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Abstract

In this paper we present a novel street scene modelling
framework, which takes advantage of 3D point cloud
captured by a high definition LiDAR laser scanner. We
propose an automatic and robust approach to detect,
segment and classify urban objects from point clouds hence
reconstructing a comprehensive 3D urban environment
model. Our system first automatically segments grounds
point cloud. Then building facades will be detected by using
binary range image processing. Remained point cloud will
be grouped into voxels and subsequently transformed into
super voxels. Local 3D features are extracted from super
voxels and classified by trained boosted decision trees with
semantic classes e.g. tree, pedestrian, and car. Given
labeled point cloud the proposed algorithm reconstructs the
realistic model in two phases. Firstly building facades will
be rendered by ShadVis algorithm. In the second step we
apply a novel and fast method for fitting the solid
predefined template mesh models to non-building labeled
point cloud. The proposed method is evaluated both
quantitatively and qualitatively on a challenging TLS
NAVTEQ True databases.

1. Introduction

Analysis of 3D spaces comes from the demand to
understand the environment surrounding us and to build
more and more precise virtual representations of that space.
3D urban environment model is a digital representation of
the earth’s surface and its related objects such as building,
tree, vegetation, and some manmade feature belonging to
the city area. There are various terms used for the 3D urban
environment models such as “cyber town”, “virtual city”,
or “digital city”. All of them are basically a computerized
street model which contains the graphic representation of
buildings and other objects in a 3D space. These 3D models
are useful in variety of applications such as urban planning,
crime prevention and control, virtual reality and robotic
cars industry.
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In this work, we propose a novel automatic 3D urban
modeling approach which takes advantage of 3D
geometrical features extracted from Light Detection And
Ranging (LiDAR) point cloud. Since such 3D information
is invariant to lighting and shadow, as a result, significantly
more accurate results can be achieved.

While a laser scanning or LiDAR system provides a
readily available solution for capturing spatial data in a fast,
efficient and highly accurate way, the enormous volume of
captured data often come with no semantic meanings. Some
of these devices output several million data points per
second. So efficient and fast methods are needed to filter
the significant data out of these streams and high computing
power is needed to post-process all this large amount of data.
In despite of [1, 2], in this research we focus on a hybrid
two stage voxel based classification to address the above
mentioned challenges. Firstly, we adopt an unsupervised
segmentation method to detect and remove dominant
ground and buildings from other LIDAR data points, where
these two dominant classes often correspond to the majority
of point clouds. Secondly, after removing these two classes,
we use a pre-trained boosted decision tree classifier to label
local feature descriptors extracted from remaining vertical
objects in the scene.

While most city modelling approaches are focused on
facade modeling [3, 4, 5, 6], the focus of this work is
automatic detection, segmentation and classification of
whole urban objects. Given a point cloud containing one or
more objects of interest and a set of labels corresponding to
a set of models known to the system, the semantic
segmentation system assigns correct labels to regions, or a
set of regions, in the point cloud.

Given a labeled 3D point cloud with known position,
orientation and shape, as well as the set of solid predefined
street object templets, the 3D urban model will be generated.

1.1. Literature Review

While many image and video processing techniques for
2 dimensional object recognition have been proposed [7, 8],
the accuracy of these systems is to some extent
unsatisfactory because 2D image cues are sensitive to
varying imaging conditions such as lighting, shadow and
etc. In order to alleviate sensitiveness to different image
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Fig 1. Framework of proposed mythology

capturing conditions, many efforts have been made to
employ 3D scene features derived from single 2D images
and thus achieving more accurate object recognition [9]. In
the last decade, as the 3D sensors begun to spread and
computing capacity for large scale 3D data processing
became available, new methods and applications were born.
Since such 3D information is invariant to lighting and
shadow, as a result, significantly more accurate parsing
results are achieved. 3D urban scene analysis had been
often performed using 3D point cloud collected by airborne
LiDAR for extracting vegetation and building structures
[10]. Recently, classification of urban street objects using
data obtained from mobile terrestrial systems has gained
much interest because of the increasing demand of realistic
3D models for different objects common in urban era. A
crucial processing step is the conversion of the laser scanner
point cloud to a voxel data structure, which dramatically
reduces the amount of data to process. Zhou and Yu (2012)
present a voxel-based approach for object classification
from TLS data [2].

