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Abstract

Since the launch of the Microsoft Kinect, scores of RGBD

datasets have been released. These have propelled ad-

vances in areas from reconstruction to gesture recognition.

In this paper we explore the field, reviewing datasets across

eight categories: semantics, object pose estimation, cam-

era tracking, scene reconstruction, object tracking, human

actions, faces and identification. By extracting relevant

information in each category we help researchers to find

appropriate data for their needs, and we consider which

datasets have succeeded in driving computer vision forward

and why.

Finally, we examine the future of RGBD datasets. We

identify key areas which are currently underexplored, and

suggest that future directions may include synthetic data

and dense reconstructions of static and dynamic scenes.

1. Introduction

Before the Microsoft Kinect was launched in November

2010, collecting images with a depth channel was a cum-

bersome and expensive task. Researchers built custom ac-

tive stereo setups [12] and made use of 3D scanners costing

tens of thousands of dollars [77, 19]. Many of these early

datasets captured static images of objects in isolation, as the

sensors used did not transport easily (Fig 1a).

Early Kinect datasets also focused on static images, of-

ten of single objects or small scenes. As the field matures

we see research being put to effect in creating larger and

more ambitious RGBD datasets, and the quantity released

each year shows no sign of decreasing (Figure 2). Semantic

labels have been propagated through videos [112], dense

reconstruction has been exploited to capture the surfaces

of whole objects [21] and generative scene algorithms have

been used to create plausible synthetic data [43]. We also

see new labels applied to existing data [41] and previous

releases being recompiled into new offerings [95].

In spite of the current availability of sensors, though,

collecting RGBD data is still not trivial. Researchers us-

ing the Kinect have built battery devices [93, 95], writ-

(a) Past

Before the Microsoft Kinect, most

depth datasets were small and cap-

tured in the laboratory.

Image from [77]

(b) Present

We now enjoy RGBD data from dy-

namic and static scenes from the

real world, with a range of labeling

and capture conditions.

Image from [93]

(c) Future

We can anticipate scans of static

and dynamic scenes as fused geom-

etry, exploiting improvements in re-

construction algorithms.

Image from [20]

Figure 1. The past, present and future of RGBD datasets.

ten drivers [95] and developed custom data formats [34].

Publicly available RGBD datasets can, at the most basic

level, remove the need to repeat data capture. More im-

portantly, they provide transparency in the presentation of

results and allow for scores to be compared on the same

data by different researchers. This in turn can drive com-

petition for better-performing algorithms. Finally, a dataset

can help draw research towards previously under-explored

directions.

Our primary contribution is to give a snapshot of pub-

lic RGBD datasets, allowing researchers to easily select

data appropriate for their needs (Section 2). We are more

comprehensive than earlier efforts, describing 102 datasets

compared with the 14 in [9], 19 in [42]1 and the 44 action

datasets in [117]. We secondly identify areas where there is

opportunity for new data to facilitate novel areas of research

(Section 3). We hypothesize that we can expect datasets to

continue to move away from single images, to dense recon-

structions of static and dynamic scenes (Figure 1c).

1[42] references more than 19 datasets, but most are not RGBD
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Figure 2. Our estimate of the number of depth datasets released

each year, where projected releases in 2016 are shown as a dashed

line. The Kinect was first released in November 2010.

2. State-of-the-art in RGBD datasets

Here we review state-of-the-art datasets across eight cat-

egories. Some fall into more than one category, and the dif-

ference between categories depends as much on the labeling

as it does the image content.

We include datasets which have been captured with an

active capture devices such as time-of-flight or structured

light, but exclude data from passive stereo. We also exclude

Lidar datasets, focusing instead on data from the separate

world of commodity depth capture. Following the mantra

that ‘data is cheap, information is expensive’, we focus on

data which has some form of human labeling applied. We

exclude very small datasets, and those which have been pro-

duced mainly to demonstrate an acquisition method.

With these exceptions, we aim to be comprehensive and

correct. Please flag omissions and errors to m.firman@

cs.ucl.ac.uk so this document can be updated. We

also maintain a web-based version2.

We first look at datasets of objects in isolation, before

moving on to datasets for camera tracking, scene recon-

struction and then datasets where the pose of objects is to be

inferred. Semantic, and then tracking datasets come next,

before videos for action and gesture recognition. We fin-

ish with two more categories involving humans: faces and

identity recognition.

2.1. Objects in isolation

Following earlier stereo setups such as [79], RGBD

turntable datasets offer multiple unoccluded views of the

same object from different angles (Table 1).

The 2011 RGB-D Object Dataset [62] is a well-used

dataset with 300 objects, but does not contain accurate cam-

era poses. This was rectified by more recent datasets such

as BigBIRD [94]. While a smaller dataset, BigBIRD is cap-

tured with calibrated Kinects and DSLRs.

Turntable datasets have been exploited in ‘natural’

scenes for tasks such as object detection [63] and discov-

ery [31]. In many ways, though, they are limited by their

deviation from real-world data. Without occlusion, light-

ing changes or varying distances to objects these datasets

sit in a different domain to the real-world scenes which we

ultimately aim to understand.

Choi et al. [21] exploit improvements in camera tracking

to form a dataset of individual objects scanned in the real

world. With 10,000 items ranging in size from books to

cars, this is the largest dataset of real-life objects by two

orders of magnitude.

