2n

k

˙´2α

. (14)

4.2. Random measurements

We now consider the random measurement scheme,

where Φij „ N p0, 1{mq, and denote the measurement

y :“ Φx. From the central limit theorem, for large

enough n the elements of y are identically distributed as

N p0, k{mq, and again from Lemma 1 the energy allocated

to each quantizer is E{m.

As in the previous section, we have

DypE{mq “ σ2

y

ˆ

E

m

˙´2α

“
k

m

ˆ

E

m

˙´2α

. (15)

Plugging into Theorem 1 provides us a lower bound on the

distortion in the case of random measurements

Dcs´oraclepEq “
k2

m ´ k ´ 1

ˆ

E

m

˙´2α

. (16)

Note that the quantized signal is Gaussian in the

threshold-vr and random approaches. Therefore, α has the

same value in (14) and (16). Comparing both methods we

obtain the following result.

Corollary 2. Let x be a k-sparse signal, and let E ą 10n

and α ě 0.85. If m ą 2k then

Dthreshold´vrpEq ă Dcs´oraclepEq. (17)

Note that standard CS theory requires that m ą
Ck logpn{kq with a large constant C ą 0 when logpn{kq
is small [12, 11], and so the conditions of Corollary 2 apply

to most practical instances.

In Fig. 3 we show the gap between the distortion func-

tions of the oracle-assisted CS (16), the threshold-vr method

(14), and the direct method (12). We plot the SNR “
10 log

10
pE}x}2{DmethodpEqq corresponding to their distor-

tion functions for the quantization model parameter α “
0.85, dimension n “ 100 and sparsity k “ 5. The CS ora-

cle curve was chosen by searching for the m between k ` 4

and n minimizing (16), and was found to be m “ 15. We

can see that the threshold-vr method achieves SNR compa-

rable to the adaptive bound (13) in most of the energy range.

We conclude that under our assumptions, it is prefer-

able to use direct measurements with variable rate threshold

quantization over random measurements.

5. Distortion-energy of signals obeying a power

law

While sparse signals have been thoroughly studied in the

CS literature, it is interesting to consider signals with sta-

tistical properties similar to those of natural images. One

10´2 10´1 100
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40

60

Energy ratio

S
N

R
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Figure 3. The energy-distortion SNR curves of the distortion func-

tions of oracle-assisted CS (16), threshold variable rate (14) and

direct (12) approaches, compared with the adaptive (13) baseline.

The horizontal axis is the ratio between the energy consumptions

of the methods and the energy consumed when each of the n ele-

ments is quantized using 8 bits. The dimension is n “ 100, and

the sparsity is k “ 5. The quantization parameter is α “ 0.85,

and the best measurement ratio β “ m{n for the CS bound was

chosen using search and was achieved for m “ 15.

of the fundamental results of frequency-based analysis of

natural images is that their power spectrum decay is in-

versely proportional to the square of the frequency [16].

Signals with decaying magnitudes of their sorted coeffi-

cients are generally referred to as compressible in the CS

literature, and it has been shown that for certain decay rates

they are well approximated by sparse signals and so can be

tractably decoded using CS techniques, with proven worst

case bounds on the error [3, 11].

Our interest lies in the mean error, and as we have done

with the previous signal models, we would like to compare

the error obtained by direct quantization with optimal allo-

cations with the error of methods that use random measure-

ments.

We remain with the model described in Fig. 1. Instead

of a sparse signal, let x P R
n be a random Gaussian with

zero mean and independent elements with a diagonal co-

variance matrix Cx whose diagonal entries obey the power

law pCxqii “ 1{i2.

For this signal we cannot use Theorem 1 to calculate the

distortion when Φ is random, since the signal is not strictly

k-sparse. Instead, our analysis will assume a linear mea-

surement model and apply simple results from random ma-

trix theory on the minimum mean square error (MMSE) es-

timator of the measured signal.

In this setting, x „ N p0,Cxq is measured with

y “ Φx ` w, (18)

where Φ P R
mˆn (with m ď n). The vector w „

N p0,Cwq represents the quantization noise of the system,
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and its covariance Cw is a diagonal matrix with variances

equal to the distortion of the corresponding elements, and so

dependent on the measurement method and the quantization

energy budget.

Let x̂ be the MMSE estimator of the model above, and let

the estimation error be ǫ “ x´ x̂. From the Gauss-Markov

theorem [18], the covariance of ǫ is

Cǫ “
`

C´1

x
` ΦTC´1

w
Φ

˘´1
(19)

and so the MSE is trpCǫq. In the following we will show

that the MMSE of direct measurements is smaller than the

MMSE of random measurements.

