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Abstract 

 

In this paper we present a novel street scene modelling 

framework, which takes advantage of 3D point cloud 

captured by a high definition LiDAR laser scanner. We 

propose an automatic and robust approach to detect, 

segment and classify urban objects from point clouds hence 

reconstructing a comprehensive 3D urban environment 

model. Our system first automatically segments grounds 

point cloud. Then building facades will be detected by using 

binary range image processing. Remained point cloud will 

be grouped into voxels and subsequently transformed into 

super voxels. Local 3D features are extracted from super 

voxels and classified by trained boosted decision trees with 

semantic classes e.g. tree, pedestrian, and car. Given 

labeled point cloud the proposed algorithm reconstructs the 

realistic model in two phases. Firstly building facades will 

be rendered by ShadVis algorithm. In the second step we 

apply a novel and fast method for fitting the solid 

predefined template mesh models to non-building labeled 

point cloud. The proposed method is evaluated both 

quantitatively and qualitatively on a challenging TLS 

NAVTEQ True databases. 

 

 

1. Introduction 

Analysis of 3D spaces comes from the demand to 

understand the environment surrounding us and to build 

more and more precise virtual representations of that space. 

3D urban environment model is a digital representation of 

the earth´s surface and its related objects such as building, 

tree, vegetation, and some manmade feature belonging to 

the city area. There are various terms used for the 3D urban 

environment models such as “cyber town”, “virtual city”, 
or “digital city”. All of them are basically a computerized 

street model which contains the graphic representation of 

buildings and other objects in a 3D space. These 3D models 

are useful in variety of applications such as urban planning, 

crime prevention and control, virtual reality and robotic 

cars industry.  

In this work, we propose a novel automatic 3D urban 

modeling approach which takes advantage of 3D 

geometrical features extracted from Light Detection And 

Ranging (LiDAR) point cloud. Since such 3D information 

is invariant to lighting and shadow, as a result, significantly 

more accurate results can be achieved. 

While a laser scanning or LiDAR system provides a 

readily available solution for capturing spatial data in a fast, 

efficient and highly accurate way, the enormous volume of 

captured data often come with no semantic meanings. Some 

of these devices output several million data points per 

second. So efficient and fast methods are needed to filter 

the significant data out of these streams and high computing 

power is needed to post-process all this large amount of data. 

In despite of [1, 2], in this research we focus on a hybrid 

two stage voxel based classification to address the above 

mentioned challenges. Firstly, we adopt an unsupervised 

segmentation method to detect and remove dominant 

ground and buildings from other LiDAR data points, where 

these two dominant classes often correspond to the majority 

of point clouds. Secondly, after removing these two classes, 

we use a pre-trained boosted decision tree classifier to label 

local feature descriptors extracted from remaining vertical 

objects in the scene.  

While most city modelling approaches are focused on 

facade modeling [3, 4, 5, 6], the focus of this work is 

automatic detection, segmentation and classification of 

whole urban objects. Given a point cloud containing one or 

more objects of interest and a set of labels corresponding to 

a set of models known to the system, the semantic 

segmentation system assigns correct labels to regions, or a 

set of regions, in the point cloud. 

Given a labeled 3D point cloud with known position, 

orientation and shape, as well as the set of solid predefined 

street object templets, the 3D urban model will be generated.  

1.1. Literature Review 

While many image and video processing techniques for 

2 dimensional object recognition have been proposed [7, 8], 

the accuracy of these systems is to some extent 

unsatisfactory because 2D image cues are sensitive to 

varying imaging conditions such as lighting, shadow and 

etc. In order to alleviate sensitiveness to different image 
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capturing conditions, many efforts have been made to 

employ 3D scene features derived from single 2D images 

and thus achieving more accurate object recognition [9]. In 

the last decade, as the 3D sensors begun to spread and 

computing capacity for large scale 3D data processing 

became available, new methods and applications were born. 

