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Abstract

The computer vision community has reached a point

when it can start considering high-level reasoning tasks

such as the “communicative intents” of images, or in what

light an image portrays its subject. For example, an image

might imply that a politician is competent, trustworthy, or

energetic. We explore a variety of features for predicting

these communicative intents. We study a number of facial

expressions and body poses as cues for the implied nuances

of the politician’s personality. We also examine how the

setting of an image (e.g. kitchen or hospital) influences the

audience’s perception of the portrayed politician. Finally,

we improve the performance of an existing approach on this

problem, by learning intermediate cues using convolutional

neural networks. We show state of the art results on the

Visual Persuasion dataset of Joo et al. [11].

1. Introduction

Often, what is interesting about an image and makes it

famous is not what or who is portrayed, but rather how the

subject is portrayed. For example, the images in the top

row of Figure 1 are interesting because of the playful light

in which Monroe (a) and Einstein (b) are portrayed, and the

deep desperation which stems from the image of the Mi-

grant Mother (c). Further, the images which accompany

news articles often add a flavor that the text itself does not

convey, and sometimes this flavor carries more weight than

the text. For example, a picture which represents a politi-

cian in a less than flattering light might be used by the politi-

cian’s opponents to discredit them in the media (see Figure

1 d,e). The implications in some images, such as Figure 1 f,

have even changed the course of wars.1 The ability of pic-

tures to convey subtle messages is widely used in the media.

For example, images of disasters arouse our compassion to-

1This image by American photographer Eddie Adams portrays the Vi-

etcong prisoner on the right as entirely helpless, and even though it was

taken out of context, it dramatically changed the public opinion of the Viet-

nam war.

d) e) f)

a) b) c)

Figure 1. Examples of canonical images whose meaning is not

captured by existing computer vision tasks.

wards the injured, and photographs of politicians make us

believe one thing or another about the photo subjects’ qual-

ities and abilities.

If we could develop methods for automatic understand-

ing of how these images portray their subjects and how they

affect the viewer, we would enable computers to analyze the

visual media around us beyond a listing of the objects found

in it, or sentences that describe what takes place in the im-

age. This would mean that machines have come closer to

perceiving visual content in a human-like manner. It also

has numerous applications. For example, machine under-

standing of visual intent could allow us to automatically an-

alyze the biases in different media sources, and to curate a

sample of news articles about a given event that is balanced

in terms of opinions. It would enable us to study how the

perception of a politician changed, as chronicled by the me-

dia. Finally, it would permit us to analyze how the portrayal

of different minorities has progressed historically.

Despite the great value of automatically predicting the

subtle messages of images, the computer vision commu-

nity had until recently never analyzed such high-level tasks.

Yet recent progress in computer vision has set the stage for

studying these intents. First, we have seen great leaps in the
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ability to detect and categorize different objects, which is

one of the “holy grails” of computer vision [27, 8]. Sec-

ond, vision researchers have begun to study recognition

problems beyond naming objects. Recent work in seman-

tic visual attributes has explored how to be able to describe

objects even if the system does not know their names [6],

how to perform fine-grained visual search by employing at-

tributes for relevance feedback [15], etc. [5] study the rea-

sons why an object category is present, and [24] evaluate the

quality with which an action is performed. [12, 31] analyze

the art styles of paintings and photographs. [22, 21, 33]

study the reasons for the successes and failures of vision

systems. After these works, it is now time for the commu-

nity to analyze images at a more subtle, human-like level.

Joo et al. were the first to study the “communicative in-

tents” or “visual persuasion” of images [11]. They examine

a dataset of eight politicians, and learn to predict whether

an image portrays a politician in a positive or negative light,

as competent or not, etc. Joo et al. find that the gestures

and facial expressions of politicians, as well as the context

and background of the image, can influence the social judg-

ment of those politicians. However, the features that [11]

use are limited. We extend their study and improve the in-

tent prediction ability of their system. We explore a wider

range of features than [11], including body poses, the set-

ting of the image, and improved facial expression, gesture,

and background prediction via features based on convolu-

tional neural nets. We show that capturing a richer set of

facial expressions and body poses of the individuals in pho-

tographs, as well as the setting in which they are portrayed,

improves our ability to automatically predict the intent of

an image.

