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Abstract

We address short-term, single-object tracking, a topic

that is currently seeing fast progress for visual video, for

the case of thermal infrared (TIR) imagery. The fast

progress has been possible thanks to the development of

new template-based tracking methods with online template

updates, methods which have not been explored for TIR

tracking. Instead, tracking methods used for TIR are often

subject to a number of constraints, e.g., warm objects, low

spatial resolution, and static camera. As TIR cameras be-

come less noisy and get higher resolution these constraints

are less relevant, and for emerging civilian applications,

e.g., surveillance and automotive safety, new tracking meth-

ods are needed.

Due to the special characteristics of TIR imagery, we ar-

gue that template-based trackers based on distribution fields

should have an advantage over trackers based on spatial

structure features. In this paper, we propose a template-

based tracking method (ABCD) designed specifically for

TIR and not being restricted by any of the constraints above.

In order to avoid background contamination of the object

template, we propose to exploit background information for

the online template update and to adaptively select the ob-

ject region used for tracking. Moreover, we propose a novel

method for estimating object scale change. The proposed

tracker is evaluated on the VOT-TIR2015 and VOT2015

datasets using the VOT evaluation toolkit and a compari-

son of relative ranking of all common participating trackers

in the challenges is provided. Further, the proposed tracker,

ABCD, and the VOT-TIR2015 winner SRDCFir are eval-

uated on maritime data. Experimental results show that

the ABCD tracker performs particularly well on thermal in-

frared sequences.

1. Introduction

Tracking of objects in video is a problem that has been

subject to extensive research. In recent years, the sub-topic

of short-term single-object tracking (STSO) has seen sig-

nificant progress and is important as it is at the core of more

complex (long-term, multi-camera, multi-object) tracking

systems. Indicators of the popularity of this research topic

are challenges and benchmarks like the recurring Visual

Object Tracking (VOT) challenge [16, 17, 18], the Online

Object Tracking (OTB) benchmarks [28, 29], and the series

of workshops on Performance Evaluation of Tracking and

Surveillance (PETS) [30].

Thermal infrared tracking has historically been of inter-

est mainly for military purposes. Thermal cameras have de-

livered noisy images with low resolution, used mainly for

tracking small objects (point targets) against colder back-

grounds. However, in recent years, thermal cameras have

decreased in both price and size while image quality and

resolution has improved, which has opened up new applica-

tion areas [9]. Thermal cameras are now commonly used,

e.g., in cars and in surveillance systems. The main advan-

tages of thermal cameras are their ability to see in total dark-

ness, their robustness to illumination changes and shadow

effects, and less intrusion on privacy. In 2015, the first chal-

lenge on STSO tracking in thermal infrared imagery (VOT-

TIR) was organized [6], an indication of an increasing in-

terest from the community.

In this paper, we will discuss the differences between

thermal and visual tracking, argue that template-based

trackers based on distribution fields are suited for thermal

tracking, and propose three enhancements to such tracking

methods: First, we propose a method for improving distri-

bution field-based trackers using background weighting of

object template updates. Second, we propose a method for

improving the search phase in such trackers using an adap-

tive object region. Third, a scale estimation technique em-

ploying background information is evaluated. Finally, we

show that these improvements are complementary, and eval-

uate the resulting tracker on both RGB and TIR sequences.

2. Thermal imaging and tracking

The infrared wavelength band is usually divided into dif-

ferent bands according to their different properties: near

infrared (NIR, wavelengths 0.7–1 µm), shortwave infrared

(SWIR, 1–3 µm), midwave infrared (MWIR, 3–5 µm), and
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longwave infrared (LWIR, 7.5–12 µm). Other definitions

exist as well. LWIR, and sometimes MWIR, is commonly

referred to as thermal infrared (TIR). TIR cameras should

not be confused with NIR cameras that are dependent on il-

lumination and in general behave in a similar way as visual

cameras.

In thermal infrared, most of the captured radiation is

emitted from the observed objects, in contrast to visual and

near infrared, where most of the radiation is reflected. Thus,

knowing or assuming material and environmental proper-

ties, temperatures can be measured using a thermal camera

(i.e., the camera is said to be radiometric).