Since such 3D information is invariant to lighting and 

shadow, as a result, significantly more accurate parsing 

results are achieved. 3D urban scene analysis had been 

often performed using 3D point cloud collected by airborne 

LiDAR for extracting vegetation and building structures 

[10]. Recently, classification of urban street objects using 

data obtained from mobile terrestrial systems has gained 

much interest because of the increasing demand of realistic 

3D models for different objects common in urban era. A 

crucial processing step is the conversion of the laser scanner 

point cloud to a voxel data structure, which dramatically 

reduces the amount of data to process. Zhou and Yu (2012) 

present a voxel-based approach for object classification 

from TLS data [2].  

Visual SLAM (Visual Simultaneous Localization and 

Mapping) has recently received a great attention within the 

robotics and vision communities which prepares consistent 

estimation of the 3D structure of the environment [13, 14] 

without considering the type and affordance of object in the 

scene. 

Vosselman and Dijkman proposed a methodology and 

algorithm for 3D building model reconstruction from point 

clouds and ground plan [11]. They used the well-known 

Hough transform for the extraction of planar faces from the 

irregularly distributed point clouds. Ming et al., [12] 

investigated the methodology and algorithms for automatic 

generation of three dimensional photo realistic models from 

Lidar and image data. They implemented automatic 3D 

point cloud registration, automatic target recognition that is 

used for geo-referencing and automatic plane detection 

algorithm that is used for surface modeling, and texture 

mapping.  

2. Proposed Methodology 

It is a challenging task to directly extract objects from 

mobile LiDAR point cloud because of the noise in the data, 

huge data volume and movement of objects. We therefore 

take a hybrid two-stage approach to address the above 

mentioned challenges. Firstly, we adopt an unsupervised 

segmentation method to detect and remove dominant 

ground and buildings from other LiDAR data points, where 

these two dominant classes often correspond to the majority 

of point clouds. Secondly, after removing these two classes, 

we use a pre-trained boosted decision tree classifier to label 

local feature descriptors extracted from remaining vertical 

objects in the scene. This work shows that the combination 

of unsupervised segmentation and supervised classifiers 

provides a good trade-off between efficiency and accuracy. 

The output of classification phase is 3D labeled point cloud 

and each point is labeled with a predefined semantic classes 

such as building, tree, pedestrian and etc. 

As photorealism cannot be achieved by using geometry 

cues alone, and because we aim to only use point cloud data 

(without image cues to decrease the procedure complexity) 

we present two post processing phases to enhance our 

proposed model visual quality. Firstly building facades will 

be rendered by ShadVis algorithm, then for non-building 

labeled point cloud we localize predefined template meshes 

to achieve more realistic model.   

The contribution of this work are as follows: 

 A complete scene parsing system is devised and 

experimentally validated using 3D urban scenes 

point cloud that have been gathered with LiDAR 

acquisition devices. The steps such as segmentation, 

 

 

Fig 1.  Framework of proposed mythology 
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feature extraction, voxelization are generic and 

adaptable to solve object class recognition problems 

in different streets with varying landscape. 

 Proposed two-stage (supervised and non-supervised) 

classification pipeline which requires only small 

amount of time for training. 

 Propose to use novel geometric features leads to 

more robust classification results  

 Generating textured façade of cities and localizing 

predefined templates for remained small objects such 

as car and pedestrian to enhance the visual quality of 

proposed model. 

The framework of the proposed mythology is given in 

figure 1, in which 3D LiDAR point cloud is the inputs of 

the processing pipeline and parsing results are presented as 

3D labeled point cloud. Final semi-photorealistic model of 

scene consisting textured 3D building facade and small 

template object are shown as post classification result. 