2. Related Work

Visual recognition has come a long way. In recent years,

the community has made great progress towards the “holy

grail” of computer vision, the ability to accurately detect all

categories that a human can describe and localize them in

images [29, 7, 27]. We have even begun to tackle problems

that bridge visual understanding and language generation,

in the form of sentence description [13, 32] and answering

questions about images or videos [1, 30]. Most progress in

high-level reasoning about images that goes beyond label-

ing is recent.

One such example of reasoning beyond labels comes in

the form of semantic visual attributes. Attributes are high-

level semantic properties of objects [6, 17, 23, 16] which al-

low us to describe images even if we cannot label or name

them. Our work shares the spirit of work in attributes, in

that we also seek to understand images at a deeper, more de-

scriptive level. Related is also work in fine-grained category

recognition [3], which builds models for categories that dif-

fer in very fine ways such as bird species, or in understand-

ing actions in terms of how well they are performed, rather

than what their category label is [24]. Also in the vein of

understanding the visual world at a finer level, particularly

with respect to how well we can capture visual information,

is work in providing richer supervision to vision systems

and debugging them. [5] study the rationales that annota-

tors provide for why a category is present, i.e. why a figure

skater’s shape is good. [22, 21] examine the contribution

of data, features and methods for the performance of vision

systems. [33] explore the failures of standard computer vi-

sion features by inverting them.

Only very recently, the community has begun to tackle

some more subtle aspects of images. [12] study the styles of

artistic photographs. [31] learn to predict who took a given

photograph, by learning photographer style. [11] seek to

understand the “communicative intents” implied in the im-

ages, e.g. does a photograph portray an individual in a pos-

itive or negative light, is the individual shown as competent

or not, trustworthy or not, etc. To infer these intents, the au-

thors developed 15 types of “syntactical attributes” that cap-

ture facial display, gestures, and image background. To ex-

perimentally verify how well these syntactic attributes can

be used as an image representation in which to learn about

communicative intents, the authors developed a database of

images of politicians labeled with ground-truth intents in

the form of rankings. In our experiments, we study addi-

tional features that capture communicative intents.

Note that the explicit or implicit opinions of a text about

a given subject have been explored in the natural language

processing community in the form of sentiment analysis

[20, 34]. Except for [11] who study this problem in the

domain of politicians, inferring opinions from images has

not been explored in computer vision before.

3. Approach

We first present the original features used by [11], and

then the novel features with which we experimented. We

use the dataset of [11] and aim to learn the 9 communicative

intents from that dataset: “favorable”, “angry”, “happy”,

“fearful”, “competent”, “energetic”, “comforting”, “trust-

worthy”, and “powerful”.

3.1. Learning framework

Joo et al. [11] defined three kinds of “syntactic

attributes”—facial display, gestures, and scene context—for

a total of 15 feature dimensions, on top of which commu-

nicative intents are learned. They train a linear binary clas-

sifier to predict each of the 15 syntactic attributes. Then,

they learn a model for the 9 communicative intents, sepa-

rately for each intent, using the following:

• Descriptors for the training data, which consist of the

positive/negative scores for each syntactic attribute;
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Feature Dimensionality

Original syntactic attributes 15

Facial expressions 7

Body poses 30

Scenes 75

PHOG 168

Caffe 4096
Table 1. The features used in our approach.

and

• Ground truth training data in the form of pairs of im-

ages (i, j) where image i displays the communicative

intent of interest (e.g. favorable, competent, or trust-

worthy) to a greater extent than j does.

Joo et al. then learn an SVM ranking model. While [11] use

[4]’s ranking SVM implementation, we use [10].

3.2. Original features

For a new image, [11] first predict its 15 syntactic at-

tribute scores.2 Then they learn a ranking SVM using this

syntactic attribute representation, separately for each com-

municative intent. Note that the dataset provides ground

truth bounding boxes for the politician of interest in each

image, and the instructions on the dataset note that these

boxes can be used at test time, so we use this approach. The

features used to learn the 15 syntactical attribute classifiers

are as follows:

• Facial display. The facial expressions in a photo-

graph can be very telling of a the subject’s mental or

emotional state, thus they can affect how the subject

is perceived (e.g. as competent or not). [11] defined

four different facial display types: smile/frown, mouth

open/closed, eyes-open/closed, and head-down/up.