There are two common misconceptions regarding object

tracking in TIR. One is that it is all about hotspot tracking,

that is, tracking warm (bright) objects against a cold (dark)

background. In certain military applications, such as mis-

sile warning, this assumption is valid, but for most other ap-

plications the situation is more complex and hotspot track-

ing less suitable (this is backed by our experimental results

given in Sec. 5). The other misconception is that TIR track-

ing is identical to tracking in grayscale visual imagery, and,

as a consequence, that a tracker that is good for visual track-

ing is good for TIR tracking. However, there are differences

between the two types of imagery that indicate that this is

not the case:

First, there are no shadows in TIR. A tracker that is opti-

mized to handle shadows might thus be suboptimal for TIR

(e.g. a tracker employing foreground/background detection

that includes shadow removal [25]).

Second, the noise characteristics are different. Com-

pared to a visual camera, a TIR camera typically has more

blooming1, lower resolution, and a larger percentage of

dead pixels. As a consequence, a tracker that depends heav-

ily on features based on (high resolution) spatial structure is

presumably suboptimal for TIR imagery.

Third, visual color patterns are discernible in TIR only

if they correspond to variations in material or temperature.

Again, the consequence is that trackers relying on (high

resolution) spatial patterns might be suboptimal for TIR

imagery. Moreover, re-identification and resolving occlu-

sions might need to be done differently. For example, two

persons with differently patterned or colored clothes might

look similar in TIR.

Fourth, in most applications, the emitted radiation

change much slower than the reflected radiation. That is,

an object moving from a dark room into the sunlight will

not immediately change its appearance (as it would in vi-

sual imagery). Thus, trackers that exploit the absolute lev-

els (for example, distribution field trackers) should have

an advantage in TIR. This is especially relevant for radio-

metric 16-bit cameras, since they have a dynamic range

1TIR cameras have blooming, but not the same kind of blooming as

CCD arrays

large enough to accommodate relevant temperature inter-

vals without adapting the dynamic range to each frame.

3. Related Work

A common approach to TIR tracking is to combine a de-

tector with a motion tracking filter such as a Kalman filter

(KF) or a particle filter (PF). The detector is typically based

on thresholding, i.e., hotspot detection, or a pre-trained clas-

sifier. This approach is intuitive when tracking warm ob-

jects in low-resolution images and has historically been the

main use of thermal cameras since typical objects of inter-

est often generate kinetic energy in order to move (e.g. air-

borne and ground vehicles). Extensions include the work

of Padole and Alexandre [21, 22], who use a PF for mo-

tion tracking and combine spatial and temporal informa-

tion. Lee et al. [20] improve tracking performance in the

case of repetitive patterns using a KF and a curve match-

ing framework. Gade and Moeslund [10] use hotspot detec-

tion followed by splitting and connection of blobs in order

to track sports players and maintain the players’ identities.

Goubet et al. [11] also rely on high contrast between ob-

ject and background. In contrast, Skoglar et al. [27] use a

pre-trained boosting based detector and improve tracking in

a surveillance application using road network information

and a multimodal PF. Portmann et al. [24] combine back-

ground subtraction and a part-based detector using a sup-

port vector machine to classify Histograms of Gradients.

Jüngling and Arens [15] combine tracking and detection in

a single framework, extracting SURF features and using a

KF for predicting the motion of individual features.

Many published methods on TIR tracking have strong

constraints, for example assuming static camera and/or

background [10, 11, 21], pre-trained detector (imply-

ing known object class) [15, 24, 27], and high object-

background contrast [10, 11, 21].

In the visual domain, methods based on matching a tem-

plate (object model) that is trained and updated online is

currently subject to intensive research [28]. Few papers

can be found where the recent ideas leading to such fast

progress for visual video are transferred to TIR tracking.