Visual SLAM (Visual Simultaneous Localization and
Mapping) has recently received a great attention within the
robotics and vision communities which prepares consistent
estimation of the 3D structure of the environment [13, 14]
without considering the type and affordance of object in the
scene.

Vosselman and Dijkman proposed a methodology and
algorithm for 3D building model reconstruction from point
clouds and ground plan [11]. They used the well-known
Hough transform for the extraction of planar faces from the
irregularly distributed point clouds. Ming et al., [12]
investigated the methodology and algorithms for automatic
generation of three dimensional photo realistic models from
Lidar and image data. They implemented automatic 3D
point cloud registration, automatic target recognition that is
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used for geo-referencing and automatic plane detection
algorithm that is used for surface modeling, and texture

mapping.

2. Proposed Methodology

It is a challenging task to directly extract objects from
mobile LiDAR point cloud because of the noise in the data,
huge data volume and movement of objects. We therefore
take a hybrid two-stage approach to address the above
mentioned challenges. Firstly, we adopt an unsupervised
segmentation method to detect and remove dominant
ground and buildings from other LiDAR data points, where
these two dominant classes often correspond to the majority
of point clouds. Secondly, after removing these two classes,
we use a pre-trained boosted decision tree classifier to label
local feature descriptors extracted from remaining vertical
objects in the scene. This work shows that the combination
of unsupervised segmentation and supervised classifiers
provides a good trade-off between efficiency and accuracy.
The output of classification phase is 3D labeled point cloud
and each point is labeled with a predefined semantic classes
such as building, tree, pedestrian and etc.

As photorealism cannot be achieved by using geometry
cues alone, and because we aim to only use point cloud data
(without image cues to decrease the procedure complexity)
we present two post processing phases to enhance our
proposed model visual quality. Firstly building facades will
be rendered by ShadVis algorithm, then for non-building
labeled point cloud we localize predefined template meshes
to achieve more realistic model.

The contribution of this work are as follows:

e A complete scene parsing system is devised and
experimentally validated using 3D urban scenes
point cloud that have been gathered with LiDAR
acquisition devices. The steps such as segmentation,



feature extraction, voxelization are generic and
adaptable to solve object class recognition problems
in different streets with varying landscape.

e Proposed two-stage (supervised and non-supervised)
classification pipeline which requires only small
amount of time for training.

e Propose to use novel geometric features leads to
more robust classification results

o Generating textured fagade of cities and localizing
predefined templates for remained small objects such
as car and pedestrian to enhance the visual quality of
proposed model.

The framework of the proposed mythology is given in
figure 1, in which 3D LiDAR point cloud is the inputs of
the processing pipeline and parsing results are presented as
3D labeled point cloud. Final semi-photorealistic model of
scene consisting textured 3D building facade and small
template object are shown as post classification result.

A. Ground Segmentation

The aim of the first step is to remove points belonging to
the scene ground including road and sidewalks, and as a
result, the original point cloud are divided into ground and
vertical object point clouds (Figure 2, A). Given a 3D point
cloud of an urban street scene, the proposed approach starts
by finding ground points by fitting a ground plane to the
scene. This is because the ground connects almost all other
objects and we will use a connect component based
algorithm to over-segment the point clouds in the following
step.

Fig 2. Ground Segmentation. A) Segmented ground and
remained vertical objects point cloud are illustrated by red and
black colour respectively. B) Sketch map of fitting plane to one

tile

The plane RANSAC fitting method is wused to
approximate ground section of the scene. The RANSAC
algorithm was developed by Fischler et al. [15] and is used
to provide a more robust fitting of a model to input data in
the presence of data outliers. Given a 3D point cloud of an
urban street scene, the scene point cloud is first divided into
sets of 10mx10m regular, non-overlapping tiles along the
horizontal x—y plane. Then the following ground plane
fitting method is repeatedly applied to each tile. We assume
that ground points are of relatively small z values as
compared to points belonging to other objects such as
buildings or trees (see Fig 2).
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The ground is not necessarily horizontal, yet we assume
that there is a constant slope of the ground within each tile.
Therefore, we first find the minimal-z-value (MZV) points
within a multitude of 25cmx25cm grid cells at different
locations. For each cell, neighboring points that are within
a z-distance threshold from the MZV point are retained as
candidate ground points. Subsequently, a RANSAC
method is adopted to fit a plane to candidate ground points
that are collected from all cells. Finally, 3D points that are
within certain distance (d in Figure 2, B) from the fitted
plane are considered as ground points of each tile. The
approach is fully automatic and the change of two
thresholds parameters do not lead to dramatic change in the
results. On the other hand, the setting of grid cell size as
25cm*25cm maintains a good balance between accuracy
and computational complexity.