5.1. Direct measurements

For the direct measurement method (Φ “ In) with fixed-

rate, the distortion for this signal model is given directly

by (7). The following result is a direct consequence of the

”reverse water-filling” method applied to this optimization

problem.

Lemma 2. Let α ą 0.5. If E ą α`0.5
α´0.5

pn ` 1q then the

distortion of the i-th element is

DipEq “ σ
1

α`0.5

i

˜

n
ÿ

j“1

σ
1

α`0.5

j

¸2α

E´2α, (20)

and the total distortion of the quantizer is

DdirectpEq “

˜

n
ÿ

i“1

σ
1

α`0.5

i

¸2α`1

E´2α. (21)

Now, assume that pCwqii “ DipEq. Then

mmsedirectpEq “ tr
`

C´1

x
` C´1

w

˘´1

(22)

ă trpCwq “ DdirectpEq. (23)

Therefore, it is enough to show that DdirectpEq ă
mmserandompEq.

5.2. Random measurements

Now consider the case where Φ P R
mˆn is random,

with Φij „ N p0, 1{mq. We assume a large scale regime

where m,n Ñ 8 and β “ m{n is constant. Our goal is to

calculate mmserandom “ E rtrpCǫq|Φs. In words, we want

to find the MSE of the MMSE estimator which receives the

measurement matrix Φ as known input. We will find a sim-

ple lower bound for it, beginning with the fact that

trCǫ “ tr
`

C´1

x
` ΦTC´1

w
Φ

˘´1

(24)

ą tr
`

n2In ` ΦTC´1

w
Φ

˘´1

(25)

“
1

n2
tr

ˆ

In `
1

n2
ΦTC´1

w
Φ

˙´1

. (26)

Similarly to the previous sections, we use Lemma 1 to

note that the noise covariance is a scalar matrix Cw “
σ2

w
Im with

σ2

w
“

1

m

n
ÿ

i“1

σ2

i

ˆ

E

m

˙´2α

, (27)

and so it remains to calculate

1

n2
tr

ˆ

In `
1

n2

1

σ2
w

ΦTΦ

˙´1

. (28)

Using the Marc̆enko-Pastur law [27] we get that the above

converges a.s. to

mmserandompEq “
1

n

˜

1 ´
F

`

pnσwq´2, β´1
˘

4pnσwq´2β´1

¸

, (29)

where F px, zq is an elementary function defined in [27].

Note that since the quantized signal is Gaussian in the direct

and random approaches, the value of α in (27) and (23) is

equal. Therefore, combining (29) with (23) we obtain the

following result.

Corollary 3. Let 0.85 ď α ď 1, n ą 10 and β “ m{n ď
1. If

E ą cn (30)

for a known constant c which depends only on α and β, then

mmsedirectpEq ă mmserandompEq. (31)

In fact, c is small enough that for any practical problem

dimension n the direct method is essentially always better

than using random measurements. See the supplementary

materials for specifics. In Fig. 4 we plot the SNR of of

both methods for the quantization model parameter α “
0.85. The direct curve is given by (21) and the random curve

is obtained by evaluating (29) with different measurement

ratios β.

6. Experiments with natural images

To test the our numerical results we ran the complete pro-

cess of quantization and recovery on natural image patches,

using direct quantization and CS. Given an image patch

x P R
n, we used the 2D Haar transform H P R

nˆn to

get a wavelet representation of the patch Hx on which we

ran our quantization schemes.

We first tried performing optimal uniform quantization

(according to [15]) for both direct measurements and ran-

dom measurements of the Haar coefficients. Since the Haar

coefficient distributions are not uniform and have bounded

support, uniform quantization turned out to be only slightly

better than uniform quantization of pixel values (for the
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Figure 4. SNR of the lower bound on optimal reconstruction with

random measurements (29) versus direct quantization with energy

constrained bit allocation (21), for Gaussian signals in dimension

n “ 100 obeying a power law σ2

i “ 1{i2. The horizontal axis is

the ratio between the energy consumptions of the methods and the

energy consumed when each of the n elements is quantized using

8 bits. We show SNR for several values of β “ m{n.

same energy budget). To obtain better PSNR we used non-

uniform quantization in which the cells were learned with k-

means. For the random measurements, using non-uniform

quantization didn’t result in significant change in PSNR. We

note that because of the generality of our distortion model,

the theoretical results of the previous sections are relevant

even for non-uniform quantization.

Since the Haar wavelet representation does not have

equal variance, we allocated a different number of bits to

each coefficient. This was done by solving the optimiza-

tion problem in (7). Specifically, we used reverse water-

filling [7] to obtain real-valued rates, and then rounded these

rates to integers. Since the random measurements had equal

variance in their elements, bit allocation for the random

approach was uniform across all elements, as a result of

Lemma 1.