The existing template-based TIR-tracking methods often

assume small targets and low signal-to-noise ratio. Further,

they frequently use separate detection and tracking phases

where the target tracking step is based on spatio-temporal

correlation. In contrast, many of the methods used in the re-

cent RGB-tracking benchmarks employ joint detection and

tracking. Some TIR template-based tracking methods ac-

tivate template matching only for the purpose of recovery

[2, 19]. Bal et al. [2] base the activation on a Cartesian

distance metric while Lamberti et al. [19] use a motion

prediction-based metric. The latter strategy improves the

robustness of the tracker. Johnston et. al. [14] use a dual

domain approach with AM-FM consistency checks. The
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method automatically detects when a template update is

needed through a combination of pixel and modulation do-

main correlation trackers.

Alam and Bhuiyan [1] provide an overview of the char-

acteristics of matched filter correlation techniques for de-

tection and tracking in TIR imagery. The filters are, how-

ever, pre-trained and not adaptively updated. He et al. [13]

employs some of the ideas of RGB-tracking methods

and presents an infrared target tracking method under a

tracking-by-detection framework based on a weighted cor-

relation filter.

Methods based on distribution field tracking (DFT) [26]

rely neither on color nor on features based on sharp edges.

Instead, the object model is a distribution field, i.e., an array

of probability distributions; one distribution for each pixel

in the template. In [26], the probability distributions are

represented by local histograms. Felsberg [5] showed that

changing the representation of the probability distributions

to channel coded vectors [7, 12] improves tracking perfor-

mance. A channel vector basically consists of sampled val-

ues of overlapping basis functions, e.g., cos2 or B-spline

functions. Each of the N elements (channels) of the chan-

nel vector describe to what extent the encoded value acti-

vates the n’th basis function.

In the particular case of EDFT [5] (Enhanced Distribu-

tion Field Tracking), the object model is built by channel

encoding of an image patch of the object which is then con-

volved with a 2D Gaussian kernel. This model is updated

in each new frame using an update factor α ∈ [0, 1] as

mt
obj(i, j, n) = (1− α)mt−1

obj (i, j, n) + αpt(i, j, n) (1)

where mt
obj is the object model at time t, and p is the best

matching channel encoded patch in the current frame. i ∈
[0, I − 1] and j ∈ [0, J − 1] where I, J are the width and

height of the model and n ∈ [0, N − 1] where N is the

number of channels.

The best matching patch p is found by performing a lo-

cal search starting from a predicted image position. The

search procedure is equal to that of DFT [26]. A distance

measure, d, is calculated as the absolute difference of the

object model and the channel encoded query patch, q (2). p

is found at the position where d is minimized.

d =

I−1∑

i=0

J−1∑

j=0

N−1∑

n=0

|mobj(i, j, n)− q(i, j, n)| (2)

4. Proposed tracking method

The proposed tracking method is based on the Enhanced

Distribution Field Tracking (EDFT). The word ”enhanced”

refers to the modifications of the DFT tracker introduced

in [5], the most important being the change of representa-

tion of the distribution field from soft histograms to B-spline

kernel channel coded features. EDFT has achieved good

results in the VOT challenges 2013 and 2014 for visual se-

quences. EDFT neither relies on color nor on features based

on sharp edges which makes it suitable for thermal infrared

imagery, however, as all template-based trackers it suffers

from background contamination and, moreover, it cannot

adaptively rescale to changing object size.

4.1. Background contamination in tracking

In all template-based tracking methods, there is a risk

that the spatial region to be tracked contains background

pixels. This leads to two problems; in the search phase re-

spectively the template update phase. First, if the region

contains background pixels, which is highly probable in

practice, the tracker will try to track not only the object

but also some of the surrounding background. Second, if

the template (object model) is continuously updated, back-

ground pixels might be included. With increasing number

of background pixels in the model, the risk of losing track

grows. We address these two problems in two different

ways below.