2http://www.michaelfirman.co.uk/RGBDdatasets/

Table 1. Datasets capturing single objects in isolation

Devicea # objects Camera pose?b Year

RGBD Object Dataset [62] Kinect v1 300 - ’11

KIT object database [54] Minolta Vi-900 and stereo pair >100 XX ’12

A dataset of Kinect-based 3D scans [24] Kinect and Minolta Vi-900 59 XX ’13

MV-RED [68] Kinect v1 505 - ’14

BigBIRD dataset [94] Asus Xtion Pro, DSLR 125 XX ’14

YCB Object and Model Setc [15] Asus Xtion Pro, DSLR 88 XX ’15

A large dataset of object scans [21] PrimeSense Carmine >10,000 X ’16

a The Kinect v1, Asus Xtion Pro and PrimeSense Carmine have almost identical internals and can be considered to give equivalent data.
b X= camera pose computed from RGBD data; XX= camera pose from calibration system.
c Captured using the same turntable setup as the BigBIRD dataset.
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2.2. Camera tracking and scene reconstruction

Arguably some of the main advances brought by con-

sumer depth cameras have been in camera tracking and

dense reconstruction. Ground truth camera poses are nec-

essary to validate these algorithms, and these are difficult to

acquire as they require external hardware.

For camera tracking, the TUM benchmark [99] has

become a de-facto standard for evaluation, with ground

truth data from a motion tracking system and a range of

scenes and camera motions. We summarize this and similar

datasets in Table 2.

Some datasets [91, 74, 120, 30] use manually verified

tracking from the Kinect itself as a ground truth pose. This

data is only suitable for tasks an order of magnitude harder

than tracking, such as camera relocalization [91] or voxel

occupancy prediction [30].

The difficulties involved with acquiring ground truth data

can be circumvented with synthetic data. The ICL-NUIM

dataset [44] provides 8 camera trajectories for two synthetic

indoor scenes, with camera paths taken from real hand-held

camera trajectories. While synthetic datasets may not be a

perfect representation of our world, they allow users to more

carefully control aspects such as motion blur and texture

levels to gain introspection into their algorithm (see Section

3.1 for further discussion).

Scene reconstruction is rarely evaluated directly, as

good camera tracking usually corresponds to good recon-

struction and camera paths are easier to obtain as ground

truth than dense surfaces. The synthetic ICL-NUIM dataset

[44] is suitable for reconstruction evaluation, especially

with additional camera paths provided by [20]. More re-

cently Wasenmüller et al. [109] created a dataset contain-

ing ground truth camera motions and scene reconstructions

from a laser scanner. This is the only real-world dataset we

are aware of with both these data, though the scenes are less

diverse than [99].

Firman et al. [30] have a dataset of tabletop objects

scanned so every visible surface is observed in the recon-

struction. This provides ground truth for the task of estimat-

ing the unobserved voxel occupancy from a depth image.

2.3. Object pose estimation

The problem of inferring the 6-DoF pose of an object

is again a task which has been aided by the absolute scale

provided by depth cameras. Given a priori a 3D model of

an object, the aim is to find the transformation which best

aligns it into the scene. As with camera tracking it is hard to

get ground truth for this type of challenge, which requires

both a 3D model of the object and its pose in each image.

One solution has been to fix the target objects to a calibra-

tion board to allow for ground-truth tracking using the RGB

channels [45], while [87] and [85] have the poses manually

aligned.

These datasets, summarized in Table 3, feature tabletop-

sized objects. Acquiring 3D models, and ground truth

poses, for larger objects is difficult, so works that have at-

tempted this problem on a room scale typically find an al-

ternative method of evaluation or rely on human annotations

as an approximate ground truth [95]. Synthetic data could

be an avenue worth exploring here.

Table 2. Datasets for camera pose and scene reconstruction

Devicea # videos
Camera

poseb
Ground truth

surface
Notes Year

IROS 2011 Paper Kinect Dataset

[84]
Kinect v1 27 XX - ’11

KinectFusion for Ground Truth [74] Kinect v1 X X
Lidar surface ground truth for

some scenes
’12

TUM benchmark [99] Kinect v1 47 XX - ’12

Indoor RGB-D Dataset [88] Kinect v1 4 XX Collected from a robot ’13

Microsoft 7-scenes [91] Kinect v1 >14 X
Designed for camera relocal-

ization tasks
’13

Robust Reconstruction Datasets

[120]

Asus Xtion

Pro
8 X - ’13

ICL-NUIM Dataset [44] Synthetic 8 XX X
Camera paths from [20] allow

for reconstruction evaluation
’14

CoRBS Dataset [109] Kinect v2 20 XX X
Surface ground truth from

fixed structured light scanner
’16

Voxel Occupancy Prediction [30]
Asus Xtion

Pro
90 X

Densely captures full visible

surface
’16

a The Kinect v1, Asus Xtion Pro and PrimeSense Carmine have almost identical internals and can be considered to give equivalent data.
b X= approximated camera pose from Kinect tracking. XX= ground truth camera pose from external system.
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Realism:  ##

Laboratory scenarios, with a lim-

ited set of objects arranged by hand.

Image from [103]

Realism:   #

Real-world scenes, but with furni-

ture or objects artificially arranged.

Image from [62]

Realism:    

Real-world scenes with no interfer-

ence by researchers.

Image from [93]

Figure 3. Semantic datasets described in Table 4 view the world

in various levels of ‘realism’, which we discretise into three cate-

gories.

2.4. Semantic labeling

Semantic labeling of images and videos moves us to a

more general understanding of the world. Datasets with la-

bels which could be used for semantic understanding are

listed in Table 4. We give an indication of the ‘realism’ of

each dataset as a score out of three, explained in Figure 3.

Note that a low score does not correspond to a worse or less

useful dataset, as datasets with specially constructed scenar-

ios can be vital for proving concepts, and can often provide

higher quality ground truth than fully natural scenes.

The 1449-frame subset of the NYUv2 dataset [93] with

dense semantic labels has become a de-facto standard for in-

door scene labeling. The quality and variety of labels on this

real-world dataset has helped make it one of the most highly

used in the literature. The SUN3D dataset [112] counters

the single, static-frame modality of NYUv2 with object la-

bels propagated through Kinect videos. However, in spite

of their effort, there are only 8 annotated sequences.

