
Real time complete dense depth reconstruction for a monocular camera

Xiaoshui Huang1, Lixin Fan2, Jian Zhang1, Qiang Wu1 and Chun Yuan3

1University of Technology, Sydney. Sydney,Australia
2Nokia Technologies. Tampere, Finland

3Graduate school of Shenzhen, Tsinghua University. Shenzhen, China

Abstract

In this paper, we aim to solve the problem of estimating

complete dense depth maps from a monocular moving cam-

era. By ’complete’, we mean depth information is estimated

for every pixel and detailed reconstruction is achieved. Al-

though this problem has previously been attempted, the ac-

curacy of complete dense depth reconstruction is a remain-

ing problem. We propose a novel system which produces ac-

curate complete dense depth map. The new system consists

of two subsystems running in separated threads, namely,

dense mapping and sparse patch-based tracking. For dense

mapping, a new projection error computation method is

proposed to enhance the gradient component in estimated

depth maps. For tracking, a new sparse patch-based track-

ing method estimates camera pose by minimizing a nor-

malized error term. The experiments demonstrate that the

proposed method obtains improved performance in terms

of completeness and accuracy compared to three state-of-

the-art dense reconstruction methods VSFM+CMVC, LSD-

SLAM and REMODE.

1. Introduction

Complete dense depth reconstruction aims at obtaining

the depth of every pixel in the image (e.g. Figure 1) and

restoring as much detailed information as possible of the 3D

scene. Due to their dense property, high quality depth maps

are much needed in many applications, including surface

reconstruction and 3D data acquisition. This is an impor-

tant research topic which has great impacts on multimedia,

computer vision and computer graphic applications.

The existing depth reconstruction methods [4, 10, 2, 3,

9, 11, 12, 5, 8, 7] can be categorized from three aspects:

capturing camera, completeness and matching approach.

In relation to the capturing camera, the existing depth re-

construction methods can be divided into two types: stereo

camera and monocular camera. Stereo camera methods [7]

use two calibrated cameras to capture stereo images in se-

quence and reconstruct depth. While high quality depth

Figure 1. The proposed method builds a complete dense depth map

for a monocular camera. Our method combines the robustness

and accuracy of dense mapping with efficient sparse patch tracking

techniques. Left: image from video. Right: dense depth result.

estimations have been demonstrated for this type of ap-

proaches, the requirement of stereo cameras prevents it

from being used in many real life applications. Monocu-

lar camera methods [4, 10, 2, 3, 9, 11] use a single camera

to estimate depth for which the mapping thread is used to

compute depth and the tracking thread is used to compute

camera pose; when conducting mapping, camera pose from

tracking step is utilized; and when conducting tracking, the

depth map estimated from the last mapping step is utilized.

The depth estimation at each pixel is highly parallel and

can be implemented in real-time on GPUs. The proposed

method belongs to the monocular camera methods.

In relation to the completeness of recovered depth maps,

the existing methods can be divided into three types:

sparse, semi-dense and complete dense. Sparse methods

usually reconstruct from feature-based methods such as

VSFM+CMVS [12][5]. The drawbacks are several: they

are time-consuming and use limited image information.

Typical examples of semi-dense methods are the works

in [2][3], which first reconstruct complete dense maps by

stereo matching and then remove depth for low-certainty

pixels. Although they can build depth in real-time, only

semi-dense depth can be produced (e.g. depth is only pro-

duced at the edge regions). Complete dense methods use

tracking and mapping to accurately estimate the depth of all

image pixels. These methods retain more details than the

other methods, which is very helpful for many applications

(3D matching and recognition). DTAM [10] and REMODE
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[11] are typical examples of complete dense methods, how-

ever, the quality of recovered depth map in [10, 11] is trade-

off with completeness and very low when the depth map is

complete. Also, they are sensitive to noise depth from ini-

tialization or mapping thread. The novel method proposed

in this paper demonstrates how to improve the accuracy and

the robustness of complete dense depth estimation.

In relation to the matching approach, the existing meth-

ods can be divided into three types: feature point match-

ing [12, 5], stereo matching [2, 3, 8] and multi-view stereo

[10, 11]. Feature point matching methods find the matched

points and estimate depth for sparse keypoints only. The

matching stage is often time-consuming since computation

for naive near-neighbor searching grows exponentially with

the number of keypoints and KD-Tree type of indexing

methods do not scale up with high dimensional descriptors

such as SIFT. Stereo matching methods restrict the search-

ing along epipolar line between two images with known

camera poses. Multi-view matching methods improve depth

map by accumulating error terms measured for every (over-

lapped) pixels in multiple images. While the computational

cost seems high, GPUs are often exploited to achieve real-

time performances. The method proposed in this paper be-

longs to the multi-view matching approach.