The same principle of how to build an object model (1)

in EDFT can be used to create and update a background

model. Each pixel is represented by a channel vector, and

in each frame, the background model mbg is updated using

a background update factor β.

mt
bg(x, y, n) = (1− β)mt−1

bg (x, y, n) + βzt(x, y, n) (3)

x ∈ [0,W − 1] and y ∈ [0, H − 1] where W and H are

the width and height of the image respectively. zt(x, y, n)
is the current frame, the image at time t. Our approach is to

use the additional information from the background model

when tracking an object. Note that we do not need to build

the model in advance – the background model is continu-

ously built and updated for a region around the object (we

use I + 50 and J + 30 pixels) only. If the camera is mov-

ing, the background model is not corrected for the camera

motion.

Also note that any other model for background pixel

distributions can be used, for example a mixture of Gaus-

sians, a kernel density estimator [23] or a soft histogram

[26]. However, since the channel coded distribution is al-

ready available from the EDFT, we can use this without ex-

tra computational cost.

4.2. Background weighted model update (B­EDFT)

We propose a method to mitigate the problem of back-

ground pixels contaminating the process of updating the ob-

ject model. From the background model described above, a

soft mask consisting of the probabilities of pixels belonging

to the foreground can be made. The ℓ1 norm of a second

order B-spline kernel channel vector is one [8]. This im-

plies that
∑N−1

n=0
|mbg(i, j, n)− p(i, j, n)| ∈ [0, 2] for some
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(a) (b) (c) (d)

Figure 1: Example of image patch and corresponding fore-

ground mask from sequences (a) horse (image) (b) horse

(mask) (c) crouching (image) (d) crouching (mask).

pixel (i, j). mbg(i, j, n) is the background model at the po-

sition of the best matching patch p(i, j, n), and N is the

number of channels. The individual elements of the mask

b (I × J) ∈ [0, 1] are then calculated as

b(i, j) =

∑N−1

n=0
|mbg(i, j, n)− p(i, j, n)|

2
. (4)

A lower value b(i, j) indicates a higher similarity between

pixel (i, j) and the background. The elements of the fore-

ground mask b can be used as weights for the different pix-

els when the object model is updated.

In order to incorporate the mask into the update of the

object model, (1) is modified to

mt
obj(i, j, n) = (1−αb(i, j))mt−1

obj (i, j, n)+αb(i, j)p(i, j, n).
(5)

That is, the more likely a pixel is to belong to the back-

ground, the slower the corresponding distribution in the ob-

ject model is updated. Thus, the risk of background con-

tamination in the model is reduced.

In Fig. 1, two examples of foreground masks are pro-

vided. Note that in the horse sequence, the camera is mov-

ing and there is a high contrast between the object and the

background. Hence, the outline of the object in the mask

is wider and has higher intensity compared to the outline of

the person in the crouching sequence.

If the object slows down to a stand still, it will be consid-

ered background and the elements of the foreground mask

will be low. Hence, the object model will not be updated

but since the object do not change significantly the tracker

will be able to localize the object anyway.

4.3. Adaptive object region (A­EDFT)

Second, the problem of the tracked region encompassing

background pixels in the search phase is addressed. A sub-

region suitable for tracking is adaptively selected. In visual

imagery, this might correspond to choosing good features

to track, whereas in thermal imagery, selecting a region is

typically more suitable. In thermal imagery, there is less

Figure 2: Illustration of how the inner bounding box is

adaptively selected for sequence horse (left) and car (right).

The blue curves represent the projected pixel values of the

mask onto the x- and y-axis respectively.

structure and sharp edges, and the tracker exploits intensity

rather than structure. Thus, within the initial region to track

we select an inner region that is used for the actual tracking.

In this particular case, the region is a bounding box.

An illustration of how the inner bounding box is selected

from the first mask is provided in Fig. 2. The values within

the mask are projected onto the x- and y-axis respectively

(blue curves) and the mean, µx, µy , and standard deviations,

σx, σy , of each axis are computed. The inner bounding box

is placed at (µx, µy) with width 1.8σx and height 1.8σy .

Also, the outer bounding box, the one being reported as

tracking result, is centred around (µx, µy). The size of the

inner bounding box is fixed throughout the sequence unless

reinitialized or rescaled, see next section.

