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Abstract

This paper presents a new method for object detection

and tracking based on visual saliency as a way of mitigat-

ing against challenges present in maritime environments.

Object detection is based on adaptive hysteresis threshold-

ing of a saliency map generated with a modified version of

the Boolean Map Saliency (BMS) approach. We show that

the modification reduces false positives by suppressing de-

tection of wakes and surface glint. Tracking is performed

by matching detections frame to frame and smoothing tra-

jectories with a Kalman filter. The proposed approach is

evaluated on the PETS 2016 challenge dataset on detecting

and tracking boats around a vessel at sea.

1. Introduction

Maritime piracy continues to place a huge economic and

human cost on commercial shipping around the world [1].

The most effective protection for ships is a proper lookout to

maximise early warning of a potential attack, allowing time

for the crew to prepare accordingly [3]. Radar and crew

members with binoculars represent the state of the art tech-

nology available to commercial fleets. However, the navi-

gation radar available on ships does not perform well with

small, fast-moving objects [24] such as the ‘skiffs’ used by

pirates, and crew members become fatigued after maintain-

ing a lookout for a long period.

Automated visual surveillance offers a new sensing

modality for ships which could operate continuously with-

out human intervention and increase the early detection of

piracy threats. This is also one of the themes of the PETS

2016 workshop [2] in which one of the challenges is to ac-

curately detect and track mobile objects around a vessel as

the first step towards deciding if their activities are normal
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behaviour, non-dangerous abnormalities, or criminal activ-

ity. However, the maritime environment poses a characeris-

tic set of challenges for visual detection and tracking which

cause many methods developed for land-based use to per-

form poorly. The sea presents a highly dynamic background

caused by waves, reflections and weather conditions. A

wide variety of objects may be encountered, ranging from

small buoys and watercraft, to large commercial shipping

tankers, so alogrithms must be able to handle a broad range

of object profiles. Finally, methods must be robust to cam-

era motion because they are mounted on a mobile water-

borne platform.

Many of these difficulties can be addressed by using ther-

mal cameras [19, 22, 23]. Unfortunately, the cost of ther-

mal sensor hardware is prohibitive for many applications.

Visible light cameras offer a more affordable alternative

which could provide surveillance coverage of a larger re-

gion and complement other available sensors, such as radar.

This motivates further research into improving their perfor-

mance for operation in maritime environments. A num-

ber of recent studies have used a visual saliency approach

[4, 17, 14, 20]. These methods aim to mimic the low-level

human visual attention mechanism which is very efficient at

locating the most ‘interesting’ (salient) regions in an image

for further high-level processing. In this paper, we propose

a new tracker which uses a variant of the saliency method

used in [20] to address some of the challenges of maritime

scenes. In particular, the proposed approach does not make

any assumptions about object size or appearance, is robust

to dynamic background (in particular wakes and specular

reflections) and generalises to scenes with different view-

points, backgrounds and conditions. Finally, we evaluate its

performance on the PETS 2016 maritime dataset.

2. Related work

Recent approaches for detection and tracking in mar-

itime environments [5, 7, 11, 15, 19, 21, 22, 23] include the

use of background modelling and subtraction (which can

perform poorly when the background is highly dynamic)
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[7, 11], learning of object profiles (and therefore need sub-

stantial training data and are prone to overfitting for par-

ticular target classes) [15, 21], are limited to thermal im-

ages (and therefore require expensive hardware for an op-

erational surveillance system) [19, 22, 23], or rely on static

cameras and are therefore not suitable for deployment at sea

[5].

Salient object detection has been widely studied in the

literature [6]. Most commonly, the methods are applied to

individual images in which there is a single, well-centered

salient object to detect. A number of works have imple-

mented saliency methods to detect objects in maritime im-

ages and video [4, 17, 14, 20]. However, in order to re-

liably detect objects, additional methods have been used

in conjunction with the saliency step, such as background

subtraction using a Mixture of Gaussians [17] or learning

a background classifier [4], learning weights for combin-

ing features in the saliency map [14], and Robust Principal

Components Analysis (RPCA) [20] to identify foreground

and background from the separated sparse and low-rank ma-

trices. RPCA is computationally expensive and background

subtraction methods can only cope with a limited level of

background variation, whilst learning-based approaches in-

volve a substantial training effort and do not generalise well.