B. Building Segmentation

Our method automatically extract building point cloud
(e.g. doors, walls, facades, noisy scanned inner
environment of building) based on two assumptions: a)
building facades are sufficiently tall compare to the other
structures in the street; and b) other non-building objects are
located on the ground between two sides of street. As can
be seen in figure 3, our method projects 3D point clouds to
range images because they are convenient structures to
process data. Range images are generated by projecting 3D
points to horizontal x—y plane. In this way, several points
are projected on the same range image pixel. We count the
number of points that falls into each pixel and assign this
number as a pixel intensity value. In addition, we select and
store the maximal height among all projected points on the
same pixel as height value. We define range images by
making threshold and binarization of I, where I pixel value
is defined as equation (1):

Pintensity

Pheight (1)

i
Max_ Pheight

"~ Max _Pintensity

Where I; is grayscale range image pixel value, Pingensity
and Ppeigne are intensity and height pixel value and
Max_Pinensiiy and Max_Ppeigne represent the maximum
intensity and height value over the grayscale image. On the
range image, an interpolation is required in order to fill
holes caused by occlusions, missing scan lines and LIDAR
back projection scatter.

In the next step we use morphological operation (e.g.
close and erode) to merge neighbouring point and filling
holes in the binary range images (figure 3). The
morphological interpolation does not create new regional
maxima, furthermore it can fill holes of any size and no
parameters are required. Then we extract contours to find
boundaries of objects. In order to trace contours, Pavlidis
contour-tracing algorithm [16] is proposed to identify each
contour as a sequence of edge points. The resulting



segments are checked on aspects such as size and diameters
(height and width) to distinguish building from other
objects. More specifically, equation (2) defines the
geodesic elongation E(X), introduced by Lantuejoul and
Maisonneuve (1984), of an object X, where S(X) is the area
and L(X) is the geodesic diameter.

_ ml2X)
E(X) = 45(X)

2

Considering the sizes and shape of buildings, the
extracted boundary will be eliminated if its size is less than
a threshold. The resolution of range image is the only
projection parameter during this point cloud alignment that
should be chosen carefully. If each pixel in the range image
cover large area in 3D space too many points would be
projected as one pixel and fine details would not be
preserved. On the other hand, selecting large pixel size
compared to real world resolution leads to connectivity
problems which would no longer justify the use of range
images. In our experiment, a pixel corresponds to a square
of size 0.05 m2.

Range Image Plane Range Tmage

Detected Building
shown in 3D Space

Building Dctection
(Marpholugical Operation)

Fig 3. Building Segmentation

The 2D image scene is converted back to 3D space by
extruding it orthogonally to the point cloud space. The x—y
pixels coordinate of the binary image labeled as building
facades are preserved as x—y coordinate of 3D point cloud
(with open z value) labeled as building, and not considered
in the remainder of our approach. Other points (negligible
amount compare to the size of whole point cloud) are
labeled as non-building class and will be later be classified
as other classes e.g. car, tree, pedestrian and etc.
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C. Voxel based classification

Although top view range image analysis generates a very
fast segmentation result, there are a number of limitation to
utilize it for the small vertical object such as pedestrian and
cars. These limitations are overcome by using inner view
(lateral) or ground based system in which, unlike top view
the 3D data processing is done more precisely and the point
view processing is closer to objects which provides a more
detailed sampling of the objects. However, this leads to
both advantages and disadvantages when processing the
data. The disadvantage of this method includes the demand
for more processing power required to handle the increased
volume of 3D data.