We note that all these semantic datasets, even those with

videos, depict a static world. This contrasts with our dy-

namic world, an area which is explored by datasets designed

for tracking.

2.5. Tracking

Tracking datasets feature videos of dynamic worlds,

where the aim is to detect where an object is in each

frame. We know of only four datasets explicitly designed

for this purpose, all of which use bounding boxes as anno-

tations. The Princeton Tracking Benchmark [96] contains

100 videos of moving objects, such as dogs and toy cars.

The RGB-D people dataset [97, 70], the Kinect Tracking

Precision dataset [81] and the RGBD Pedestrian Dataset [7]

all track humans.

Other datasets contain labels appropriate for tracking:

two semantic scene datasets [112, 62] have static objects la-

beled through video as the camera moves, while the 6-DOF

object pose annotations in [45] could also be useful.

2.6. Activities and gestures

Given the original use case of the Kinect as a sensor de-

signed for human interaction, it is inevitable that much re-

search would focus on recognizing gestures and activities

from videos. See Table 5 for an overview of the large num-

ber of datasets in this area, and we refer the interested reader

to [117] for a more detailed survey of this field.

Actions being performed include sign language [59],

Italian hand gestures [26] and common daily actions such as

standing up, drinking and reading [100, 58, 82, 106, 65, 16].

Three datasets of humans falling over [60, 39, 38] reflect an

interest in use of RGBD sensors for monitoring vulnerable

humans in their daily lives. Others are more niche: 50 Sal-

ads [98] features over 4 hours of people preparing mixed

salads. Four datasets stand out for capturing humans with a

full MoCap setup [23, 34, 83, 51], while the Manipulation

Action Dataset [1] is unique in providing semantic segmen-

tation of objects as they are manipulated. By far the largest

gesture and action datasets are the ChaLearn gesture chal-

lenge [49] and NTU RGB+D [90], each with around 50,000

videos.

Many of these datasets suffer from being filmed in the

confines of an office or laboratory, with researchers per-

forming the actions. Filming real people at work and home

would help prevent dataset bias and provide a more believ-

able baseline for activity and gesture recognition.

Table 3. Datasets for object pose estimation

Device # objects # frames Notes Year

Cluttered scenes dataset [77] 1 Minolta Vivid 910 5 48 Manual ground truth alignment ’06

LINEMOD RGBD dataset [45] Kinect v1 15 >18,000 Ground truth from calibration board ’12

SHOT dataset [87] Kinect v1 6 16 - ’14

Rutgers APC RGB-D Dataset [85] Kinect v1 24 10,368 Semi-manual ground truth alignment ’16

1 This 3D dataset does not include an RGB channel but is included for historical context.
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Table 4. Datasets for semantic reasoning and segmentation

Size Video? Realisma Labeling Year

RGB-D Semantic Segmentation

Dataset [103]
16 frames  ## Dense pixel labeling ’11

RGBD Scenes dataset [62] 8 scenes X   #
Bounding box labeling of objects from the

RGBD Objects dataset
’11

Cornell-RGBD-Dataset [57] 52 scenes X    
Semantic segmentation of reconstructed

point cloud into 17 classes
’11

NYUv1 [92] 2283 frames -b    Dense pixel labeling ’11

Berkeley 3-D Object Dataset [52] 848 frames    Bounding box annotation ’11

Object segmentation dataset [86] 111 frames  ##
Per-pixel segmentation into objects; no se-

mantics
’12

MPII Multi-Kinect dataset [101]
2240 frames total

from 4 Kinects
 ##

Polygon segmentation of objects arranged on

kitchen worktop
’12

Willow garage dataset [2] ~160 frames  ## Dense pixel labeling ’12

Object Disappearance for Object

Discovery [73]
1231 frames X   #

Ground truth object segmentations of objects

of interest
’12

NYUv2 [93]
1449 frames from

464 scenes
-b    

Dense pixel labeling. A synthetic re-creation

of the 3D scenes also exists [41]
’12

RGBD Dataset for Category Modeling

[119]
900 frames   #

Which of 7 categories the dominant object in

each image is in
’13

SUN3D [112] 8 scenes X    
Polygon labels. 8 scenes labeled, though full

dataset has more
’13

RGBD Scenes dataset v2 [61] 14 scenes X   #
Items from the RGBD Objects dataset la-

beled on reconstructed point cloud
’14

SUN RGB-D [95] 10,335 framesc    
3D object bounding boxes, and polygons on

2D images
’15

ViDRILO [72]
22454 frames

from 5 scenes
X    

Semantic category of frame, plus which ob-

jects are visible in each frame
’15

Toy dataset [50] 449 frames  ##
Per-pixel segmentation into objects; no se-

mantics
’16

a See Figure 3
b Extended version of dataset has video, but labels are only present in subset described here.
c Combines new Kinect v2 frames with new labels on existing datasets [93, 52, 112]

2.7. Faces

Early face datasets focused on the method of acquisition

(e.g. [118]) or tended to be quite small (e.g. [13]). The field

has now expanded to include datasets for identity recogni-

tion [25], pose regression [12, 28], and those where the ex-

pressions or emotions are to be inferred [27, 78]. We sum-

marize these in Table 6, and more details on some of these

datasets can be found in [3]. As front-facing depth cameras

become installed in laptops and tablets we expect this area

of research to continue to gain further attention.

2.8. Recognition

Like datasets of actions, datasets designed for human

recognition (Table 7) typically film people performing ac-

tivities such as walking. However, the aim now is to rec-

ognize the identity, gender or other attributes about the sub-

jects, rather than the activity they are performing.

3. Future areas for datasets

In Section 2 we reviewed the past and the present of

RGBD datasets. We now look to the future, and identify

underexplored ‘gaps in the market’.

