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Abstract

In this paper, a new skeleton-based approach is proposed

for 3D hand gesture recognition. Specifically, we exploit

the geometric shape of the hand to extract an effective de-

scriptor from hand skeleton connected joints returned by the

Intel RealSense depth camera. Each descriptor is then en-

coded by a Fisher Vector representation obtained using a

Gaussian Mixture Model. A multi-level representation of

Fisher Vectors and other skeleton-based geometric features

is guaranteed by a temporal pyramid to obtain the final fea-

ture vector, used later to achieve the classification by a lin-

ear SVM classifier.

The proposed approach is evaluated on a challenging

hand gesture dataset containing 14 gestures, performed by

20 participants performing the same gesture with two dif-

ferent numbers of fingers. Experimental results show that

our skeleton-based approach consistently achieves superior

performance over a depth-based approach.

1. Introduction

Among other human body parts, the hand is the most

effective interaction tool in mostly Human-Computer Inter-

action (HCI) applications. To date, the most reliable tools

used to capture the hand gesture are motion capture mag-

netic devices, which employ sensors attached to a glove able

to determine precisely the hand gesture, delivering real-time

measurements of the hand. However, they present several

drawbacks in terms of the naturalness of hand gesture, price,

in addition to their complex calibration setup process.

Recently, thanks to the advence in information technolo-

gies, effective and inexpensive depth sensors, like Microsoft

Kinect or Intel RealSense, are increasingly used in the do-

main of computer vision. The development of theses sen-

sors has brought new opportunities for the hand gesture

recognition area. Compared to 2D cameras, these sensors

are more robust concerning common low-level issues in

RGB imagery like background subtraction and light vari-

ation.

Hand gesture recognition is becoming a central key for

different types of application such as virtual game con-

trol, sign language recognition, human computer interac-

tion, robot control, etc. Consequently, the improvements in

hand gesture interpretation can benefit a wide area of re-

search domains. In this paper, we present a novel hand ges-

ture recognition solution, where the main advantage of our

approach is the use of 3D skeleton-based features. We also

contribute to the community with a new depth and skeleton-

based dynamic hand gesture dataset. The rest of this paper

is structured as follows. Related work on hand gesture in

terms of datasets and recognition approaches are briefly re-

viewed in Section 2. In Section 3, we provide details on our

dynamic hand gesture dataset. Our recognition approach is

described in Section 4. The experimental results are pre-

sented in Section 5 before concluding.

2. Related work

Hand gesture recognition has been an active research

field for the past 20 years, where various different ap-

proaches have been proposed. Over the past six years, ad-

vances in commercial 3D depth sensors have substantially

promoted the search of hand gesture detection and recog-

nition. The most of recent works in human motion analysis

pay more attention to the full-body human poses and actions

[3, 23]. Some other works have focused on the movements

of certain body parts like hands [19]. The approaches re-

viewed mainly focus on 3D hand gesture recognition, which

can be gathered into two main categories so far: static and

dynamic hand gesture recognition.

In most of the static approaches, 3D depth information

can be used to extract hand silhouettes or simply hand ar-

eas and the focus will be on the feature extraction from

segmented hand region. Features are usually based on a

global information as proposed by Kuznetsova et al. [9],

where an ensemble of histograms is computed on random

points in the hand point cloud. Other local descriptors are

expressed as the distribution of points in the divided hand

region into cells [26]. Instead of using the distribution of

points in the region of the hand, Ren et al. [19] represented

the hand shape as time-series curve and used distance met-

ric called Finger-Earth Mover Distance to distinguish hand
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gestures from collected dataset of 10 different gestures. The

time-series curve representation is also used by Cheng et

al. [2], to generate a fingerlet ensemble representing the

hand gesture. Sign language recognition with hand ges-

tures has been widely investigated. Pugeault and Bowden

[18] proposed a method using Gabor filter for hand shape

representation and a Random Forest for gesture classifica-

tion. They applied their method on a collected ASL Finger

Spelling dataset, containing 48000 samples of RGB-D im-

ages labelled following 24 static gestures of the American

Sign Language. Recently, Dong et al. [4] outperformed

the previous results on this database by going more deeply

into the hand representation. They proposed a hierarchical

mode-seeking method to localize hand joint positions un-

der kinematic constraints, segmenting the hand region into

11 natural parts (one for the palm and two for each finger).