CS reconstruction was performed using two methods.

The first Quadratically Constrained Basis Pursuit (QCBP),

also known as Basis Pursuit DeNoising (BPDN),

x̂ “ argmin
x

}Hx}1 s.t. }ΦHx ´ qpyq}2 ă ǫ, (32)

with qpyq “ y ` w being the quantized measurements,

ǫ “ cσw, and c ą 0 chosen using simple parameter search.

The second is total variation (TV) minimization [3],

x̂ “ argmin
x

TVpxq s.t. ΦHx “ qpyq, (33)

where

TVpxq “
ÿ

i,j

b

pxi`1,j ´ xi,jq2 ` pxi,j`1 ´ xi,jq2 (34)
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Figure 5. Performance of quantized CS with QCBP reconstruction

(32) and direct quantization with quantizer bit-rates allocated ac-

cording to (7), on 2D Haar coefficients of natural image patches

from BSDS300. The horizontal axis is the ratio between the en-

ergy consumptions of the methods and the energy consumed when

each of the n elements is quantized using 8 bits. The patch size is

n “ 16 ˆ 16.

is the isotropic total variation norm. Note that other con-

straints could be used in these formulations, such as ´ǫ ă

ΦHx´y ă ǫ, where the elements of ǫ are the cells sizes of

the quantizers. We have tried several constraint variations

for each problem and found that the above reach the lowest

error, correspondingly.

As expected, TV minimization performs better than

QCBP for natural images. Both approaches have lower

PSNR than direct sensing of Haar coefficients at the same

energy consumption levels, as can be seen in Fig. 5. More-

over, we see that the behavior of the direct and CS methods

is consistent with the analysis in Section 5, and Fig. 4. The

direct methods can be further improved using better recon-

struction algorithms.

Fig. 6 shows qualitative results of both methods for

zoomed-in image patches, and Table 1 shows quantitative

results for ten complete images. We also show a subsam-

pling baseline in which the overall amount of sampled pix-

els is decreased by a factor of 4, corresponding to 25% of

the energy consumption of a system sampling all pixels.

We note that these results do not contradict the low

power consumption obtained in [24]. Indeed, the amount

of quantizations decreases linearly with the amount of CS

measurements, and so energy decreases linearly as well.

Nevertheless, our experiments show that one can obtain

higher quality images with the same power budget by us-

ing direct quantization of Haar coefficients.
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PSNR (dB)
Figure 6. Qualitative comparison of direct quantization and CS (β “ 0.8) of Haar coefficients on several zoomed-in images from BSDS300

[22]. For both methods energy usage is 5% ´ 6% of a system which encodes each pixel with 8 bits. The patch size is n “ 16 ˆ 16. Note

that the examples shown are comprised of several patches. Top: original, middle: CS-TV, bottom: direct.

PSNR (dB)

Image Id CS-QCBP CS-TV Subsampling Direct

232038 29.65 30.97 24.69 37.69

236017 31.17 34.08 28.65 41.65

238011 41.43 43.37 37.95 48.30

239007 28.46 30.38 27.28 37.44

239096 30.86 33.25 30.64 41.45

24004 28.12 31.15 24.54 32.42

24063 41.10 40.91 35.32 46.59

242078 26.89 28.94 24.05 35.63

245051 28.76 31.15 25.19 36.68

246016 32.84 35.02 30.32 38.44
Table 1. Reconstruction PSNR of quantized CS (β “ 0.8)

and direct quantization of Haar coefficients for 10 images from

BSDS300. For the CS and direct methods energy usage is 5% ´
6% of a system which encodes each pixel with 8 bits. The factor

4 subsampling results in an energy usage of 25%, while its PSNR

is lower than the other methods. The patch size is n “ 16 ˆ 16.

7. Discussion and future work

We presented a model for distortion and energy con-

sumption of signal acquisition using linear measurements

followed by quantization. In this model we described a

quantizer bit rate allocation which is also constrained by

the total energy budget of the system.

We have shown that using direct measurements where

quantizer bit rates are allocated with this method is more

effective than using random measurements for signals in

a known subspace, sparse signals, and signals obeying a

power law decay in their variances. Specifically, the results

for the power law signals suggest that using compressed

sensing for natural image capture may be an inefficient ap-

proach for low energy consumption. We supported the the-

oretical results with simulations on natural images.

In the future, it would be interesting to analyze more

accurate signal models, test our results on real hardware,

and improve the reconstruction of the direct method using

stronger priors.
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