Each image is expected to show a face, and they de-

tect the keypoints on the face using Intraface [35]. For

a small patch around each keypoint, they extract HOG

features. We follow the same approach as [11], but

use [28] to detect facial keypoints since the Intraface

software was unavailable for public use. We apply the

target person bounding boxes first before extracting the

facial keypoints.

• Gestures. [11] use seven types of human gestures:

hand wave, hand shake, finger-pointing, other-hand-

gesture, touching-head, hugging, or none of these.

They densely extract SIFT features from the target per-

son bounding box in each image, and compute a 3-

level spatial pyramid representation on top of the SIFT

features, which is used as the image descriptor for each

2In our implementation, we use the probabilities of being present that

the 15 syntactic attribute classifiers provide.

a) b) c)

d) e) f)

Figure 2. Motivation for the feature types we develop (facial ex-

pressions, body poses, and image settings). See text for details.

gesture classifier. We use the same approach. To com-

pute the spatial pyramid representation, we use a vo-

cabulary of K=200 visual words.

• Scene context. [11] use four scene context attributes:

dark-background, large-crowd, indoor/outdoor scene,

and national-flag. They use the same features to cap-

ture these attributes as for the gesture attributes, but

now extracting features from the whole image. We

follow the same approach but, unlike [11], exclude re-

gions containing the bounding box for the person of

interest before extracting features, as opposed to using

the entire image as in [11].

3.3. Facial expressions

Throughout this work, we use the same learning frame-

work described above to learn communicative intents, but

explore new features in addition to the 15 original syntactic

attributes. Table 1 summarizes the features.

The facial syntactical attributes used in [11] only cap-

ture some facial movements like mouth and eyes being open

or closed, but do not capture subtle variations like muscle

changes or expressions that do not involve a smile. Con-

sider Figure 2 a. Mitt Romney is portrayed in a positive

light in this image because he is able to relate to the child.

He has a strong facial expression on his face, but it is dif-

ficult to capture this expression with the 4 facial syntactic

attributes of [11].

We extend the original set of syntactic attributes with

seven new facial expressions corresponding to seven emo-

tion categories from [18]: anger, contempt, disgust, fear,

happiness, sadness, and surprise. [18] developed the CK

facial expression database, which contains about 324 im-

ages, each of which is assigned one expression label. We

extracted features for each image using the same method as

that used for the facial display attributes. We then trained

a linear one-vs-all classifier for each kind of facial expres-

sion. For a new test image, we ran each of those classifiers

and concatenated their responses to form the 7-dimensional

descriptor for the image. These responses are converted to

probabilities using Platt’s method [25].
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3.4. Body poses

Human poses can provide more cues than gestures to

predict the communicative intents. Consider Figure 2 b,

c. Joe Biden’s pose seems to be saying “We can do this”,

while Paul Ryan’s is saying “Here is to the bright future.”

Neither of these body poses are captured by [11]’s syntactic

attributes.

We use [36] to extract the human poses from the im-

ages. This method returns the (x, y) locations of 26 dif-

ferent joints, e.g. the location of the head, elbows, knees,

etc. Because there can be multiple human poses detected in

one image, we need to combine these multiple poses in a

single representation for the image.3 We experimented with

three approaches for doing so, and found that the best strat-

egy is as follows. First, we collect all of the poses detected

from the images in the training dataset and use K-means to

group them into multiple clusters. We then represent the

image as a histogram containing the counts of how many

poses of each cluster type were detected in the image. This

becomes the pose feature vector for the image. We found

that K = 30 works best.

3.5. Scene categorization

The backdrop and setting in a photograph contributes

to how the subject is perceived. For example, a politician

shown in a diner (Figure 2 d) or a hospital (Figure 2 e) might

be perceived as being “close to the people.” A politician

shown in a serene environment outside in nature (Figure 2

f) might be seen as comforting.

Therefore, we represent the image with how well it por-

trays each of a number of different fine-grained scene cate-

gories. We develop classifiers for the 8 outdoor scene cat-

egories and 67 indoor scene categories from the datasets

of [19] and [26], respectively. [19]’s dataset contains more

than 2600 images, and [26]’s more than 15620 images. We

extracted GIST as the feature descriptors for learning the 75

(=8+67) scene classifiers.