A Random Forest classifier is then built to recognize ASL

signs using a feature vector of joint angles. Finally, Marin

et al. [11] released a publicly database of 10 static hand ges-

tures giving the depth image from a Kinect but also informa-

tion about the hand using the hand pose recognition device

LeapMotion. They also proposed a classification algorithm

using fingertips distances, angles and elevations and also

curvature and correlation features on the depth map.

Unlike the static approaches based on hand description

on a single image, dynamic methods exploit the tempo-

ral character of hand motion, by considering the gesture

as a sequence of hand shape. Kurakin et al. [8] presented

the MSR-3D hand gesture database containing 12 dynamic

American Sign Language. They recorded 360 sequences of

depth images from a Kinect. Their recognition algorithm is

based on a hand depth cell occupancy and a silhouette de-

scriptor. They used an action graph to represent the dynamic

part of the gesture. Recently, using a histogram of 3D facets

to encode 3D hand shape information from depth maps,

Zhang et al. [28] outperformed last results on the MSR 3D

gesture dataset using a dynamic programming-based tem-

poral segmentation. One of the track of the Chalearn 2014

[5] consists in using a multimodal database of 4,000 ges-

tures drawn from a vocabulary of 20 dynamic Italian sign

gesture categories. They provided sequences of depth im-

ages of the whole human body and body skeletons. On this

database, Monnier et al. [13] employ both body skeleton-

based and Histogram of Oriented Gradients (HOG) features

on the depth around the hand to perform a gesture classi-

fication using a boosted cascade classifier. Recently, the

use of deep learning has changed the paradigm of many re-

search fields in computer vision. Recognition algorithms

using specific neural network — like Convolutional Neural

Network (ConvNet) – obtain previously unattainable perfor-

mance in many research field. Still on the Chalearn 2014

[5], Neverova et al. [14] used stacked ConvNets on raw

intensity and depth sequences around the hand and neural

network on body skeletons. In order to study real-time hand

gesture recognition for automotive interfaces, Ohn-Bar and

Trivedi [15] made a publicly available database of 19 ges-

tures performed in a car using the Kinect. The initial res-

olution obtained by such a sensor is 640x480 and the final

region of interest is 115x250. Moreover, at some distance

from the camera, with the illumination varying in the car,

the resulting depth is very noisy, making the challenge of

gesture recognition thougher. They compare the accuracy

of gestures recognition using several known features (HOG,

HOG3D, HOG2). Using stacked 3D ConvNets combining

multiple spatial scales, Molchanov et al. [12] recently out-

performed their results.

In contrast to activity and action recognition, we can no-

tice from this brief review a lack of publicly available dy-

namic hand gesture datasets for benchmarking and compar-

ing methods for hand gesture recognition. Even for existing

ones, there is no available dataset that provides both depth

and 3D joint hand with ground-truth. In term of recogni-

tion approaches, there would still appear to be room for im-

provement, especially using recent approaches of hand pose

estimation [25].

3. Dynamic Hand Gesture dataset (DHG-

14/28)

Skeleton-based action recognition approaches have be-

come popular as Shotton et al. [22] proposed a real-time

method to accurately predict the 3-D positions of body

joints from depth images. Hence, several descriptors in

the literature proved how the position, motion, and orien-

tation of joints could be excellent descriptors for human ac-

tions. Collected datasets for action recognition purpose like

[27, 10] provide usually the depth data in addition to the 3D

body skeleton of the person performing the action. How-

ever, in the context of hand gesture recognition, there are no

publicly released dataset of dynamic hand gestures provid-

ing sequences of labelled hand gestures with the depth and

hand skeleton. We present below a Dynamic Hand Gesture

14-28 (DHG) dataset, which provides sequences of hand

skeleton in addition to the depth image. Such a dataset will

facilitate the analysis of hand gestures and open new scien-

tific axes to consider1.