There is a major positive effect of using an inner region

where size and placement are estimated adaptively. Even

if the detector (user, annotator) has marked a region larger

than the actual object, the tracker will still select a trackable

region instead of being confused by too much background

in the object model.

4.4. Scale change estimation

Correct estimation of object scale changes is crucial for

correct tracking of an object if the object is subject to large

scale variations. This is, for example, the case if the ob-

ject extends or reduces its distance to the camera. We pro-

pose to exploit the probability mass within the foreground

mask, b(i, j), in order to detect scale changes of the tracked

object. If the scale of the object increases, the probabil-
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(a) (b) (c)

Figure 3: Scaling principle examples: (a) Horse mask with

overlaid grid lines. (b) The probability mass (pm) within

each grid cell has increased, thus, the size should be in-

creased. (c) Another object enters from the right, and the

pm in the rightmost grid cells have increased. The pm in

the lower left cell has not, therefore, the size should not be

increased.

ity mass within the mask will also increase. However, if

another foreground object passes behind or in front of the

tracked object, the probability mass within the object patch

will also increase. Therefore, the flow of probability mass

must be considered. A scale change implies probability

mass changes in all directions while another object entering

the tracked area will cause the probability mass to change

on one side of the patch only. The flow of probability mass

is roughly estimated by dividing the image patch into a grid

of 2 × 2 cells, see Fig. 3. If all grid cells have increased

their mean probability mass from time t − sw to t, where

sw is a constant time interval, the scale of the patch is in-

creased by a scale step ss. The opposite applies to the case

of decreasing probability mass. In order to achieve robust-

ness to noise in the probability mass, the mean probability

mass value of each grid cell is updated using an update fac-

tor and the scale step, ss, is kept relatively low. Further, in

order to avoid rounding errors, the width, I , of the bound-

ing box is updated iff mod(∆I, 2) = 0 and the height, J ,

iff mod(∆J, 2) = 0.

4.5. Combining the three methods (ABCD)

The three proposed methods are independent of each

other and can thus easily be combined. The resulting tracker

is called ABCD – Adaptive object region + Background

weighted scaled Channel coded Distribution field tracking.

In the next section, evaluation results for A-EDFT, B-EDFT,

the combination AB-EDFT as well as ABCD (AB-EDFT +

scale estimation) will be presented.

4.6. Combining with a detector for initialization

The ABCD tracker is a pure tracker, relying on an initial

(external) detection. While ABCD is general in the sense

that it could be used for any object class, it is specific in the

sense that each instance models and tracks a specific object.

A detector for initialization is typically specific for the ap-

plication scenario; in the case of the PETS 2016 scenario,

we need to detect boats.

For that reason, an anomaly detector, detecting poten-

tial targets that do not fit the distribution of sea pixels, has

been implemented. By noticing that the apparent tempera-

ture of the sea decreases linearly (with an offset and plenty

of noise) with the vertical observation angle, fitting a plane

to the image intensity values and marking all pixels being

warmer than this plane (with a margin of 5–7 K), a surpris-

ingly efficient anomaly detector is acquired. In addition,

small targets, detections in the sky, and spurious detections

are removed. Small targets according to a threshold varying

with distance and spurious detections by using M/N logic

before initialising a track.

When a track is initialised, an instance of the ABCD

tracker is created for the specific target being tracked. The

anomaly detector is utilised to confirm that the ABCD

tracker is still on track. A track that is not confirmed by

a detection in five frames is thus declared to be lost. The

major effect of this step is to avoid tracking wakes.

5. Evaluation and results

In this section, the evaluation procedure and experimen-

tal results are presented. Three datasets have been used for

evaluation. The LTIR-dataset2 [3], the PETS2016 dataset,

and four maritime sequences from the EU FP7 project

IPATCH, similar but not identical to the PETS2016 mar-

itime imagery. LTIR is a thermal infrared dataset consist-

ing of 20 sequences that has recently been used in the ther-

mal infrared visual object tracking VOT-TIR2015 challenge

[6]. LTIR and the maritime sequences are labelled accord-

ing to the VOT-annotation procedure. That is, there are

axis aligned bounding box annotations for each object and

frame, local per-frame annotations as well as global per-

sequence annotations.