According to voxel based segmentation, points which are
merely a consequence of a discrete sampling of 3D objects
are merged into voxels to represent enough discriminative
features to label objects. 3D features such as intensity, arca
and normal angle are extracted based on these voxels. The
voxel based classification method consists of three steps,
voxelization of point cloud, merging of voxels into super-
voxels and the supervised classification based on
discriminative features extracted from super-voxels.

1) Voxelization of Point Cloud: In the voxelization step, an
unorganized point cloud p is partitioned into small parts,
called voxel v. The middle image in figure 4 illustrates an
example of voxelization results, in which small vertical
objects point cloud such as cars are broken into smaller
partition. Different voxels are labelled with different
colours. The aim of using voxelization is to reduce
computation complexity and to form a higher level
representation of point cloud scene. A collection of points
is grouped together to form a variable size voxels. The
criteria of including a new point pin into an existing voxel
i is essentially determined by the crucial minimal distance
threshold di which is defined as equation (3).

min( [|Py, — Pipll2) <dgn, 0<mn<N, m#n 3)

Where pim is an existing 3D point in voxel, pin iS a
candidate point to merge to the voxel, i is the voxel index,
di is the maximum distance between two point and N is the
maximum point number of a voxel. If the condition is met,
the new point is added and the process repeats until no more
point that satisfies the condition is found. Equation (3)
ensures that the distance between one point and its nearest
neighbours belonging to the same voxel is less than da.
Although the maximum voxel size is predefined, the actual
voxel sizes depend on the maximum number of points in
the voxel (N) and minimum distance between the
neighbouring points.

2) Super Voxelization: For transformation of a voxel to
super voxel we propose an algorithm to merge voxels via



region growing with respect to the following properties of
voxels:

o If the minimal geometrical distance, Dj;, between two
voxels is smaller than a given threshold, where Dj; is
defined as equation (4):

Dy = min( 1P — Pﬂ||2), ke (1,m),1 € (1,n) 4)

Where voxels vi and vj have m and n points respectively,

and pix and pji are the 3D point belong to voxel v; and v;.

» If the angle between normal vectors of two voxels is
smaller than a threshold: In this work, normal vector is
calculated using PCA (Principal Component Analysis)
[17]. The angle between two s-voxels is defined as
angle between their normal vectors as equation (5):

8;; = arccos(<n; ,n; >) (5)

Where n; and nj are normal vectors at v; and vj respectively.
The proposed grouping algorithm merges the voxels by
considering the geometrical distance (Djj < di) and normal
features of voxels (0 jj < 8 ). All these Voxelization steps
then would be used in grouping these super-voxels (from
now onwards referred to as s-voxels) into labeled objects.
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The advantage of this approach is that we can now use
the reduced number of s-voxels instead of using thousands
of points in the dataset, to obtain similar results for
classification.

3) Feature extraction: For each s-voxel, seven main
features are extracted to train the classifier.

Geometrical shape:

Projected bounding box has effective features due to the
invariant dimension of objects. We extract four feature
based on the projected bonding box to represent the
geometry shape of objects.

-Area: the area of the bounding box is used for
distinguishing large-scale objects and small ones.

-Edge ratio: the ratio of the long edge and short edge.

-Maximum edge: the maximum edge of bounding box.

-Covariance: is used to find relationships between points
spreading along two largest edges.

Height above ground: Given a collection of 3D points
with known geographic coordinates, the median height of
all points is considered as the height feature of the s-voxel.
The height information is independent of camera pose and
is calculated by measuring the distance between points and
the road ground.

Horizontal distance to center line of street: Following
[1], we compute the horizontal distance of the each s-voxel
to the centre line of street as second geographical feature.
The street line is estimated by fitting a quadratic curve to
the segmented ground.

Density: Some objects with porous structure such as
fence and car with windows, have lower density of point
cloud as compared to others such as trees and vegetation.
Therefore, the number of 3D points in a s-voxel is used as
a strong cue to distinguish different classes.

Intensity: Following [1], LIDAR systems provide not
only positioning information but also reflectance property,
referred to as intensity, of laser scanned objects. This
intensity feature is used in our system, in combination with
other features, to classify 3D points. More specifically, the
median intensity of points in each s-voxel is used to train
the classifier.