A. Ground Segmentation 

The aim of the first step is to remove points belonging to 

the scene ground including road and sidewalks, and as a 

result, the original point cloud are divided into ground and 

vertical object point clouds (Figure 2, A). Given a 3D point 

cloud of an urban street scene, the proposed approach starts 

by finding ground points by fitting a ground plane to the 

scene. This is because the ground connects almost all other 

objects and we will use a connect component based 

algorithm to over‐segment the point clouds in the following 

step. 

Fig 2.  Ground Segmentation. A) Segmented ground and 

remained vertical objects point cloud are illustrated by red and 

black colour respectively. B) Sketch map of fitting plane to one 

tile 

The plane RANSAC fitting method is used to 

approximate ground section of the scene. The RANSAC 

algorithm was developed by Fischler et al. [15] and is used 

to provide a more robust fitting of a model to input data in 

the presence of data outliers. Given a 3D point cloud of an 

urban street scene, the scene point cloud is first divided into 

sets of 10m×10m regular, non-overlapping tiles along the 

horizontal x–y plane. Then the following ground plane 

fitting method is repeatedly applied to each tile. We assume 

that ground points are of relatively small z values as 

compared to points belonging to other objects such as 

buildings or trees (see Fig 2). 

The ground is not necessarily horizontal, yet we assume 

that there is a constant slope of the ground within each tile. 

Therefore, we first find the minimal-z-value (MZV) points 

within a multitude of 25cm×25cm grid cells at different 

locations. For each cell, neighboring points that are within 

a z-distance threshold from the MZV point are retained as 

candidate ground points. Subsequently, a RANSAC 

method is adopted to fit a plane to candidate ground points 

that are collected from all cells. Finally, 3D points that are 

within certain distance (d in Figure 2, B) from the fitted 

plane are considered as ground points of each tile. The 

approach is fully automatic and the change of two 

thresholds parameters do not lead to dramatic change in the 

results. On the other hand, the setting of grid cell size as 

25cm×25cm maintains a good balance between accuracy 

and computational complexity. 

B.  Building Segmentation 

Our method automatically extract building point cloud 

(e.g. doors, walls, facades, noisy scanned inner 

environment of building) based on two assumptions: a) 

building facades are sufficiently tall compare to the other 

structures in the street; and b) other non-building objects are 

located on the ground between two sides of street. As can 

be seen in figure 3, our method projects 3D point clouds to 

range images because they are convenient structures to 

process data. Range images are generated by projecting 3D 

points to horizontal x–y plane. In this way, several points 

are projected on the same range image pixel. We count the 

number of points that falls into each pixel and assign this 

number as a pixel intensity value. In addition, we select and 

store the maximal height among all projected points on the 

same pixel as height value. We define range images by 

making threshold and binarization of I, where I pixel value 

is defined as equation (1): 

 

 �௜ = ���೟��ೞ�೟� Max _���೟��ೞ�೟� + �౞e౟ౝ౞tMax_ �౞e౟ౝ౞t              (1) 

  

Where Ii is grayscale range image pixel value, Pintensity 

and Pheight are intensity and height pixel value and 

Max_Pintensity and Max_Pheight represent the maximum 

intensity and height value over the grayscale image. On the 

range image, an interpolation is required in order to fill 

holes caused by occlusions, missing scan lines and LiDAR 

back projection scatter.  

In the next step we use morphological operation (e.g. 

close and erode) to merge neighbouring point and filling 

holes in the binary range images (figure 3). The 

morphological interpolation does not create new regional 

maxima, furthermore it can fill holes of any size and no 

parameters are required. Then we extract contours to find 

boundaries of objects. In order to trace contours, Pavlidis 

contour-tracing algorithm [16] is proposed to identify each 

contour as a sequence of edge points. The resulting 
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segments are checked on aspects such as size and diameters 

(height and width) to distinguish building from other 

objects. More specifically, equation (2) defines the 

geodesic elongation E(X), introduced by Lantuejoul and 

Maisonneuve (1984), of an object X, where S(X) is the area 

and L(X) is the geodesic diameter. 