5.1. Evaluation methodology

The evaluation of trackers has been performed in ac-

cordance with the VOT evaluation procedure using the

VOT-evaluation toolkit3. The tracker is initialized with the

ground truth bounding box in the first frame and the perfor-

mance is evaluated using four performance measures; accu-

racy, robustness, speed, and ranking. The accuracy at time

t, At, measures the overlap between the bounding boxes

given by the annotated ground truth OG
t and the tracker OT

t

as

At =
OG

t ∩OT
t

OG
t ∪OT

t

(6)

Robustness measures the failure rate, i.e., the number of

times At = 0 during a sequence. When a failure is detected,

2http://www.cvl.isy.liu.se/research/datasets/ltir/
3https://github.com/vicoslab/vot-toolkit
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ρA ρR Φ̂
ABCD 0.65 1.30 0.32

AB-EDFT 0.65 1.55 0.31

A-EDFT 0.61 1.70 0.28

B-EDFT 0.65 2.80 0.22

EDFT 0.61 3.00 0.22

Table 1: Average accuracy (ρA), robustness (average num-

ber of failures) (ρR), and expected average overlap (Φ̂) on

the VOT-TIR2015 dataset.

the tracker is reinitialized five frames later, and for another

10 frames the achieved accuracy is not included when per-

sequence accuracy is computed. Per-sequence accuracy is

calculated as the average accuracy for the set of valid frames

in all experiment repetitions. The per-experiment measures,

ρA and ρR, are the average accuracy and robustness (num-

ber of failures) over all sequences. Finally, the trackers are

ranked for each attribute and an average ranking for the two

experiments is computed.

The expected average overlap, Φ̂ = 〈ΦNs
〉, was intro-

duced in VOT2015. The measure combines accuracy and

robustness by averaging the average overlaps, Φ, on a large

set of Ns frames long sequences. ΦNs
is the average of

per-frame overlaps, Φi:

ΦNs
=

1

Ns

∑

i=1:Ns

Φi. (7)

If the tracker fails at some point during the Ns frames

long sequence, it is not reinitialized.

5.2. Experiments

Five different experiments have been performed. First,

the EDFT tracker and the extensions A-EDFT, B-EDFT,

AB-EDFT, and ABCD, all of which have been proposed

in this paper, are evaluated on the VOT-TIR2015 dataset.

Second, the ABCD and EDFT trackers are evaluated on

the VOT2015 (RGB sequences) and VOT-TIR2015 (TIR

sequences) datasets against other participating trackers in

the challenges. Third, the ranking results of the ABCD

tracker are added to the confusion matrix in [6]. Fourth, the

ABCD and SRDCFir [6] (winner of VOT-TIR2015) track-

ers are evaluated on four maritime TIR sequences. Finally,

the ABCD tracker in combination with an anomaly detector

is applied to the PETS 2016 dataset, resulting in qualitative

results only.

5.3. Results

Experiment 1. Table 1 lists the average accuracy and av-

erage number of failures per sequence for the EDFT tracker

as well as the proposed extensions A-EDFT, B-EDFT, AB-

EDFT, and ABCD on the VOT-TIR2015 dataset. It is clear

Figure 4: Comparison of relative ranking of 21 trackers in

VOT and VOT-TIR.

that B-EDFT mainly improves accuracy while A-EDFT im-

proves robustness. When both extensions are combined in

AB-EDFT, the robustness is improved even further. Adding

the ability to scale to AB-EDFT in ABCD improves robust-

ness without a decrease in accuracy.

In total, the combined extensions (ABCD) give an in-

crease in average accuracy of 6.6%, a decrease of the av-

erage number of failures of 57%, and an increase of the

expected average overlap of 45% compared to EDFT.