Normal angle: Following [18], we adopt a more
accurate method to compute the surface normal by fitting a
plane to the 3D points in each s-voxel. The surface normal
is important properties of a geometric surface, and is
frequently used to determine the orientation and general
shape of objects.

Planarity: Patch planarity is defined as the average
square distance of all 3D points from the best fitted plane



computed by RANSAC algorithm. This feature is useful for
distinguishing planar objects with smooth surface like cars
form non planar ones such as trees.

4) Classifier: The Boosted decision tree [19] has
demonstrated superior classification accuracy and
robustness in many multi-class classification tasks. Acting
as weaker learners, decision trees automatically select
features that are relevant to the given classification problem.
Given different weights of training samples, multiple trees
are trained to minimize average classification errors.
Subsequently, boosting is done by logistic regression
version of Adaboost to achieve higher accuracy with
multiple trees combined together. Each decision tree
provides a partitioning of the data and outputs a confidence-
weighted decision which is the class-conditional log-
likelihood ratio for the current weighted distribution. In our
experiments, we boost 10 decision trees each of which has
6 leaf nodes.

D. City model reconstruction using labeled point
cloud

The 3D modelling methods are mainly categorized based
on the input data techniques, one is photogrammetry (aerial,
satellite and close range based model), and another one is
the laser techniques (aerial, and terrestrial based model)
which is the subject of this work. Most of the time the 3D
model is generated using the photogrammetry techniques or
when the model is built by laser scanners the registered
image data is used to reconstruct textured 3D facades model.
In these model implementation the 3D point cloud is
registered with image data, automatic plane detection is
used for surface modelling and texture mapping will be
done using image data [4, 11]. Based on our knowledge,
there is no literature review available on 3D city modelling
just using 3D laser geometric data to generate realistic
models without color imaging cues.

This subsection illustrates our approach that reconstructs
the realistic model using input labeled point cloud in two
phases. Firstly we use ShadVis algorithm [20] to render the
building facades since the algorithm calculates the
illumination of a point cloud (or vertices of a mesh) with
the light coming from a theoretical hemisphere or sphere
around the object. In the second step we apply a methods
for fitting the solid predefined template models to non-
building labeled point cloud.

1) Building facade rendering:

Recently, point-based geometry has become a very
popular 3D object representation for geometry processing
and graphics. The design of rendering tools using this point
wise geometry representation is relatively straightforward.
In terms of computer graphics research, this part has been
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inspired by previous research in point-based geometry and
skydome/terrain rendering [20, 21].

We use the data structure of [22] for our point-based
representation of the data since it allows flexible multi-level
rendering with small overhead.

Fig 5. A) Input labelled point cloud representing building
facades. B) The rendering result with the 3D skydome approach.

Even though graphics hardware rendering pipelines have
been designed for polygons, the rendering of points is even
casier than for polygons. So as [20], we use the adapted
version algorithm of [22] for our purposes since it could
only process surfaces and we have points as input. The
accuracy of the result is concerned with the resolution of
the 3D data. A snapshot from the 3D viewer of a facades
with approximately 15 m length is shown in figure 5.

2) Method for fitting solid model to non-building labelled
point cloud

In the last part we generate 3D building model using just
3D point cloud. Due to complexity of different urban scene
most studies have been focused just on facades or building
modelling [3, 4]. In this step we present the method based
on fitting predefined template street view object to non-
building label point cloud (such as car, tree, pedestrian and
etc.) to devise a complete virtual 3D model of the urban
scene.

The input of this approach is the classified labeled point
cloud and the output is the solid meshes. We divided the
street view object categories modelling into two subsets and
adopt different object fitting approaches for them. The first
subset is related to the object classes which their solid mesh
structure orientation is not important and their object
models will be completed based on only their position and
dimension. These class model fitting include tree,
pedestrian, sign symbol and etc. Unlike a lot of work which
calculate the distance of a given points to the closet surface
and use time consuming iterative procedure to fit the solid
model into the point cloud or reconstructed surface [23], we
propose a novel approach to solve this problem in a
straightforward and computationally lightweight manner.