For each scene classifier, we use the images of the corre-

sponding category label as the positive training data, and all

the remaining images in the same dataset ([19] for outdoor

scenes and [26] for indoor scenes) as the negative data.

We then train a linear one-vs-all classifier model for each

scene category. A novel image is then represented by the

concatenation of the responses of the 75 scene category

models. Similarly to Section 3.3, the responses are con-

verted to probabilities.

3.6. PHOG

We also extracted Pyramid Histogram of Oriented Gra-

dients descriptors [2] of the whole images as another type

3We use all poses because in some cases a persuasive intent is best

understood from how two people physically interact.

of feature descriptor. The dimensionality of this feature is

168. This feature type was intended to represent the im-

ages holistically, and to be complementary to our higher-

level features capturing facial expressions, body poses, and

scenes.

3.7. Caffe

Finally, we experimented with features extracted from

a convolutional neural net (CNN). Deep neural networks

have achieved state-of-art performance on a number of vi-

sual recognition tasks [29, 27, 12], and the responses of

various network layers are often used as features. A com-

monly used CNN toolbox is the Berkeley Vision and Learn-

ing Center (BVLC) Caffe package [9]. This framework pro-

vides some pertained deep learning models on large-scale

image datasets for further recognition tasks. Using the Caf-

feNet model trained on ILSVRC 2012 [27], we extracted

CNN features for the images in the Joo et al. [11] dataset

from the fc6, fc7, and fc8 layers.

We attempted to use these layers directly as features to

predict communicative intents. The fc7 layer performed

best among the three, but we found they performed worse

than the original 15 syntactic attributes. This justifies the

strategy of first computing a low-dimensional set of syntac-

tic attributes, and then predicting intents based on this inter-

mediate representation. Therefore, we experimented with

using CNN features to first build classifiers for the 15 syn-

tactic attributes, and use those improved classifiers to pre-

dict the 9 intents, which resulted in a boost in performance.

For facial display representation, we used the same method

as presented in [11]. For syntactical attributes of gestures

and context, we use deep learning features to train linear

classifiers.

4. Results

We compare the performance of the features described

above as a representation in which to learn a ranking SVM

for each communicative intent. To compare different meth-

ods’ outputs, we used Kendall’s τ [14] as performance mea-

sure, which [11] also used. If the ground truth order for im-

ages i and j and intent C is i > j, i.e. image i has more of

intent C than image j does, then a method should produce a

higher value for image i than it does for image j in order to

be correct for this pair. Kendall’s τ then measures the ratio

of correctly minus incorrectly ordered pairs, out of all pairs.

A higher Kendall’s τ indicates better performance. We use

the same train/test splits as in [11].

Table 2 shows the result of complementing the original

15 syntactic attributes with different features. The first col-

umn shows the performance of the original features in our

implementation, which differs from the authors implemen-

tation in some ways, as noted in Section 3.2. The next four

columns show the addition of the features from Sections

76



Intent Original Original Original Original Original Orig (Deep) Orig (Deep) Orig (Deep)

+Expressions +Pose +Scene +PHOG +Expressions +PHOG

Favorable 25.94% 26.10% 27.64% 31.52% 27.02% 37.36% 36.70% 36.64%

Angry 32.98% 32.44% 31.56% 31.66% 33.84% 36.16% 35.10% 37.34%

Happy 32.42% 32.18% 30.84% 31.82% 32.88% 39.56% 40.48% 41.10%

Fearful 29.28% 29.32% 29.70% 32.42% 31.46% 36.96% 36.60% 37.44%

Competent 18.50% 18.42% 16.22% 18.90% 20.16% 26.34% 25.98% 26.26%

Energetic 27.38% 27.36% 24.62% 31.62% 28.16% 36.72% 38.48% 37.70%

Comforting 18.68% 19.64% 21.46% 23.06% 19.92% 29.76% 29.28% 28.70%

Trustworthy 17.60% 16.94% 19.50% 18.52% 16.62% 30.86% 30.34% 30.30%

Powerful 20.86% 22.28% 21.26% 26.32% 23.14% 31.64% 33.86% 33.70%

MEAN 24.85% 24.96% 24.76% 27.32% 25.92% 33.93% 34.09% 34.35%
Table 2. Experimental comparison among combinations of different syntactical attributes. Higher values indicate better performance, using

the Kendall’s τ metric. Bolded is the best performance in each row.