 Eሺ�ሻ = � �2 ሺ�ሻ4�ሺ�ሻ                   (2) 

 

Considering the sizes and shape of buildings, the 

extracted boundary will be eliminated if its size is less than 

a threshold. The resolution of range image is the only 

projection parameter during this point cloud alignment that 

should be chosen carefully. If each pixel in the range image 

cover large area in 3D space too many points would be 

projected as one pixel and fine details would not be 

preserved. On the other hand, selecting large pixel size 

compared to real world resolution leads to connectivity 

problems which would no longer justify the use of range 

images. In our experiment, a pixel corresponds to a square 

of size 0.05 m2. 

Fig 3. Building Segmentation 

 

The 2D image scene is converted back to 3D space by 

extruding it orthogonally to the point cloud space. The x–y 

pixels coordinate of the binary image labeled as building 

facades are preserved as x–y coordinate of 3D point cloud 

(with open z value) labeled as building, and not considered 

in the remainder of our approach. Other points (negligible 

amount compare to the size of whole point cloud) are 

labeled as non-building class and will be later be classified 

as other classes e.g. car, tree, pedestrian and etc. 

 

 

C. Voxel based classification 

Although top view range image analysis generates a very 

fast segmentation result, there are a number of limitation to 

utilize it for the small vertical object such as pedestrian and 

cars. These limitations are overcome by using inner view 

(lateral) or ground based system in which, unlike top view 

the 3D data processing is done more precisely and the point 

view processing is closer to objects which provides a more 

detailed sampling of the objects. However, this leads to 

both advantages and disadvantages when processing the 

data. The disadvantage of this method includes the demand 

for more processing power required to handle the increased 

volume of 3D data.  

According to voxel based segmentation, points which are 

merely a consequence of a discrete sampling of 3D objects 

are merged into voxels to represent enough discriminative 

features to label objects. 3D features such as intensity, area 

and normal angle are extracted based on these voxels. The 

voxel based classification method consists of three steps, 

voxelization of point cloud, merging of voxels into super-

voxels and the supervised classification based on 

discriminative features extracted from super-voxels. 

1)  Voxelization of Point Cloud: In the voxelization step, an 

unorganized point cloud p is partitioned into small parts, 

called voxel v. The middle image in figure 4 illustrates an 

example of voxelization results, in which small vertical 

objects point cloud such as cars are broken into smaller 

partition. Different voxels are labelled with different 

colours. The aim of using voxelization is to reduce 

computation complexity and to form a higher level 

representation of point cloud scene. A collection of points 

is grouped together to form a variable size voxels. The 

criteria of including a new point pin into an existing voxel 

i is essentially determined by the crucial minimal distance 

threshold dth which is defined as equation (3). 

 minሺ ‖�௜௠ −  �௜௡‖2ሻ ≤ ��ℎ ,   Ͳ ≤ m, n ≤ N,   m ≠ n     (3) 

 

Where pim is an existing 3D point in voxel, pin is a 

candidate point to merge to the voxel, i is the voxel index, 

dth is the maximum distance between two point and N is the 

maximum point number of a voxel. If the condition is met, 

the new point is added and the process repeats until no more 

point that satisfies the condition is found. Equation (3) 

ensures that the distance between one point and its nearest 

neighbours belonging to the same voxel is less than dth. 

Although the maximum voxel size is predefined, the actual 

voxel sizes depend on the maximum number of points in 

the voxel (N) and minimum distance between the 

neighbouring points. 

2)  Super Voxelization:  For transformation of a voxel to 

super voxel we propose an algorithm to merge voxels via 
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region growing with respect to the following properties of 

voxels: 

• If the minimal geometrical distance, Dij, between two 

voxels is smaller than a given threshold, where Dij is 

defined as equation (4): 

�௜௝ = min ቀ ‖�௜௞ − �௝௟‖2ቁ ,   k ∈ ሺͳ, mሻ, l ∈ ሺͳ, nሻ          (4) 

Where voxels vi and vj have m and n points respectively, 

and pik and pjl are the 3D point belong to voxel vi and vj.  