3.1. Synthetic data

Aside from a few examples such as ICL-NUIM [44] and

SceneNet [43], synthetic data has received relatively lit-

tle attention for vision problems with depth cameras. Yet

such artificial data can offer many advantages. Ground truth

for tasks such as segmentation, reconstruction, tracking and

camera or object pose is perfect and available with no re-

quirement for expensive human labeling. Sequences can be

recaptured with carefully adjusted parameters, e.g. motion

blur and lighting changes, for algorithm introspection. It is

also possible to create scenarios difficult to capture in real

life, for example car crashes.
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Table 5. Datasets representing activities and gestures

# Subjects

# Actio
ns

# Videos

Skeleton
a

Examples of actions Year

MSR Action3D [65] 10 20 567 X e.g. high arm wave, side kick, jogging ’10

RGBD-HuDaAct [82] 30 12 1189 e.g. get up, enter room, stand up, mop the floor ’11

SBU Kinect Interaction Dataset [116] 7 8 300 X Two people interacting e.g. approaching, departing ’12

ACT42 [18] 24 14 6844 4 Kinects filming. Actions: e.g. collapse, reading ’12

UTKinect-Action [111] 10 10 200 X e.g. walk, sit down, stand up, carry, clap hands ’12

MSRDailyActivity3D [106] 10 16 320 X e.g. drink, eat, read book ’12

G3D Gaming Action Dataset [11] 10 20 600 X Typical gaming actions ’12

MSRC-12 Kinect gesture [33] 30 12 594 X Arm gestures ’12

MSRGesture3D [59] 10 12 336 American Sign Language ’12

ChaLearn Gesture Challenge [49] 20 850 50000 Many, e.g. diving signals and mudras ’12

Senior Activity Recognition (RGBD-

SAR) [114]
30 9 810 X

Older people performing activities e.g. sit down, eat,

walk, stand up
’13

K3HI [48] 15 8 320 X Two humans interacting e.g. approaching, punching ’13

UPCV action dataset [102] 20 10 400 X e.g. walk, wave, scratch head, phone, cross arms ’13

DML-SmartAction [5] 16 12 932
Continuous recording. e.g. writing, sit down, walk,

clean table, stand up
’13

Florence 3D actions dataset [89] 10 9 215 X e.g. wave, drinking, answer phone, clap, stand up ’13

Cornell activty 60/120 [100, 58] 4 12/10 60/120 X e.g. brushing teeth, drinking, talking on couch ’13

Sheffield KInect Gesture (SKIG) [69] 6 10 1080 Hand gestures e.g. circle, up-down, comehere ’13

50 Salads [98] 25 2 50
Each person prepares two salads. Accelerometer on

utensils
’13

Berkeley Multimodal Human Action

[83]
12 11 660 XX e.g. jumping, bending, punching ’13

Manipulation Action Dataset [1] 5 28 140
Manipulation actions e.g. cutting, plus sequences of

actions. Semantic segmentation of frames.
’14

Composable activities dataset [66] 14 16 693 X e.g. throw, talk on phone, walk, wave, crouch, punch ’14

TUM Morning Routine Dataset [53] 1 - -b X Typical morning routine activities ’14

ShakeFive [105] 37 2 100 X Hand shake or high-five between two individuals ’14

Office activity dataset [108] >10 20 1180 e.g. mopping, sleeping, finding-objects, chatting ’14

Human3.6M [51] 11 17 -b XX e.g. Discussion, smoking, taking photo ’14

MSR 3D Online Action [115] 24 7 -b e.g. drinking, eating, using laptop ’14

Northwestern-UCLA Multiview Action

3D [107]
10 10 -b X Three Kinects filming. Actions: e.g. stand up, throw ’14

G3Di Gaming Interaction Dataset [10] 12 17 -b X Humans interacting with computer game ’14

UR Fall Detection [60] ? 1 70
Humans falling over. Two Kinects. Accelerometer

from human
’14

Montalbano Gesture [26] 27 20 13858 X Italian hand gestures ’14

LaRED Hand Gesture Dataset [47] 10 27 810 Modified American Sign Language ’14

LTTM MS Kinect and Leap Motion [71] 14 10 1400
American Sign Language, recorded using Kinect and

the Leap Motion
’14

TJU dataset [67] 22 22 1936 X e.g. boxing, one hand wave, forward bend, sit down ’15

Continued overleaf ↓

a X= 2D skeleton joint positions labeled on video frames; XX= 3D skeleton joint positions acquired from MoCap system
b These datasets feature continuous footage, so the discrete number of videos is less meaningful here.
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→֒ Continued from previous page

M2I dataset [113] 22 22 1760 X Two people interacting, e.g. walk together ’15

Multi-view TJU [67] 20 22 7040 X
Front and side view Kinects. Actions as TJU

dataset
’15

UTD Multimodal Human Action [16] 8 27 861 X Accelerometer data. Actions: e.g. wave, boxing ’15

TST Fall Detection ver. 1/ver. 2 [39, 38] 4/11 2 20/111 X Humans falling over ’15

TST TUG [22] 20 ? 60 X Timed Up and Go tests ’15

TST Intake Monitoring ver 1/ver 2 [37] 35 ? 35/60 Humans simulating eating ’15

Life activities with occlusions [23] 1 - 12 XX No specific actions ’15

Background activity dataset [34] 52 4 -b XX
Humans natually interacting in semi-natural en-

vironment
’15

K3Da [64] 53 13 ? X To assess human health, e.g. leg jump, walking ’15

LTTM Creative Senz3D [76] 4 11 1320 Hand gestures e.g. ‘OK’ ’15

Watch-n-Patch [110] 7 21 458 A sequence of actions e.g. making drink ’15

NTU RGB+D [90] 40 60 56,000 X
e.g. drinking, eating, sneezing, staggering,

punching, kicking
’16

While sensor noise can be emulated [44, 40, 29, 75], it

can be very difficult for synthetic scenes to capture the true

properties of the real world. One option is to use existing 3D

assets. The synthetic Sintel dataset [14], for example, has

been used for RGB tasks such as optical flow. With depth

channels now available this may yet find a use in the RGBD

community. Another route is to use generative models of

scenes, following work on scene synthesis [32, 43].