3.1. Overview and protocol

The DHG-14/28 dataset contains 14 gestures performed

in two ways: using one finger and the whole hand (an exam-

ple is shown in Figure 1). Each gesture is performed 5 times

by 20 participants in 2 ways, resulting in 2800 sequences.

Sequences are labelled following their gesture, the number

of fingers used, the performer and the trial. Each frame con-

tains a depth image, the coordinates of 22 joints both in the

1Downloadable at: http://www-rech.telecom-lille.fr/DHGdataset
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Figure 1. Two images of a hand illustrating Grab gesture per-

formed (a) with one finger and (b) with the whole hand.

2D depth image space and in the 3D world space forming

a full hand skeleton. The Intel RealSense short range depth

camera is used to collect our dataset. The depth images and

hand skeletons were captured at 30 frames per second, with

a 640x480 resolution of the depth image. The length of

sample gestures ranges goes from 20 to 50 frames.

Fothergill et al. [7] investigated the problem of the most

appropriate semiotic modalities of instructions for convey-

ing to performers the movements the system developer

needs to perform. They found out that a gesture recogni-

tion algorithm not only must need examples of desired ges-

tures but also in order to cope with a wide array of users,

the dataset must include common desired variants of the

gestures. To achieve a good correctness in our dataset, we

use 2 semiotic modalities to explain what we waited from

our performers. First, the register explains in an abstractive

way the gesture (example for a swipe gesture with one fin-

ger: “You’re going to mime a swipe in the air with only one

finger”), then we were showing them a video of someone

performing the gesture.

In terms of hand pose estimation, much attention has

been received over the last two years in the computer vi-

sion community [25, 21]. The Software Development Kit

(SDK) released for Intel RealSense F200 provides a full 3D

skeleton of the hand corresponding to 22 joints labelled as

shown in Figure 2. However, the sensor still has trouble

to properly recognize the skeleton when the hand is closed,

perpendicular to the camera, without a well initialization or

when the user performs a quick gesture. Our participants

are asked to start each sequence by one or two seconds of

the hand well opened in front of the camera. This may be

necessary for some state-of-the-art hand pose estimation al-

gorithms requiring an initialization, which can be tested on

our depth sequences. For those who do not need initialisa-

tion, we manually labelled the effective beginning and end

of each gesture sequence.

3.2. DHG­14/28 challenges

The list of our gestures proposed can be found in Table

1. Most of them have been chosen to be close to the state-

Figure 2. Depth and hand skeleton of the DHG-14/28 dataset. The

22 joints of the hand skeleton returned by the Intel RealSense cam-

era. The joints include: 1 for the center of the palm, 1 for the po-

sition of the wrist and 4 joints for each finger represent the tip, the

2 articulations and the base. All joints are represented in R
3.

of-the-art, like the VIVA challenges dataset [15]. Never-

theless, we removed the differentiation between normal and

scroll swipe as you can find it in our number-of-fingers ap-

proach. The same thing appears with the pair of gesture

Pinch/Expand and Open/Close. In addition, we supplement

this base with the gesture Grab because of its usefulness in

the augmented reality applications, but also for its scientific

challenges related to the high potentially variation among

performers. We also add the gesture Shake, as it can be in-

teresting for recognition algorithm to be able to differentiate

gesture composed of other gestures (a shake gesture can be

seen as a repetition of opposed swipe gestures).