Regarding speed, the extension from EDFT to ABCD

benefits by exploiting information that is already computed,

i.e., the channel coded image. That is, the improvement in

accuracy and robustness implies no significant addition in

computation time. In the VOT-TIR2015 experiments, the

ABCD tracker achieved a tracking speed of 6.88 in EFO

(equivalent filter operations) units [6]. The VOT toolkit re-

ports the tracker speed in terms of a predefined filtering op-

eration that is automatically performed prior to running the

experiments. To put EFO units into perspective, a C++ im-

plementation of a NCC tracker provided in the toolkit runs

with average 140 frames per second on a laptop with an

Intel Core i5-2557M processor, which equals to approxi-

mately 160 EFO units. The ABCD tracker is implemented

in Matlab.

Experiments 2 and 3. Table 2 shows the average accu-

racy, number of failures, and rankings of the EDFT and

ABCD trackers when compared to the participating track-

ers in the VOT2015 and VOT-TIR2015 challenges. The

extension of the EDFT tracker provides a significant im-

provement in ranking for the VOT-TIR2015 challenge while

remaining unchanged for the VOT2015 challenge. A com-

parison of the relative rankings for all common trackers in

VOT2015 and VOT-TIR2015, including ABCD, are shown
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VOT2015 VOT-TIR2015

ρA ρR Φ̂ r ρA ρR Φ̂ r

ABCD 0.45 3.12 0.14 50 0.65 1.30 0.32 6

EDFT 0.45 3.50 0.14 49 0.61 3.00 0.22 15

Table 2: Average accuracy (ρA), robustness (average number of failures) (ρR), expected average overlap (Φ̂), and ranking (r)

for the EDFT and ABCD trackers in the baseline experiment of the VOT2015 and VOT-TIR2015 challenges respectively.

(a) maritime1 (b) maritime2

(c) maritime3 (d) maritime4

Figure 5: First and last frame of the four maritime sequences used for evaluation.

in Fig. 4.

Experiment 4. In addition to the VOT2015 and VOT-

TIR2015 datasets, the ABCD and SRDCFir (winner of

VOT-TIR2015) trackers have been evaluated on four ther-

mal infrared maritime sequences originating from the EU

FP7 IPATCH project using the VOT evaluation toolkit.

SRDCFir is a correlation filter based tracker that adapts the

SRDCF approach proposed in [4] to thermal infrared data

by employing other features, like channel coded intensity

values. The first and last frame of the four sequences can

be seen in Fig. 5. Sequence maritime1 contains only small

scale variations while the boat in maritime2 and maritime3

approaches from far away. In contrast, maritime4 contains

a small target against a versatile background. Both track-

ers proved to be robust on the maritime dataset, SRDCFir

had no failures while ABCD had an average number of fail-

ures of 0.25. Regarding accuracy, SRDCFir had an average

accuracy of 0.71 while ABCD had an average accuracy of

0.60. The SRDCFir tracker had a slightly higher accuracy

for sequence maritime1–3 while ABCD had a marginally

higher accuracy on maritime4.

Experiment 5. The ABCD tracker combined with the

anomaly detector was applied to the three thermal image se-

quences in the PETS 2016 dataset. The results are shown in

Table 3. Since the ground truth is not part of the PETS 2016

dataset, all numbers come from visual inspection and, hope-

fully, sound judgment of what constitutes a successful track.

A few frames are shown in Fig. 6. For the first sequence, de-

tection and tracking is done fully satisfactory. For the sec-

ond sequence, there is a short false track for a few frames

on the engine of one of the skiffs. For the third sequence,

the track initialization does not work as intended; for the

ABCD to get a good template, tracks are initialized only

for objects that are detached from the image borders. In the

third sequence, the target is always connected to the left or

bottom image border, and the detector instead locks on a

part of the skiff separated from its main part (see Fig. 6c).

5.4. Discussion

The results of the evaluation of the different proposed ex-

tensions of the EDFT tracker presented in Table 1 indicate

that the combination of extensions (ABCD) is favourable to

each individual extension itself. Further, when the ABCD
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Sequence Targets Detected False

Sc2a Tk1 TST Th2 4 4 0

Sc2a Tk1 UoR TH 1 4 4 1

Sc3 Tk2 TST Th1 1 1 0

Table 3: Tracking results on the PETS 2016 dataset. The

number of targets to be detected/tracked in each sequence,

the number of targets that were successfully detected and

tracked, and the number of false tracks created during the

sequence.