In this paper, a novel complete dense depth reconstruc-

tion method (CD-SLAM) is proposed for monocular cam-

era which improves completeness, accuracy and robustness

of depth estimation. Unlike previous dense depth recon-

struction methods [11] using the probability method to re-

move inaccurate depth estimation, we improve the depth ac-

curacy of every pixel by integrating the gradient component

into the project error computation, thus making the match-

ing of pixels more discriminative without sacrificing the fast

computation speed of original methods. To our best knowl-

edge, this is the first work aiming at improving depth ac-

curacy from the original multi-view matching point compu-

tation. Apart from that, due to the normalized projection

error in tracking, the proposed method is robust to the depth

noise from mapping, hence, it also improves the accuracy

from tracking step.

In summary, our contributions are three-fold. Firstly, a

new gradient enhanced projection error for mapping opti-

mization is proposed, which leads to improved depth re-

construction accuracy. Secondly, a normalized sparse patch

tracking method is proposed, which is robust to the depth

noise from mapping. Thirdly, a new complete dense depth

map reconstruction pipeline is proposed, which computes

complete depth map robustly and accurately.

2. Method

The overall structure of the proposed method consists of

two subsystems running in separated threads, namely, dense

mapping and sparse patch based tracking(Figure 2).

Our method is partially motivated by recent develop-

ments in real-time SLAM technologies [10, 2]. In order

to build a highly accurate complete depth map, gradient is

added into photometric error computation, which helps to

retain structural information in the depth map (e.g. edges).

According to [4], sparse patch information in the image is

sufficient to get a rough estimate of motion and find the cor-

respondence relations. It achieves high efficiency and accu-

rate camera pose. However, the performance is highly de-

pendent on initialized depth accuracy and sensitive to noise

depth. In order to remove the influence of noise depth from

the mapping thread, we propose a new sparse patch-based

method by considering the depth from the mapping thread

as a weight for tracking.
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Figure 2. Outline of the proposed complete dense depth recon-

struction method.

2.1. Preliminaries.

To obtain projection points of one image in another im-

age, we first review transformations and projections used in

this paper.

2.1.1 Basic projection formulations.

Assuming there is a 3D point Mw in world coordinate

frame, it can be transformed to 3D point Mc in its corre-
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sponded camera-centered world coordinate frame by fol-

lowing formulation:

Mc = PcwMw (1)

where Pcw is a 4 × 4 matrix containing a rotation and

a translation component. Note that both Mw and Mc are

homogeneous coordinates of the form [x, y, z, 1]T .

The camera-centered point Mc can be projected into

image pixels coordinates by a projection function: m =
π(Mc). In contrast, for a pixel m, if the inverse depth value

du is known, the 3D point M can be recovered by inverse

projection function π−1: M = π−1(m, du).

2.1.2 Photometric error computation.

In the context of multi-view stereo reconstruction, the fol-

lowing project error is minimized to obtain depth estimation

at each pixel:

C = Σp∈D‖Ip − Iq‖ (2)

where Ip is the projection of Iq in its visual views. All three

RGB channels are used. D is whole image pixel domain

that are overlapped in multiple views.

A regularized Huber norm regulariser over gradient of

inverse depth map can be introduced to penalize non-

smooth surface, hence imposing smoothness constraint

[10]:

minεΣu∈D{g(u)‖▽ε(u)‖ǫ +λC +
1

θ
(ε(u)− d(u))} (3)

where d(u) is the depth computed by initial photometric

error computation, and ε(u) is the optimal depth we want

to search. The optimization is reached by replacing the

weighted Huber regulariser with its conjugate using the

Legendre-Fenchel transform [10, 1].

The photometric error reviewed above only uses pixel

value, hence, it will be very sensitive to changes in the light

(e.g. light changing in different views). As a remedy to

ambiguous depth estimation incurred by lighting changes,

many existing methods remove uncertain depth.

2.2. Dense mapping

2.2.1 Photometric error enhanced by image gradient.

Unlike the previous projection error computation method,

we add gradient into the error computation.

C = Σp∈D{w‖Ip − Iq‖+ (1− w)‖Gp −Gq‖} (4)

where Ip is the projection of Iq in its visual view, Gp or

Gq is the gradient of the corresponding points and w is the

relative weight which is set to 0.75. This setting is found to

be robust for all experiments illustrated in Section 4.

The constant intensity assumption made in photometric

error term (Eq. 2) is often violated in practice, in contrast,

the gradient enhanced error term (Eq. 4) is more robust to

global lighting changes for edge regions and its advantages

is indeed demonstrated in our experimental results. Figure 3

shows that object structures are better preserved near edges

with gradient enhance photometric error term.