• If the angle between normal vectors of two voxels is 

smaller than a threshold: In this work, normal vector is 

calculated using PCA (Principal Component Analysis) 

[17]. The angle between two s-voxels is defined as 

angle between their normal vectors as equation (5): 

 θ௜௝  =  arccosሺ< �௜   , �௝ >ሻ              (5) 

Where ni and nj are normal vectors at vi and vj respectively. 

The proposed grouping algorithm merges the voxels by 

considering the geometrical distance (Dij < dth) and normal 

features of voxels (θ ij < θ th1). All these Voxelization steps 

then would be used in grouping these super-voxels (from 

now onwards referred to as s-voxels) into labeled objects.  

Fig 4. Voxelization of Point Cloud. from top to down: top view 

row point cloud, voxelization result of objects point cloud after 

removing ground and building, s-voxelization approach of point 

cloud 

The advantage of this approach is that we can now use 

the reduced number of s-voxels instead of using thousands 

of points in the dataset, to obtain similar results for 

classification.  

3)  Feature extraction: For each s-voxel, seven main 

features are extracted to train the classifier.  

Geometrical shape:  

Projected bounding box has effective features due to the 

invariant dimension of objects. We extract four feature 

based on the projected bonding box to represent the 

geometry shape of objects.  

-Area: the area of the bounding box is used for 

distinguishing large-scale objects and small ones. 

-Edge ratio: the ratio of the long edge and short edge.  

-Maximum edge: the maximum edge of bounding box.  

-Covariance: is used to find relationships between points 

spreading along two largest edges.  

Height above ground: Given a collection of 3D points 

with known geographic coordinates, the median height of 

all points is considered as the height feature of the s-voxel. 

The height information is independent of camera pose and 

is calculated by measuring the distance between points and 

the road ground.  

 Horizontal distance to center line of street: Following 

[1], we compute the horizontal distance of the each s-voxel 

to the centre line of street as second geographical feature. 

The street line is estimated by fitting a quadratic curve to 

the segmented ground.  

Density: Some objects with porous structure such as 

fence and car with windows, have lower density of point 

cloud as compared to others such as trees and vegetation. 

Therefore, the number of 3D points in a s-voxel is used as 

a strong cue to distinguish different classes.   

Intensity: Following [1], LiDAR systems provide not 

only positioning information but also reflectance property, 

referred to as intensity, of laser scanned objects. This 

intensity feature is used in our system, in combination with 

other features, to classify 3D points. More specifically, the 

median intensity of points in each s-voxel is used to train 

the classifier.  

 Normal angle: Following [18], we adopt a more 

accurate method to compute the surface normal by fitting a 

plane to the 3D points in each s-voxel. The surface normal 

is important properties of a geometric surface, and is 

frequently used to determine the orientation and general 

shape of objects. 

 Planarity: Patch planarity is defined as the average 

square distance of all 3D points from the best fitted plane 
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computed by RANSAC algorithm. This feature is useful for 

distinguishing planar objects with smooth surface like cars 

form non planar ones such as trees. 

4)  Classifier: The Boosted decision tree [19] has 

demonstrated superior classification accuracy and 

robustness in many multi-class classification tasks. Acting 

as weaker learners, decision trees automatically select 

features that are relevant to the given classification problem. 

Given different weights of training samples, multiple trees 

are trained to minimize average classification errors. 

Subsequently, boosting is done by logistic regression 

version of Adaboost to achieve higher accuracy with 

multiple trees combined together. Each decision tree 

provides a partitioning of the data and outputs a confidence-

weighted decision which is the class-conditional log-

likelihood ratio for the current weighted distribution. In our 

experiments, we boost 10 decision trees each of which has 

6 leaf nodes. 