3.2. Full voxel occupancy

Most existing semantic datasets view the world as a 2.5D

image, where only surfaces directly viewed from one static

camera position are visible (Figure 4a). Even datasets with

videos (e.g. SUN3D [112]) tend to fail to capture the full

surface geometry of scenes (Figure 4b). Full surface geom-

etry is captured on an object level by [21] and on tabletop

scenes by [30] (Figure 4c), but capturing and reconstruct-

Table 6. Datasets of faces for pose and recognition

Subjects Sensor Description Labeling Year

Human Face [13] 1
Structured light

scanner

15 expressions performed by one

face
- ’07

CASIA 3D Face

Database [19]
123

Minolta Vivid

910

4624 images of various

expressions, poses and lighting
Expression performed ’08

Bosphorus Database

[4]
105

Inspeck Mega

Capturor II 3D

Faces performing expressions at

different rotations
Expression and pose ’08

ETH Face Pose Range

Image Data Set [12]
20

Custom active

stereo setup
Videos of face in various poses

Nose position and coordinate

frame at the nose
’08

B3D(AC)ˆ2 [27] 14
Custom active

stereo setup
Recordings of humans speaking

Perceived emotions. Audio

labeled with phonemes
’10

Biwi Kinect Head

Pose Database [28]
20 Kinect v1

People moving their heads in

different directions

3D position of the head and its

rotation
’11

VAP RGB-D Face

Database [46]
31 Kinect v1

1581 images of people doing

different poses in front a camera

Which person is in shot, and a

discretised gaze direction
’12

3D Mask Attack

Dataset [25]
17 Kinect v1

Some frames are of person with a

face mask of someone else

Person’s identity, and if

‘spoofing’ is occurring. Eye

positions

’13

Face Warehouse [17] 150 Kinect v1 People performing expressions
Which of 20 expressions, plus 74

landmarks and meshes
’14

Eurecom Kinect Face

Dataset [78]
52 Kinect v1

Faces with different expressions,

occlusion and illumination

Expression type, and six facial

landmark locations
’14

VT-KFER [3] 32 Kinect v1
7 facial expressions labeled, in

scripted and unscripted scenarios
Percieved expression ’15
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Table 7. Datasets for human recognition

Subjects Description Labeling Year

RGB-D Person Re-

identification [8]
79

Humans walking, where subjects change

clothes between sessions

2D skeleton positions. Which hu-

man is in each video
’12

IAS-Lab RGBD-ID

Dataset [80]
11

Humans walking, where subjects change

clothes (or room) between sessions

2D skeleton positions. Which hu-

man is in each video
’14

BIWI RGBD-ID Dataset

[80]
50

Humans moving, where subjects change

clothes (or room) between sessions

2D skeleton positions. Which hu-

man is in each video
’14

UPCV Gait dataset [55] 30
Each human walks down corridor multiple

times
Identity and gender of each person ’15

(a) Early RGBD datasets focussed

on single images of scenes, repre-

senting them in 21/2D.

Examples: [93, 52, 86]

(b) As reconstruction algorithms

improved, datasets have used

videos to capture more of the

scene. These still miss the backs of

many objects.

Example: [112]

(c) Few datasets capture the full vis-

ible surface geometry.

Examples: [21] captures objects,

and [30] captures tabletop scenes.

(d) No datasets, to our knowledge,

capture the full surface geometry

of scenes and provide semantic

labeling on the observed surface.

(e) Furthermore, our world extends

beyond the visible surface. Dense

volumetric labeling of scenes

would enable a deeper level of

understanding and interaction.

Figure 4. A progression of datasets to include more dense 3D

information.

ing a dataset of large, real-world scenes is left as an open

challenge.

Labeling the surfaces of such dense reconstructions (Fig-

ure 4d) would allow for semantic segmentation on a mesh

level. Many opportunities would be afforded by datasets

which provide labeled on this form of dense reconstruction

rather than on images or videos.

Furthermore, we can imagine the benefits of an algo-

rithm which could segment or semantically label a scene

on a voxel level, following works such as [56]. To train and

validate such a system we would require a dataset contain-

ing semantic labeling of each voxel in a scene (Figure 4e).

The difficulty of applying such labeling by hand may make

synthetic data necessary for this problem.

3.3. Geometry of dynamic scenes

Aside from a single sequence from [6], we know of no

RGBD datasets captured from dynamic scenes with ground

truth dense geometry. One option is to use deformable

meshes provided for face datasets [36, 104] or fabrics [35],

which can be synthetically re-rendered to give dense cor-

respondences between frames (e.g. Zollhöefer et al. [121]

re-render data from [104]). Datasets of humans with mo-

tion capture data (Section 2.6) also give a very sparse dense

geometry with correspondences.

The open challenge for the field of dense reconstruction

is to directly capture an RGBD dataset of deforming objects

with ground truth geometry and correspondences between

frames.

4. Conclusion

We have discovered a considerable quantity of RGBD

datasets available for researchers to use. While some over-

lap in their scope, overall the field is promisingly diverse

which suggests that depth information is useful in many dif-

ferent sectors. Most datasets we reviewed have been cap-

tured as single frames or videos from static cameras. We

are now entering an era where the collection and labeling of

datasets requires state-of-the-art computer vision research.

For example, capturing a dense dataset such as [21] would

not have been possible when the Kinect was first launched.