3.3 to 3.6 to the original syntactic features. We see that on

average, expression, scene categorization, and PHOG im-

prove the performance of the original features. The pose

features improve the performance for five of the intents,

and help the most for the “comforting” one. This could be

because whether or not someone is being comforting de-

pends strongly on body language (e.g., is there a hug?),

which is captured well by pose features. We also observe

that scene categorization features improve the performance

of the original features the most. This may be because the

original features of [11] only involve four scene attributes so

they benefit from the extensive scene categories we detect.

We next examine the performance of using CNN features

for learning the original 15 syntactic attributes, which are

then used as a representation to learn the communicative in-

tents. In “Orig (Deep)” we see a 37% relative improvement

on average, compared to the original features in the first col-

umn. Our result of 33.93% is also 13% better than the mean

result reported in [11] of around 30%. Thus, the CaffeNet

CNN, despite being trained for object recognition, capture

cues that are also useful for predicting intent.

Finally, we complement the original syntactic attributes

learned with deep features, with our new features. Both fa-

cial expressions and PHOG (“Orig (Deep) + Expressions”

and “Orig (Deep) + PHOG”), when added to the deep orig-

inal features, improve their performance.

Figure 3 shows some qualitative examples. We show

how the features we develop successfully complement the

original syntactic attributes. In particular, we identify pairs

of images where the indicated method was able to or-

der these images correctly, unlike the original method of

[11]. In the left column, we see examples of the best

method, Original (Deep) + PHOG, outperforming the Orig-

inal method. The correct order, which our method accu-

rately predicts, is that in each pair, the image on the left

contains the intent to a larger extent than the image on the

right. For example, we can correctly infer that an image

showing Barack Obama smiling among a crowd in front of

an American flag portrays him as more favorable than one

showing him looking down, walking away from the flag.

We also see that a picture of him with children, which was

a type of image that motivated [11]’s studies, shows him as

more favorable than one where children are absent. We also

see a similar type of image for Mitt Romney (fifth row).

Finally, we see that an image of Paul Ryan in a working

environment (last row) portrays him as trustworthy. In all

of these cases, the features that the ImageNet-trained CNN

learned could be helping us by detecting relevant categories

(people, cups, etc.)

At the top-right of Figure 3, we see examples of body

pose features helping the communicative intent inference.

We see that particular body language can help us determine

when someone is shown as comforting, and pose features

help us capture body language.

In the remainder of the right-hand column in Figure 3,

we see examples of scene features helping our predictions.

In the first row, we see that an image of Hilary Clinton in

nature (the method is likely unable to infer what monument

this is) shows her in a more serene and comforting light than

the image showing her in an office-like environment. Simi-

larly, the diner setting in which Joe Biden is shown (second

row), and the home and hospital environments shown for

George W. Bush (last two rows), portray them in a favor-

able light. These examples demonstrate how useful captur-

ing image setting is for inferring communicative intents.

5. Conclusion

We develop features that improve a computer system’s

ability to automatically infer the communicative intents im-

plied in images. Our results shows that besides attributes

like facial display, gestures, and background, new features

like facial expressions, body poses, and scene categories

also prove helpful for predicting the persuasive intents of

images. We also demonstrate the value of applying deep
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MORE FAVORABLE

MORE FAVORABLE

MORE POWERFUL

MORE COMPETENT

MORE FAVORABLE

MORE TRUSTWORTHY

MORE COMFORTING

MORE COMFORTING

MORE COMFORTING

MORE FAVORABLE

MORE FAVORABLE

MORE FAVORABLE

Original+Pose outperforming Original

Original+Scene outperforming Original

Original(Deep)+PHOG 

outperforming Original

Figure 3. Examples of how our proposed features complement the original 15 syntactic attributes. See text for details.
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learning features to predict gestures and background. In our

future work, we will examine how our developed features

can help us understand the light in which individuals other

than politicians are portrayed, and how they can assist us in

analyzing news report videos.
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