Figure 3. Photometric error computation results (a) with and (b)

without gradient.

2.3. Sparse patch based tracking

As demonstrated in [1], it is sufficient to estimate the

camera pose of one view by using sparse patches only. We

adopt the sparse-patch based tracking in our work. Our

camera pose estimation comprises two steps, including key-

point search and pose update. We firstly compute FAST

keypoints and construct a 4x4 patch around the positions of

the keypoints. Secondly, we project the patches onto their

corresponding patches to find the camera pose that mini-

mizes the photometric error of all the patches. As there is

a lot of noise in projection matching, we normalize the pro-

jection error. This will ensure improved accuracy in cam-

era pose estimation. The projection photometric error of all

patches is defined as follows:

EPj,k
= minPj,k

1

2
Σui∈R‖

δI(Pj,k, ui)

σ2

δI

‖2
2

(5)

where ui is the pixel coordinate, R is the image region for

which depth is known at j frame and for which the back-

projection points are visible in the current image k. To

compute the optimal camera pose, we parameterize an in-

cremental update Pi,k(ε) as a twist ε ∈ se(3). The details

of the update steps are as follows:

δI(Pj,k, ui) = Ij(p)− Ik(π(Pj,k(ε) · Ui)) (6)

where Ui is the 3D point of ui. Ui = π−1(ui, dui). For

the weight term, we assume Gaussian image intensity noise

σ2

I , and the incremental weight are related to depth variance

Vj . Following [2], the updating term is computed as

σ2

δI = 2σ2

I + (
∂(δI(Pj,k, ui))

∂(dui)
)2Vj(u) (7)

To compute the optimal update step Pj,k(ε), we solve

it in a similar way to [1][2]. The optimal Pj,k(ε) is found

when the solving process convergences.
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For pose refinement, we follow the work of [4], which

improves the correspondence accuracy into the subpixel

level to obtain a better camera pose.

3. Implementation details

The algorithm is bootstrapped to calculate the camera

pose of the first two key frames and the initial depth map.

We perform FAST keypoint matching for the first two

frames and compute the fundamental matrix. The initial

depth map is reconstructed using triangulation of these two

views.

The system uses a GPU with two threads. When a new

image enters, the camera pose is first estimated using the

previous depth estimated from the dense mapping or its own

depth initialization. Then, we use the dense mapping thread

to conduct a complete dense depth map reconstruction.

In the tracking thread, we select the keyframe during

the tracking process. As we use a small baseline video,

we only compute the keypoints in the keyframe for effi-

ciency. A keyframe is selected when the average change

of scene depth of a new frame exceeds 10% relative to pre-

vious keyframe. After the keyframe is updated, the farthest

frames compared to the new keyframe are removed.

In the mapping thread, an exhaustive search on whole

inverse depth range is time-consuming. To address this is-

sue, we add depth-filter to each reference keyframe. When

a pixel has a known photometric error, we compute its dmax

and dmin. In the next process of photometric error compu-

tation, we search in [dmin, dmax] instead of searching in the

whole inverse depth range.

4. Experimental results

We evaluate the proposed method (CD-SLAM) using

the same computer on which LSD-SLAM [2] was run-

ning successfully. In all our experiments, we use a com-

puter with I5, 8G memory and NVidia GTX 970 GPU.

We compare the completeness and accuracy of our method

with LSD-SLAM, which is a state-of-the-art method in

monocular camera depth reconstruction. Also, we com-

pare the accuracy of our method with the accuracy of RE-

MODE [11]. In addition, we also compare our method with

VSFM+CMVS[12][5], which is a widely used successful

system.

For completeness, we use the depth cover percentage

at each depth image, which is the rate of the number of

depth known pixel (Ndepth) with respect to all image pixels

(Ntotal).

Rcompleteness =
Ndepth

Ntotal

(8)

For accuracy, we compare the estimated depth maps with

respect to the ground truth and report performance of differ-

ent methods. The Table dataset, which is used in our work,

was presented in [6]. This dataset is constructed by ray-

tracing software and the related ground truth depth maps

are available.

Output results from different methods are pre-processed

so that they can be compared on the same ground. For

VSFM+CMVS, we use camera poses computed by SFM to

project the 3D points back to the original images. For LSD-

SLAM, we edit the code and output the completeness and

accuracy of depth map.

4.1. Quantitative comparison in Table dataset

The completeness and accuracy of our method are com-

pared with LSD-SLAM with the Table dataset, using the

column entitled Perfect Ray-Traced Images: Fast Motion.