As reconstruction and labeling algorithms for RGBD data

improve, the community has a massive opportunity to cre-

ate and share new datasets of 3D reconstructions of static,

and ultimately dynamic scenes.
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[72] J. Martı́nez-Gómez, I. Garcı́a-Varea, M. Cazorla, and
V. Morell. ViDRILO: The visual and depth robot in-
door localization with objects information dataset. In-
ternational Journal of Robotics Research, 2015. http:

//www.rovit.ua.es/dataset/vidrilo/.

[73] J. Mason, B. Marthi, and R. Parr. Object disappearance
for object discovery. In Intelligent Robots and Systems
(IROS), 2012. http://wiki.ros.org/Papers/

IROS2012_Mason_Marthi_Parr.

[74] S. Meister, S. Izadi, P. Kohli, M. Hämmerle, C. Rother,
and D. Kondermann. When can we use KinectFusion
for ground truth acquisition? In Intelligent Robots
and Systems (IROS) Workshop on Color-Depth Cam-
era Fusion in Robotics, 2012. http://hci.iwr.

uni-heidelberg.de//Benchmarks/document/

kinectFusionCapture/.

1129

http://vision.imar.ro/human3.6m
http://vision.imar.ro/human3.6m
http://kinectdata.com/
http://kinectdata.com/
http://tinyurl.com/zzsbr4j
http://tinyurl.com/zzsbr4j
http://his.anthropomatik.kit.edu/objectmodels/
http://his.anthropomatik.kit.edu/objectmodels/
http://www.upcv.upatras.gr/personal/kastaniotis/datasets.html
http://www.upcv.upatras.gr/personal/kastaniotis/datasets.html
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
http://pr.cs.cornell.edu/humanactivities/data.php
http://pr.cs.cornell.edu/humanactivities/data.php
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes/
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes/
http://k3da.leightley.com/
http://k3da.leightley.com/
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
http://web.ing.puc.cl/~ialillo/ActionsCVPR2014/
http://web.ing.puc.cl/~ialillo/ActionsCVPR2014/
http://media.tju.edu.cn/tju_dataset.html
http://media.tju.edu.cn/tju_dataset.html
http://media.tju.edu.cn/mvred/dataset1.html
http://media.tju.edu.cn/mvred/dataset1.html
http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm
http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm
http://www2.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html
http://www2.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html
http://lttm.dei.unipd.it/downloads/gesture/index.html
http://lttm.dei.unipd.it/downloads/gesture/index.html
http://www.rovit.ua.es/dataset/vidrilo/
http://www.rovit.ua.es/dataset/vidrilo/
http://wiki.ros.org/Papers/IROS2012_Mason_Marthi_Parr
http://wiki.ros.org/Papers/IROS2012_Mason_Marthi_Parr
http://hci.iwr.uni-heidelberg.de//Benchmarks/document/kinectFusionCapture/
http://hci.iwr.uni-heidelberg.de//Benchmarks/document/kinectFusionCapture/
http://hci.iwr.uni-heidelberg.de//Benchmarks/document/kinectFusionCapture/


[75] S. Meister, R. Nair, and D. Kondermann. Simulation of
time-of-flight sensors using global illumination. In Vision,
Modeling, and Visualization Workshop, 2013.

[76] A. Memo, L. Minto, and P. Zanuttigh. Exploiting sil-
houette descriptors and synthetic data for hand gesture
recognition. In STAG: Smart Tools & Apps for Graphics,
2015. http://lttm.dei.unipd.it/downloads/
gesture/index.html.

[77] A. Mian, M. Bennamoun, and R. Owens. 3D model-
bsed object recognition and segmentation in cluttered
scenes. Pattern Analysis and Machine Intelligence (PAMI),
2006. http://www.csse.uwa.edu.au/˜ajmal/

recognition.html.

[78] R. Min, N. Kose, and J.-L. Dugelay. KinectFaceDB: A
Kinect database for face recognition. IEEE Transactions on
Systems, Man, and Cybernetics, 2014. http://rgb-d.
eurecom.fr/.

[79] P. Moreels and P. Perona. Evaluation of features detectors
and descriptors based on 3D objects. In International Con-
ference on Computer Vision (ICCV), 2005.

[80] M. Munaro, A. Basso, A. Fossati, L. V. Gool, and
E. Menegatti. 3D reconstruction of freely moving per-
sons for re-identification with a depth sensor. In Inter-
national Conference on Robotics and Automation (ICRA),
2014. http://robotics.dei.unipd.it/reid/

index.php/8-dataset/5-overview-iaslab.

[81] M. Munaro, F. Basso, and E. Menegatti. People tracking
within groups with RGB-D data. In Intelligent Robots and
Systems (IROS), 2012. http://www.dei.unipd.it/

˜munaro/KTP-dataset.html.

[82] B. Ni, G. Wang, and P. Moulin. RGBD-HuDaAct:
A color-depth video database for human daily ac-
tivity recognition. In IEEE Workshop on Con-
sumer Depth Cameras for Computer Vision in
conjunction with ICCV, 2011. http://adsc.

illinois.edu/sites/default/files/files/

ADSC-RGBD-dataset-download-instructions.

pdf.

[83] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and
R. Bajcsy. Berkeley MHAD: A comprehensive mul-
timodal human action database. In Winter Con-
ference on Applications of Computer Vision (WACV),
2013. http://tele-immersion.citris-uc.

org/berkeley_mhad.

[84] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Sieg-
wart. Tracking a depth camera: Parameter exploration for
fast ICP. In Intelligent Robots and Systems (IROS), 2011.
http://projects.asl.ethz.ch/datasets/

doku.php?id=Kinect:iros2011Kinect.

[85] C. Rennie, R. Shome, K. E. Bekris, and A. F. D.
Souza. A dataset for improved RGBD-based ob-
ject detection and pose estimation for warehouse pick-
and-place. IEEE Robotics and Automation Letters,
2016. http://www.pracsyslab.org/rutgers_

apc_rgbd_dataset.