(a) Sc2a Tk1 TST Th2, frames no. 7 and 1950.

(b) Sc2a Tk1 UoR TH 1, frames no. 950 and 3955.

(c) Sc3 Tk2 TST Th1, frame 5350.

Figure 6: Tracking results in the PETS 2016 dataset.

and EDFT trackers were evaluated on the VOT2015 dataset,

Table 2 and Fig. 4, it became clear that the extensions are

particularly beneficial to thermal infrared data. Thermal in-

frared imagery contains less distinct edges and structures

for the tracker to attach to. Therefore, the ABCD tracker

was designed to exploit the absolute values of the object

rather than relying on the spatial structure. A distribution

field approach was utilized for this purpose. Background

information was incorporated in the template update phase

as well as in the choice of an inner bounding box, reducing

the background contamination of the object model.

Further, it should be emphasised that the size of targets

differ in the VOT2015 and VOT-TIR2015 datasets. VOT

has, in general, more high-resolution targets than VOT-TIR.

Higher resolution targets provide more spatial structure for

trackers to exploit, making them more easily tracked for

trackers employing such features.

On the limited maritime dataset, the SRDCFir tracker

had better accuracy for the three sequences that had more

high-resolution targets. ABCD performed better for tar-

gets with low resolution without much spatial structure.

Since SRDCFir is designed for sequences with more high-

resolution targets and more structure, the results are as ex-

pected.

6. Conclusions

We have compared trackers based on spatial structure

features with trackers based on distribution fields and come

to the conclusion that distribution fields are more suitable

for TIR tracking. Since the state-of-the-art distribution field

tracker (EDFT) was not able to adapt to changing object

scale, we have developed a novel method to achieve adap-

tivity. Moreover, we make the observation that template-

based trackers have two inherent problems of background

information contaminating the template of the object to be

tracked; in the search phase and in the template update

phase. We propose how to mitigate both these problems

by exploiting a channel coded background distribution and

show that this improves the tracking. The resulting tracker,

ABCD, has been evaluated on both RGB and TIR sequences

and the results show that the proposed extensions are partic-

ularly beneficial for TIR imagery. In addition, ABCD per-

forms comparably to the VOT-TIR2015 winner on maritime

data. We have also shown an example of how to combine

the ABCD tracker with an anomaly detector for the specific

scenario in the PETS 2016 dataset, and successfully track

the targets in the image sequences.

Acknowledgements

The research was funded by the Swedish Research Coun-

cil through the project Learning Systems for Remote Ther-

mography, grant no. D0570301, as well as by the Euro-

pean Community Framework Programme 7, Privacy Pre-

serving Perimeter Protection Project (P5), grant agreement

no. 312784, and Intelligent Piracy Avoidance using Threat

detection and Countermeasure Heuristics (IPATCH), grant

agreement no. 607567. The Swedish Research Council has

also funded the research through a framework grant for the

project Energy Minimization for Computational Cameras

(2014-6227) and the work has been supported by ELLIIT,

the Strategic Area for ICT research, funded by the Swedish

Government.

16



References

[1] M. S. Alam and S. M. A. Bhuiyan. Trends in correlation-

based pattern recognition and tracking in forward-looking

infrared imagery. Sensors, 14(8):13437, 2014.

[2] A. Bal and M. S. Alam. Automatic target tracking in FLIR

image sequences using intensity variation function and tem-

plate modeling. IEEE Transactions on Instrumentation and

Measurement, 54(5):1846–1852, Oct 2005.

[3] A. Berg, J. Ahlberg, and M. Felsberg. A thermal object

tracking benchmark. In Advanced Video and Signal Based

Surveillance (AVSS), 2015 12th IEEE International Confer-

ence on, 2015.
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