3. System description

The proposed tracker (Fig. 1) creates a saliency map for

each frame and performs adaptive hysteresis thresholding

to locate the salient regions corresponding to potential ob-

jects. The list of candidate objects is filtered using some ba-

sic constraints and surviving object detections are matched

from frame to frame using the Hungarian algorithm. Fi-

nally, the tracks are smoothed using a Kalman filter.

3.1. Modified Boolean Map Saliency

The Boolean Map Saliency (BMS) method [25] (used

in [20]) exploits the visual property of surroundedness

whereby objects in an image are more salient, the more

surrounded they are by background regions in a given fea-

ture space. In principle, any feature channels can be used

(colour, orientation, motion, etc.), but the method in [25]

uses the CIELAB colour channels. The colourspace is first

rectified using a whitening step, then each of the channels,

L, A and B, are normalised to the range [0, 255] and binary

thresholded at intervals with a step size of δ. This yields a

set of N binary images (Boolean maps), {Bi}
N
i=1. An acti-

vation map is then created for each Boolean map by identi-

fying the surrounded regions. A black region is surrounded

in Bi if it is enclosed by a white region and vice versa. The

activation map, Ai, is created by setting pixels to 1 if the

corresponding pixel is in a surrounded region of Bi, and

setting 0 elsewhere. The set of activation maps, {Ai}
N
i=1, is

then normalised in order to emphasise maps with small ac-
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Figure 1. Block diagram presenting the different stages of the pro-

posed algorithm.

tivated regions. First, each activation map is split into two

sub-activation maps, A+
i and A−

i , according to

A+
i = Ai ∧Bi, (1)

A−

i = Ai ∧ ¬Bi, (2)

where ∧ represents pixel-wise logical AND between two

binary maps and ¬Bi is the negation (logical NOT) of Bi.

Both sub-activation maps are dilated with a kernel KD1 of

size D1 and divided by their L2-norm. This serves to em-

phasise clumps of small activated regions whilst reducing

the importance of small, scattered regions. The normalised

activation map, Āi, is therefore calculated as

Āi =
A+

i ⊕KD1

||A+
i ||2

+
A−

i ⊕KD1

||A−

i ||2
, (3)

where ⊕ represents the morphological dilation opera-

tion. The final saliency map, S, is found by taking the aver-

age of all the normalised activation maps and performing a

second dilation operation followed by Gaussian smoothing

M =
1

N

N
∑

i=1

Āi, (4)

S = Gσ ∗ (M ⊕KD2), (5)

where KD2 is a dilation kernel of size D2 and Gσ is a

Gaussian kernel with standard deviation σ.

One of the weaknesses of the BMS method [25] when

applied specifically to maritime scenes is a tendency to
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highlight the wakes of the boats and specular reflections

(glint) in the water. To counter this, we propose a modi-

fication which is designed to suppress these features of the

background. Instead of using the CIELAB colourspace, we

propose the use of broadly-tuned, intensity-decoupled red,

blue and green colour channels used in earlier, biologically-

inspired salient object detection approaches [10].

First, hue is decoupled from intensity using the method

in [10] by dividing the red, green and blue channels of the

image (r, g, and b) by the intensity channel (I). The chan-

nels are set to zero for pixels where I is less than 1/10 of

its maximum value, Imax, to represent the fact that hue vari-

ations are not perceivable at low luminance. The intensity

channel is derived from the RGB image as

I =
r + g + b

3
(6)

A broadly-tuned colour channel is one that gives maxi-

mum response for the pure, fully-saturated hue for which it

is tuned, and yields a zero response for black and white [8].

The three broadly-tuned colour channels, R̄, Ḡ and B̄, are

defined as:

R̃ =







r − (g + b)/2

I
if I >

Imax

10
,

0 otherwise.
(7)

G̃ =







g − (r + b)/2

I
if I >

Imax

10
0 otherwise.

(8)

B̃ =







b− (r + g)/2

I
if I >

Imax

10
,

0 otherwise.
(9)

In the proposed modified version of BMS, R̄, Ḡ and B̄
are used instead of the L, A and B channels of the CIELAB

colourspace. The colour whitening step is also omitted.