[86] A. Richtsfeld, T. Mörwald, J. Prankl, M. Zillich, and
M. Vincze. Segmentation of unknown objects in in-
door environments. In Intelligent Robots and Systems
(IROS), 2012. http://www.acin.tuwien.ac.at/

?id=289.

[87] S. Salti, F. Tombari, and L. D. Stefano. SHOT:
Unique signatures of histograms for surface and texture
description. Computer Vision and Image Understand-
ing, 2014. http://www.vision.deis.unibo.it/
research/80-shot.

[88] A. Schmidt, M. Fularz, M. Kraft, A. Kasiski, and M. Now-
icki. An indoor RGB-D dataset for the evaluation of robot
navigation algorithms. In Advanced Concepts for Intel-
ligent Vision Systems. Springer, 2013. http://www.

vision.put.poznan.pl/?p=70.

[89] L. Seidenari, V. Varano, S. Berretti, A. D. Bimbo,
and P. Pala. Recognizing actions from depth cameras
as weakly aligned multi-part bag-of-poses. In Com-
puter Vision and Pattern Recognition (CVPR) workshops,
2013. http://www.micc.unifi.it/resources/
datasets/florence-3d-actions-dataset/.

[90] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU
RGB+D: A large scale dataset for 3D human activity anal-
ysis. In Computer Vision and Pattern Recognition (CVPR),
2016.

[91] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Cri-
minisi, and A. Fitzgibbon. Scene coordinate regres-
sion forests for camera relocalization in RGB-D im-
ages. In Computer Vision and Pattern Recognition
(CVPR), 2013. http://research.microsoft.

com/en-us/projects/7-scenes/.

[92] N. Silberman and R. Fergus. Indoor scene segmen-
tation using a structured light sensor. In Interna-
tional Conference on Computer Vision (ICCV) Work-
shops, 2011. http://cs.nyu.edu/˜silberman/

datasets/nyu_depth_v1.html.

[93] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. In-
door segmentation and support inference from RGBD
images. In European Conference on Computer Vision
(ECCV), 2012. http://cs.nyu.edu/˜silberman/
datasets/nyu_depth_v2.html.

[94] A. Singh, J. Sha, K. Narayan, T. Achim, and P. Abbeel.
BigBIRD: A large-scale 3D database of object instances.
In International Conference on Robotics and Automa-
tion (ICRA), 2014. http://rll.berkeley.edu/

bigbird/.

[95] S. Song, S. P. Lichtenberg, and J. Xiao. SUN RGB-D: A
RGB-D scene understanding benchmark suite. In Computer
Vision and Pattern Recognition (CVPR), 2015. http://
rgbd.cs.princeton.edu/.

[96] S. Song and J. Xiao. Tracking revisited using RGBD cam-
era: Unified benchmark and baselines. In International
Conference on Computer Vision (ICCV), 2013. http://
tracking.cs.princeton.edu/dataset.html.

[97] L. Spinello and K. O. Arras. People detection in RGB-D
data. In Intelligent Robots and Systems (IROS), 2011.
http://www2.informatik.uni-freiburg.de/

˜spinello/RGBD-dataset.html.

[98] S. Stein and S. J. McKenna. Combining em-
bedded accelerometers with computer vision for rec-
ognizing food preparation activities. In UbiComp,
2013. http://cvip.computing.dundee.ac.uk/
datasets/foodpreparation/50salads/.

[99] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers. A benchmark for the evaluation of RGB-
D SLAM systems. In Intelligent Robots and Systems

1230

http://lttm.dei.unipd.it/downloads/gesture/index.html
http://lttm.dei.unipd.it/downloads/gesture/index.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://www.csse.uwa.edu.au/~ajmal/recognition.html
http://rgb-d.eurecom.fr/
http://rgb-d.eurecom.fr/
http://robotics.dei.unipd.it/reid/index.php/8-dataset/5-overview-iaslab
http://robotics.dei.unipd.it/reid/index.php/8-dataset/5-overview-iaslab
http://www.dei.unipd.it/~munaro/KTP-dataset.html
http://www.dei.unipd.it/~munaro/KTP-dataset.html
http://adsc.illinois.edu/sites/default/files/files/ADSC-RGBD-dataset-download-instructions.pdf
http://adsc.illinois.edu/sites/default/files/files/ADSC-RGBD-dataset-download-instructions.pdf
http://adsc.illinois.edu/sites/default/files/files/ADSC-RGBD-dataset-download-instructions.pdf
http://adsc.illinois.edu/sites/default/files/files/ADSC-RGBD-dataset-download-instructions.pdf
http://tele-immersion.citris-uc.org/berkeley_mhad
http://tele-immersion.citris-uc.org/berkeley_mhad
http://projects.asl.ethz.ch/datasets/doku.php?id=Kinect:iros2011Kinect
http://projects.asl.ethz.ch/datasets/doku.php?id=Kinect:iros2011Kinect
http://www.pracsyslab.org/rutgers_apc_rgbd_dataset
http://www.pracsyslab.org/rutgers_apc_rgbd_dataset
http://www.acin.tuwien.ac.at/?id=289
http://www.acin.tuwien.ac.at/?id=289
http://www.vision.deis.unibo.it/research/80-shot
http://www.vision.deis.unibo.it/research/80-shot
http://www.vision.put.poznan.pl/?p=70
http://www.vision.put.poznan.pl/?p=70
http://www.micc.unifi.it/resources/datasets/florence-3d-actions-dataset/
http://www.micc.unifi.it/resources/datasets/florence-3d-actions-dataset/
http://research.microsoft.com/en-us/projects/7-scenes/
http://research.microsoft.com/en-us/projects/7-scenes/
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v1.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v1.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://rll.berkeley.edu/bigbird/
http://rll.berkeley.edu/bigbird/
http://rgbd.cs.princeton.edu/
http://rgbd.cs.princeton.edu/
http://tracking.cs.princeton.edu/dataset.html
http://tracking.cs.princeton.edu/dataset.html
http://www2.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html
http://www2.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html
http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/
http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads/


(IROS), 2012. http://vision.in.tum.de/data/

datasets/rgbd-dataset.