D. City model reconstruction using labeled  point 

cloud 

The 3D modelling methods are mainly categorized based 

on the input data techniques, one is photogrammetry (aerial, 

satellite and close range based model), and another one is 

the laser techniques (aerial, and terrestrial based model) 

which is the subject of this work. Most of the time the 3D 

model is generated using the photogrammetry techniques or 

when the model is built by laser scanners the registered 

image data is used to reconstruct textured 3D facades model. 

In these model implementation the 3D point cloud is 

registered with image data, automatic plane detection is 

used for surface modelling and texture mapping will be 

done using image data [4, 11]. Based on our knowledge, 

there is no literature review available on 3D city modelling 

just using 3D laser geometric data to generate realistic 

models without color imaging cues. 

This subsection illustrates our approach that reconstructs 

the realistic model using input labeled point cloud in two 

phases. Firstly we use ShadVis algorithm [20] to render the 

building facades since the algorithm calculates the 

illumination of a point cloud (or vertices of a mesh) with 

the light coming from a theoretical hemisphere or sphere 

around the object. In the second step we apply a methods 

for fitting the solid predefined template models to non-

building labeled point cloud. 

 

1) Building façade rendering:  

Recently, point-based geometry has become a very 

popular 3D object representation for geometry processing 

and graphics. The design of rendering tools using this point 

wise geometry representation is relatively straightforward. 

In terms of computer graphics research, this part has been 

inspired by previous research in point-based geometry and 

skydome/terrain rendering [20, 21].  

We use the data structure of [22] for our point-based 

representation of the data since it allows flexible multi-level 

rendering with small overhead.  

Even though graphics hardware rendering pipelines have 

been designed for polygons, the rendering of points is even 

easier than for polygons. So as [20], we use the adapted 

version algorithm of [22] for our purposes since it could 

only process surfaces and we have points as input. The 

accuracy of the result is concerned with the resolution of 

the 3D data. A snapshot from the 3D viewer of a facades 

with approximately 15 m length is shown in figure 5. 

 

2) Method for fitting solid model to non-building labelled 

point cloud 

In the last part we generate 3D building model using just 

3D point cloud. Due to complexity of different urban scene 

most studies have been focused just on facades or building 

modelling [3, 4]. In this step we present the method based 

on fitting predefined template street view object to non-

building label point cloud (such as car, tree, pedestrian and 

etc.) to devise a complete virtual 3D model of the urban 

scene.  

The input of this approach is the classified labeled point 

cloud and the output is the solid meshes. We divided the 

street view object categories modelling into two subsets and 

adopt different object fitting approaches for them. The first 

subset is related to the object classes which their solid mesh 

structure orientation is not important and their object 

models will be completed based on only their position and 

dimension. These class model fitting include tree, 

pedestrian, sign symbol and etc. Unlike a lot of work which 

calculate the distance of a given points to the closet surface 

and use time consuming iterative procedure to fit the solid 

model into the point cloud or reconstructed surface [23], we 

propose a novel approach to solve this problem in a 

straightforward and computationally lightweight manner. 

For each separated point cloud collection, the center and 

its boundaries will be calculated. Based on the size of the 

existing solid library meshes, we localize the best 

Fig 5. A) Input labelled point cloud representing building 

facades. B) The rendering result with the 3D skydome approach. 
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isodiametric meshes to the point cloud. As the object 

orientation is not important we only fit the mesh by 

stretching it to an appropriate size. 

Object orientation should be considered for the second 

street view object categories such as car, bus, bike and 

general vehicle, therefore, we propose to fit the model 

based on the bounding box center matching. Similar to 

subset one the center of mesh and point cloud will be 

matched and then the corresponding model will be chosen 

from library based on the dimension of the vehicle 

bounding box. Then Iterative Closet Point (ICP) algorithm 

[23] is applied to automatically refine the registration of 

two entities.   