3.2. Adaptive Hysteresis Thresholding

Once the saliency map has been generated, it is binary

thresholded to extract candidate object regions. Setting a

fixed value for the threshold would not generalise well for

different sequences, so the threshold is set to the 99th per-

centile of the saliency map. This captures the most salient

points in the image, but is likely to miss true object regions

which were still highly salient but not in the top 1%. How-

ever, a lower threshold is likely to introduce more false de-

tections. Hysteresis thresholding is a common way to ad-

dress this and is used here for this purpose, as it has been

in other recent maritime works [12, 16]. Two thresholds

are set; an upper and a lower. The saliency map is binary

thresholded at the upper value and the flood-fill algorithm

is then used to grow regions to add connected pixels which

are above the lower threshold. In the proposed approach,

the upper and lower thresholds are set to the 99th and 98th

percentiles, respectively.

3.3. Object Extraction and Filtering

Candidate objects are extracted from the binary mask by

labelling connected components and computing bounding

boxes. The set of candidate objects is likely to contain some

false detections from the background, so filtering is carried

out by applying some simple constraints. False detections

from glint tend to have very small bounding boxes. How-

ever, objects on the horizon also have small bounding boxes,

so setting a global minimum allowable size would not be

suitable. Instead, the minimum allowable size is calculated

as a function of the distance from the base of the image to

the horizon. Bounding boxes with a height less than Th are

removed.

Th = hmax − (hmax − hmin)

(

H − yc
αH

)λ

, (10)

where H is the image height, α is the approximate po-

sition of the horizon line from the bottom of the image as

a proportion of image height, and λ is the fall-off rate. α
and λ could be set dynamically using a horizon detection

method but in this study, λ is fixed empirically at 1 and α is

set for each sequence as per Table 2.

3.4. Tracking

A simple tracking framework is implemented to assess

the utility of the saliency approach as a basis for object

detection and tracking. In each frame, new detections are

assigned to detections and tracks from the previous frame

using the Hungarian algorithm [13, 18]. The cost matrix

is completed by calculating the Euclidean distance, d, be-

tween the centroids of each pair of bounding boxes

d = ||pc(j)− pc(i)||L2 , (11)

where pc(i) and pc(j) are the centroids of box i and

j, respectively. Gating is implemented by introducing a

maximum distance threshold for assignment, dmax, such that

matches are discarded if d > dmax.

Matches between new detections in two consecutive

frames triggers the creation of a new track which is man-

aged by a standard constant velocity Kalman filter with the

following state space and process models:

x =
[

xc yc ẋc ẏc w h ẇ ḣ
]T

(12)

xk = Fxk−1 + vk (13)

zk = Hxk +wk (14)
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vk ∼ N (0,Q) (15)

wk ∼ N (0,R) (16)

where (xc, yc) and (ẋc, ẏc) are the position and velocity

of the bounding box centroid, and w, h, ẇ and ḣ are the

width and height of the bounding box and their respective

rates of change. The transition and observation matrices, F

and H, are taken as

F =

























1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























(17)

H =









1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0









(18)

and the process and observation noise covariances, Q

and R, are initialised with the identity matrix.

When new detections are assigned to existing tracks, the

track is updated by estimating the state using the new ob-

servation. If a track is not assigned a new detection in the

frame, the new bounding box is predicted by the Kalman

filter. The filter is allowed to predict up to 5 frames without

a new matched detection before the track is terminated.

4. Experimental results

This section presents the experimental results and vali-

dation of the proposed tracker on the PETS 2016 maritime

dataset. The experimental setup is described, followed by

the evaluation and analysis of the results.

4.1. Experimental setup

The visual saliency methods from the literature [4, 17,

14, 25] and the proposed modified method were evaluated

on a common maritime dataset to compare their detection

performance in maritime scenes. As the aim was to assess

the performance of the saliency method only, without addi-

tional object detection steps, each algorithm from the liter-

ature was implemented up to the saliency map stage (i.e. no

background modelling, etc.).