[100] J. Sung, C. Ponce, B. Selman, and A. Saxena. Hu-
man activity detection from RGBD images. In AAAI
workshop on Pattern, Activity and Intent Recogni-
tion (PAIR), 2011. http://pr.cs.cornell.edu/

humanactivities/data.php.

[101] W. Susanto, M. Rohrbach, and B. Schiele. 3D object de-
tection with multiple Kinects. In European Conference
on Computer Vision (ECCV), 2012. http://tinyurl.
com/hlmwga7.

[102] I. Theodorakopoulos, D. Kastaniotis, G. Economou, and
S. Fotopoulos. Pose-based human action recognition via
sparse representation in dissimilarity space. J. Vis. Com-
mun. Image R., 2013. http://www.upcv.upatras.
gr/personal/kastaniotis/datasets.html.

[103] F. Tombari, L. D. Stefano, and S. Giardino. Online learn-
ing for automatic segmentation of 3D data. In Intelligent
Robots and Systems (IROS), 2011. http://vision.

deis.unibo.it/fede/kinectDataset.html.

[104] L. Valgaerts, C. Wu, A. Bruhn, H.-P. Seidel, and
C. Theobalt. Lightweight binocular facial performance cap-
ture under uncontrolled lighting. In ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia 2012), 2012.

[105] C. van Gemeren, R. T. Tan, R. Poppe, and R. C.
Veltkamp. Dyadic interaction detection from pose and
flow. In European Conference on Computer Vision (ECCV),
2014. http://www.projects.science.uu.nl/

shakefive/.

[106] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet
ensemble for action recognition with depth cameras. In
Computer Vision and Pattern Recognition (CVPR), 2012.
http://research.microsoft.com/en-us/um/

people/zliu/actionrecorsrc/.

[107] J. Wang, X. Nie, Y. Xia, Y. Wu, and S.-C. Zhu.
Cross-view action modeling, learning and recognition.
In Computer Vision and Pattern Recognition (CVPR),
2014. http://users.eecs.northwestern.edu/

˜jwa368/my_data.html.

[108] K. Wang, X. Wang, L. Lin, M. Wang, and W. Zuo. 3D hu-
man activity recognition with reconfigurable convolutional
neural networks. In ACM International Conference on
Multimedia, 2014. http://vision.sysu.edu.cn/

projects/3d-activity/.

[109] O. Wasenmüller, M. Meyer, and D. Stricker. CoRBS: Com-
prehensive RGB-D benchmark for SLAM using Kinect v2.
In Winter Conference on Applications of Computer Vision
(WACV), 2016. http://corbs.dfki.uni-kl.de/.

[110] C. Wu, J. Zhang, S. Savarese, and A. Saxena. Watch-
n-Patch: Unsupervised understanding of actions and rela-
tions. In Computer Vision and Pattern Recognition (CVPR),
2015. http://watchnpatch.cs.cornell.edu/.

[111] L. Xia, C. Chen, and J. Aggarwal. View invariant hu-
man action recognition using histograms of 3d joints.
In Computer Vision and Pattern Recognition (CVPR)
workshops, 2012. http://cvrc.ece.utexas.edu/
KinectDatasets/HOJ3D.html.

[112] J. Xiao, A. Owens, and A. Torralba. SUN3D: A database
of big spaces reconstructed using SfM and object labels.
In International Conference on Computer Vision (ICCV),
2013. http://sun3d.cs.princeton.edu/.

[113] N. Xu, A. Liu, W. Nie, Y. Wong, F. Li, and Y. Su. Multi-
modal & multi-view & interactive benchmark dataset for
human action recognition. In ACM International Confer-
ence on Multimedia, 2015. http://media.tju.edu.
cn/m2i.html.

[114] Z. Yang, L. Zicheng, and C. Hong. RGB-depth feature
for 3D human activity recognition. China Communica-
tions, 2013. http://www.uestcrobot.net/en/

?q=download.

[115] G. Yu, Z. Liu, and J. Yuan. Discriminative orderlet mining
for real-time recognition of human-object interaction. In
Asian Conference on Computer Vision (ACCV), 2014.
http://research.microsoft.com/en-us/um/

people/zliu/actionrecorsrc/.

[116] K. Yun, J. Honorio, D. Chattopadhyay, T. L. Berg, and
D. Samaras. Two-person interaction detection using
body-pose features and multiple instance learning. In
Computer Vision and Pattern Recognition (CVPR) work-
shops, 2012. http://www3.cs.stonybrook.edu/

˜kyun/research/kinect_interaction/.

[117] J. Zhang, W. Li, P. O. Ogunbona, P. Wang, and C. Tanga.
RGB-D-based action recognition datasets: A survey.
arXiv:1511.07041v2, 2015. http://robotvault.

bitbucket.org/.

[118] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz.
Spacetime Faces: High-resolution capture for model-
ing and animation. In ACM SIGGRAPH Proceed-
ings, 2004. http://grail.cs.washington.edu/
projects/stfaces/.

[119] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki.
Category modeling from just a single labeling: Use
depth information to guide the learning of 2D mod-
els. In Computer Vision and Pattern Recognition
(CVPR), 2013. http://shiba.iis.u-tokyo.ac.

jp/song/?page_id=343.

[120] Q.-Y. Zhou and V. Koltun. Dense scene reconstruction with
points of interest. ACM Transactions on Graphics, 2013.
http://qianyi.info/scenedata.html.
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