The sequence has characters of 80 frames per second and

ground truth depth after parsing the data. We use 100 im-

ages from the sequences to conduct this experiment.

Completeness. Figure 4 illustrates the comparison of

the completeness of VSFM+CMVS, SLD-SLAM and CD-

SLAM, which demonstrates that CD-SLAM outperforms

other methods in terms of completeness. With more com-

pleteness depth map, we have more details on the recon-

struction depth.

Figure 4. Qualitative comparison of completeness of

SFM+CMVS, LSD-SLAM and the proposed method.

An example depth map result for the same original image

is shown in Figure 5, which showcases the completeness of

depth maps generated by the proposed method.

Threshold accuracy. As the original points of

SFM+CMVS are too sparse when projected back into the

images, we only compare the accuracy of our method with

LSD-SLAM as shown in Figure 6. Accuracy is defined as

the percentage of pixels for which the estimated depth er-

ror is less than a predefined threshold from the ground truth

depth. In our experiments, we set the threshold to be 20,

which amounts to about 7.8% of the entire depth range i.e.

256.

It was shown in Figure 6 that the proposed method ob-

tains higher accuracy than LSD-SLAM at most frames with
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Figure 5. The first row is ground truth(left) and original im-

age(right); the second row is the result of CD-SLAM(left) and

LSD-SLAM(right). LSD-SLAM only has depth on yellow and

red regions.

mean margin about 10%. LSD-SLAM uses stereo match-

ing to estimate depth, and unfortunately leads to ambi-

guity matching points even though in edge region. CD-

SLAM uses projection minimization and information on

more views than LSD-SLAM. Also, our new optimization

function integrates image intensity gradient of each point

which contributes to higher accuracy by eliminating the am-

biguous matcher caused by changes in lighting.

Figure 6. Qualitative comparison of accuracy of LSD-SLAM and

CD-SLAM.

Mean accuracy on real depth. We compute the mean

accuracy for LSD-SLAM, REMODE and CD-SLAM. Be-

cause the depth results are inverse depth, to obtain real depth

and know how much difference of the computed depth to

ground truth in real life, we compute the inverse of the three

methods’ depth maps. For LSD-SLAM, only semi-dense

depth is taken part in mean computation. As REMODE

[6] is the method most similar to the proposed method,

complete depth is used for mean computation. The re-

sults, shown in Table 1, indicate that our method has a

0.14m mean error, which is comparable with LSD-SLAM

and higher than REMODE. However, regarding the depth

completeness, our method is complete while LSD-SLAM

is semi-dense. In order to obtain comparable accuracy to

our method (e.g. 0.1m), REMODE only has about 46%

completeness. It is because the proposed method improves

accuracy from the original depth computation, which inte-

grates gradient element to improve the matching accuracy at

different projection views. However, REMODE only uses

the probability method to remove unreliable depth.

Table 1. Mean accuracy comparison results of LSD-SLAM, RE-

MODE and CD-SLAM.
Accuracy LSD-SLAM REMODE CD-SLAM

Mean 0.105 0.35m 0.14m

4.2. Qualitative evaluation with gradient and with-
out gradient.

We evaluate our method with and without gradient. We

use the ground truth dataset to test the performance. The

threshold is 20 in intensity difference.

Figure 7. Qualitative evaluation with gradient and without gradi-

ent.

Figure 7 demonstrates that the accuracy of the method

with gradient outperforms the method without gradient.

Figure 8 shows the example data. As can be seen, our

method obtains better depth results, particularly in the edge

region. Instead of using a regularized term to smooth the

depth, our new photometric minimization function com-

putes a better depth result at the original photometric error

minimization. Hence, we can obtain highly accurate depth

results.

4.3. Runtime

The runtime of the proposed method is a trade-off with

accuracy. If we want to pursue highest possible speed, we

can gain about 5ms per frame. On the other hand, the results
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Figure 8. Comparison of depth reconstruction result with and with-

out gradient term. (a) is without gradient considering, (b) is with

gradient considering, (c) is ground truth depth map.

presented above are obtained at 160ms per frame, which is

still a reasonable speed for many real-time applications.

5. Conclusion

A novel complete dense reconstruction method is pro-

posed in this paper. It reconstructs the accurate depth of ev-

ery pixel in the image. The proposed method introduces a

novel projection error computation method which improves

the accuracy from the original multi-view stereo. Also, we

introduce a normalized error term in pose estimation which

is robust enough to deal with noise from the mapping step.

The experiments demonstrate that our new pipeline obtains

better performance in completeness and accuracy than other

state-of-the-art dense depth reconstruction methods.
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