Pixel-level groundtruth was created for each of the

IPATCH low-level tracking challenge sequences. A sub-

sequence of 500 frames was selected from each sequence

for this purpose. Each sub-sequence was chosen so that it

included as much variation in object size and appearance

Table 1. Sub-sequences for saliency map evaluation

PETS IPATCH Sequence
Sub-sequence Total Target Area

Frames Range (pixels)

Sc2a Tk1-CAM11 994 – 1343 39 – 20573

Sc2a Tk1-CAM12 571 - 1070 62 – 5583

Sc3 Tk2-CAM14 4838 – 5337 205 – 31081

as possible and there was at least one object visible in every

frame. A mask was also applied to each sequence to remove

regions of the host vessel which were visible in the scene.

The sub-sequences are described in Table 1.

4.2. Evaluation metrics

For quantitative evaluation, three metrics were selected

from the salient object detection literature to evaluate key

areas of detection performance: Mean Absolute Error

(MAE), Precision-Recall (PR) curve, and Receiver Oper-

ating Characteristic (ROC) curve [6]. The PR curve is an

important complement to the ROC curve, especially when

dealing with highly skewed datasets [9] such as the PETS

IPATCH sequences.

Mean Absolute Error (MAE) measures the average de-

viation between the saliency map and the groundtruth ob-

ject regions. It is therefore an indication of how well the

saliency map models the saliency of the scene. The MAE

score for frame n is computed as the average absolute pixel-

wise difference between the saliency map, S, and the binary

groundtruth mask, G, both scaled to the range [0, 1]

MAEn =
1

W ×H

W
∑

i=1

H
∑

j=1

|Sn(i, j)−Gn(i, j)| , (19)

where Sn(i, j) and Gn(i, j) are the saliency and

groundtruth values of pixel (i, j) in frame n, and W and H
are the image width and height. In addition, the mean MAE

score, M̂AE, is calculated for a sequence by averaging over

all frames.

M̂AE =
1

N

N
∑

n=1

MAEn, (20)

where N is the number of frames in the sequence.

The Precision-Recall curve plots the fraction of the

salient pixels that correspond to salient object regions (Pre-

cision) against the fraction of the salient object pixels that

were correctly identified in the saliency map (Recall). S
is scaled to the range [0, 255] and binary thresholded at a

range of values, t, to create a set of binary maps, {S̄t}
255
t=1.

For each S̄t, Precision and Recall are calculated as

Precisiont =
|S̄t ∩G|

|S̄t|
(21)

Recallt =
|S̄t ∩G|

|G|
(22)
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where |.| is the set cardinality operator which denotes

the number of pixels in the map equal to 1. The ROC curve,

which plots True Positive Rate (TPR) against False Positive

Rate (FPR), is calculated in a similar manner using the same

set of threshold values.

TPRt =
|S̄t ∩G|

|G|
(23)

FPRt =
|S̄t ∩G|

|S̄t ∩G|+ |¬S̄t ∩ ¬G|
(24)

where ¬ denotes the inverse of the binary map. The PR

and ROC curves for all frames are averaged to create a sin-

gle curve for the sequence. The area under the curves is also

calculated for numerical comparison.

For qualitative anaylsis of the tracking performance, the

proposed tracker was run on sequences from the PETS 2016

[2] challenge. All the IPATCH sequences listed in the low-

level video analysis section on detection and tracking have

been processed (3 sequences) plus selected sequences from

the mid-level category (2 sequences) to provide contrasting

detection and tracking challenges. The processed sequences

are listed in Table 2.

Table 2. Processed PETS IPATCH sequences. Key. DB: dynamic

background; TM: translatory camera motion; ST: single target;

MT: multiple targets; OT: occluding targets; SC: scale changes.
PETS IPATCH Seq. Horizon (α) No. Frames Challenges

Sc2a Tk1-CAM11 0.96 3646 DB, TM, MT

Sc2a Tk1-CAM12 0.84 3857 DB, TM, MT, OT, SC

Sc3 Tk2-CAM14 0.97 5425 DB, TM, MT, SC

Sc1 Tk3-CAM12 0.79 1659 DB, TM, ST, SC

Sc3b Tk1-CAM14 0.97 1729 DB, TM, MT, SC

The algorithm parameters were fixed for all sequences at

the following values: upper hysteresis threshold T1 = 99th

percentile, lower hysteresis threshold T2 = 98th percentile,

minimum allowable bounding box height at horizon hmin =
0.0 pixels, minimum allowable bounding box height at base

of image hmax = 60 pixels, fall-off rate λ = 1, track time-

to-die TTTD = 5 frames. The BMS method parameters

were kept fixed at the values reported in [25]. The horizon

line was set for each sequence individually. The values of

α are listed in Table 2. The saliency methods and tracker

were implemented in Python and run on a MacBook Pro

with 2.6GHz Intel Core i7 processor and 16GB RAM.