All the fitting method assume that the correspondence 

between the points and the meshes will be successfully 

resolved during iterations of the fitting, unless after several 

iteration the orientation of the last vehicle will be 

considered. In figure 6 we show the result of fitting model 

to the point cloud. Notice that even with the difference in 

target and template type of the car (the solid template mesh 

is sedan and point cloud is hatchback) the pose is recovered 

accurately. 

   

The proposed method takes advantage of priori 

knowledge about urban scene environment and assumes 

that there are enough distance between different object in 

the street so that they are not connected. 

3. Experimental Result 

Our methodology is evaluated on three Mobile Laser 

Scanning (MLS) databases to get comparative results with 

state of the art: two NAVTAQ True [1] from Helsinki and 

Chicago, and rues Soufflot dataset from Paris [24].  

As a general remark, our experiments starts with ground 

and building segmentation then we train boosted decision 

tree classifiers with sample 3D features extracted from 

training s-voxels. Subsequently we test the performance of 

the trained classifier using separated test samples. The 

accuracy of each test is evaluated by comparing the ground 

truth with the scene parsing results. Since our proposed 

modeling approach (fitting model to street view point cloud) 

has not been done before in existing work, we only compare 

the proposed classification approach both quantitatively 

and qualitatively.  

We created and used labeled dataset of driving sequence 

from NAVTAQ True, provided by HERE, consists of best 

of sensors in positioning and  LiDAR. The two NAVTAQ 

point cloud datasets contains more than 800 million points 

covering approximately 2.4 km altogether.7 semantic 

object classes are defined to label the LiDAR dataset: 

building, tree, car, sign symbol, person, fence and ground. 

It’s noteworthy that several objects such as wall sign and 

wall light are considered as building facades.  

The whole two NAVTAQ True datasets are mixed and 

divided into two portions: the training set, and the testing 

set. The 70% long of dataset are randomly selected and 

mixed for training of classifier and 30% remained long of 

point cloud is used for testing. Table 1 shows the quantities 

results achieved by our approach. 

Table 1. Confusion matrix, NAVTAQ True datasets 
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Tree 0.89 0.00 0.07 0.00 0.04 0.00 0.00 

Car 0.03 0.95 0.00 0.00 0.02 0.00 0.00 

Sign 0.17 0.00 0.72 0.11 0.00 0.00 0.00 

person 0.02 0.00 0.20 0.78 0.00 0.00 0.00 

Fence 0.03 0.00 0.00 0.00 0.85 0.00 0.12 

Ground 0.00 0.00 0.00 0.00 0.00 0.98 0.02 

Building 0.00 0.00 0.00 0.00 0.04 0.00 0.96 

Mixing data from different cities poses serious 

challenges to the parsing pipeline, which is reflected by the 

decrease in the class average accuracy. Nevertheless, it 

seems our algorithm performs well on most per class 

accuracies, with the highest accuracy 96% achieved for the 

building and ground and the lowest 72% for sign. This low 

accuracy for small objects (e.g. person, sign) is mainly due 

to lack of sufficient training examples, which naturally lead 

to a less statistically significant labelling for objects in these 

classes. Moving objects are also hard to be reconstructed 

based solely on 3D data. As these objects (typically vehicles, 

people) are moving through the scene, which make them 

appear like a long-drawn shadow in the registered point 

cloud. The global accuracy is about 91 %. As it can be seen 

in the figure 7, successful point cloud classification and 

alignment have been done accurately. 

It is noteworthy that our algorithms were initially 

developed to process NAVTAQ True data sets. One of the 

main advantages of our method is that it can be easily 

generalized to other datasets without any major 

Fig 6. Fitting the mesh model into labeled vehicle point cloud. 

The top car is one of the solid model candidate. The middle car is 

the segmented point cloud which is labeled using supervised 

classifier. And the bottom image shows the fitting result. 
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