For each separated point cloud collection, the center and
its boundaries will be calculated. Based on the size of the
existing solid library meshes, we localize the best



isodiametric meshes to the point cloud. As the object
orientation is not important we only fit the mesh by
stretching it to an appropriate size.

Object orientation should be considered for the second
street view object categories such as car, bus, bike and
general vehicle, therefore, we propose to fit the model
based on the bounding box center matching. Similar to
subset one the center of mesh and point cloud will be
matched and then the corresponding model will be chosen
from library based on the dimension of the wvehicle
bounding box. Then Iterative Closet Point (ICP) algorithm
[23] is applied to automatically refine the registration of
two entities.

All the fitting method assume that the correspondence
between the points and the meshes will be successfully
resolved during iterations of the fitting, unless after several
iteration the orientation of the last vehicle will be
considered. In figure 6 we show the result of fitting model
to the point cloud. Notice that even with the difference in
target and template type of the car (the solid template mesh
is sedan and point cloud is hatchback) the pose is recovered
accurately.

Fig 6. Fitting the mesh model into labeled vehicle point cloud.
The top car is one of the solid model candidate. The middle car is
the segmented point cloud which is labeled using supervised
classifier. And the bottom image shows the fitting result.

The proposed method takes advantage of priori
knowledge about urban scene environment and assumes
that there are enough distance between different object in
the street so that they are not connected.

3. Experimental Result

Our methodology is evaluated on three Mobile Laser
Scanning (MLS) databases to get comparative results with
state of the art: two NAVTAQ True [1] from Helsinki and
Chicago, and rues Soufflot dataset from Paris [24].

As a general remark, our experiments starts with ground
and building segmentation then we train boosted decision
tree classifiers with sample 3D features extracted from
training s-voxels. Subsequently we test the performance of
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the trained classifier using separated test samples. The
accuracy of each test is evaluated by comparing the ground
truth with the scene parsing results. Since our proposed
modeling approach (fitting model to street view point cloud)
has not been done before in existing work, we only compare
the proposed classification approach both quantitatively
and qualitatively.

We created and used labeled dataset of driving sequence
from NAVTAQ True, provided by HERE, consists of best
of sensors in positioning and LiDAR. The two NAVTAQ
point cloud datasets contains more than 800 million points
covering approximately 2.4 km altogether.7 semantic
object classes are defined to label the LiDAR dataset:
building, tree, car, sign symbol, person, fence and ground.
It’s noteworthy that several objects such as wall sign and
wall light are considered as building facades.

The whole two NAVTAQ True datasets are mixed and
divided into two portions: the training set, and the testing
set. The 70% long of dataset are randomly selected and
mixed for training of classifier and 30% remained long of
point cloud is used for testing. Table 1 shows the quantities
results achieved by our approach.

Table 1. Confusion matrix, NAVTAQ True datasets
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Tree 089 | 000 | 007 | 000 | 004 | 000 | 0.00
Car 003 | 095 | 000 | 000 | 002 | 000 | 0.0
Sign 017 | 000 | 072 | o011 | 000 | 000 | 0.00
person | 002 | 000 | 020 [ 078 | 000 | 0.00 | 0.00
Fence 003 | 000 | 000 | 000 | 085 | 000 | 0.12
Ground | 000 | 0.00 | 000 | 000 | 000 | 098 | 002
Building | 000 | 000 | 000 | 000 | 004 | 000 | 096

Mixing data from different cities poses serious
challenges to the parsing pipeline, which is reflected by the
decrease in the class average accuracy. Nevertheless, it
seems our algorithm performs well on most per class
accuracies, with the highest accuracy 96% achieved for the
building and ground and the lowest 72% for sign. This low
accuracy for small objects (e.g. person, sign) is mainly due
to lack of sufficient training examples, which naturally lead
to a less statistically significant labelling for objects in these
classes. Moving objects are also hard to be reconstructed
based solely on 3D data. As these objects (typically vehicles,
people) are moving through the scene, which make them
appear like a long-drawn shadow in the registered point
cloud. The global accuracy is about 91 %. As it can be seen
in the figure 7, successful point cloud classification and
alignment have been done accurately.

It is noteworthy that our algorithms were initially
developed to process NAVTAQ True data sets. One of the
main advantages of our method is that it can be easily
generalized to other datasets without any major