4.3. Evaluation and analysis

The numerical results of the saliency method analy-

sis are presented in Fig. 2 and Table 3. The proposed

maritime-tailored variant of BMS achieves the best MAE

performance on all sequences and better or comparable

PR and ROC performance when compared with BMS [25]

and other methods [4, 17, 14]. Visual comparison of the

saliency maps can be made in Fig. 3. The qualitative anal-

ysis confirms that the tracking algorithm is able to han-

dle scale changes during tracking and the broadly-tuned,

intensity-decoupled RGB channels help suppress unwanted

wake and glint. However, the algorithm struggles to detect

dark, small/distant objects and sometimes splits objects into

multiple detections. The long-term tracking ability is also

limited. Features of the tracking performance can be seen

in representative frames in Fig. 4.

5. Conclusions and future work

In this paper, a new maritime object detection and track-

ing algorithm has been presented which uses visual saliency

as the basis for object detection to overcome some of the

challenges of maritime scenes. The effectiveness of the

approach has been demonstrated on five challenging se-

quences from the PETS 2016 maritime dataset. The use

of broadly-tuned, intensity-decoupled red, blue and green

colour channels reduces the number of false detections from

wake and reflections, whilst maintaing the ability to detect

salient objects (boats). The tracking algorithm also shows

robustness in dealing with scale changes, however, distant,

dark objects are difficult to detect and objects are sometimes

incorrectly split into multiple detections. Future work will

focus on improving the long term tracking ability and com-

paring the proposed algorithm with existing ones on a wider

range of maritime data.
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Table 3. Overall sequence results

PETS IPATCH Sequence
Mean MAE Area Under PR Curve Area Under ROC Curve

ALB. BMS LIU MAK. NEW ALB. BMS LIU MAK. NEW ALB. BMS LIU MAK. NEW

Sc2a Tk1-CAM11 0.1221 0.2382 0.4639 0.0313 0.0069 0.0660 0.0530 0.2217 0.0656 0.3717 0.8101 0.8859 0.8683 0.7794 0.9088

Sc2a Tk1-CAM12 0.0751 0.0470 0.2688 0.0091 0.0058 0.1062 0.5334 0.0545 0.0429 0.4824 0.9750 0.9984 0.9747 0.9542 0.9920

Sc3 Tk2-CAM14 0.1027 0.1536 0.2417 0.0196 0.0057 0.0180 0.2228 0.0254 0.0264 0.1177 0.7854 0.9764 0.8769 0.8687 0.9701
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Figure 3. Representative saliency map examples: Left - IPATCH-Sc2a Tk1-CAM11; Middle - IPATCH-Sc2a Tk1-CAM12; Right -

IPATCH-Sc3 Tk2-CAM14; (a-c) Original with masked regions shown in black; (d-f) ALBRECHT; (g-i) BMS; (j-l) LIU; (m-o) MAKAN-

TASIS; (p-r) proposed approach; (s-u) groundtruth.
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(a) Sc2a Tk1-CAM11, Frame 1120 (b) Sc3b Tk1-CAM14, Frame 1020 (c) Sc2a Tk1-CAM11, Frame 1070 (cropped)

(d) Sc3b Tk1-CAM14, Frame 1180 (e) CAM14, Frame 1130 (f) Sc3 Tk2-CAM14, Frame 4510

Figure 4. Qualitative tracking results: showing robustness to wake and glint in (a) Sc2a Tk1-CAM11 and (d) Sc3b Tk1-CAM14; showing

robustness to scale change in Sc3b Tk1-CAM14 (b,e); examples of failure modes (c) splitting object into multiple detections and (f) failure

to detect some dark, small/distant targets. Green bounding boxes mark the estimation of the target in the current frame and magenta lines

show the track history of the bounding box centroids.
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