We emphasized our main challenges compared to ex-

isting hand gesture datasets: (1) Study the dynamic hand

gesture recognition using depth and full hand skeleton; (2)

Evaluate the effectiveness of recognition process in terms

of coverage of the hand shape depending on the number of

fingers used. The same movement is performed with one or

more fingers, and the sequence are labelled according to 28

label classes, depending on the gesture represented and the

number of fingers used; (3) Make distinctions between both

fine-grained and coarse-grained gestures. Indeed, dividing

the gesture sequences in two categories: coarse and fine ges-

ture sequences contribute to increasing difficulty facing the

recognition algorithm. Gesture categories are given in Table

1.

4. Feature extraction from 3D skeleton

In order to represent a hand gesture entirely, we pro-

pose to mainly capture the hand shape variation based on

skeleton joints, but also the movement and the rotation of

the hand in space are also computed. The temporal nature

of gestures is encoded using a temporal pyramid and the

classification process is performed by a linear Support Vec-

tor Machines (SVM) classifier. Figure 3 shows a general

overview of the proposed approach.
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Gesture Labelization Tag name

Grab Fine G

Expand Fine E

Pinch Fine P

Rotation CW Fine R-CW

Rotation CCW Fine R-CCW

Tap Coarse T

Swipe Right Coarse S-R

Swipe Left Coarse S-L

Swipe Up Coarse S-U

Swipe Down Coarse S-D

Swipe X Coarse S-X

Swipe V Coarse S-V

Swipe + Coarse S-+

Shake Coarse Sh

Table 1. List of the gestures included in the DHG-14/28 dataset.

Figure 3. Pipeline of our gesture recognition system. A fisher vec-

tor representation is computed from our SoCJ descriptor. The later

is concatenate with histograms of the hand direction and the wrist

orientation. A temporal pyramid is used to take into account the

temporal information and a linear SVM is used for classification.

4.1. Shape of Connected Joints (SoCJ)

To represent the hand shape using a full skeleton, we

propose a new descriptor based on several relevant sets of

joints, denoted as Shape Of Connected Joints (SoCJ).

Hand skeleton returned from sensor consists of 3D coor-

dinates of hand joints, represented in the camera coordinate

system. Therefore, they vary with the rotation and trans-

lation of the hand with respect to the camera. To make

our hand shape descriptor relatively invariant to hand ge-

ometric transformations, we normalize it following 2 steps.

Firstly, we removed the difference of hand size between per-

formers, by estimating the average size of each bone of the

hand skeleton. Then, carefully keeping the angles between

bones, we change their sizes by their mean found previ-

ously. Secondly, we create a fake hand Hf which is open

and in front of the camera with its palm node at [0 0 0]. Let

Figure 4. An example of the SoCJ descriptor. A 5-tuples is

constructed using the thumb joints, T = {x1, x2, x3, x4, x5}
where xi ∈ R

3. We compute the displacements from points

to their respective right neighbor resulting in the SoCJ vector
{

~d1, ~d2, ~d3, ~d4

}

.

Bf be a set of 2 vectors ∈ R
3 defined by the coordinates

in Hf of the vectors going from the palm node and respec-

tively to the wrist node and to the base of the thumb. For

each hand in a sequence, we create the same set of vectors

Bc and we compute the optimal translation and rotation us-

ing a Singular Value Decomposition from Bc to Bf . Once

the optimal translation and rotation are found, we apply this

transformation to all joints of the hand skeleton resulting of

a skeleton centered around [0 0 0] and its palm facing the

camera.

To describe the hand shape, we use nine 5-tuples of joints

according to the hand physical structure on which we will

perform our SoCJ descriptor. Five of these 5-tuples are con-

structed with the 4 joints of each finger plus the palm one.

The 4 remaining concern the 5 tips, the 5 first articulations,

the 5 second articulations and the 5 bases. Notice that the

points of each tuple follow the same order.

Let Tj = {x1, x2, x3, x4, x5} be a 5-tuple and xi a point

in R
3 representing one particular joint coordinate. To rep-

resent the shape of the joint connections, we compute the

displacement from one point to its right neighbor:

SoCJ(Tj) = {xi+1 − xi}[i=1...4] (1)

This results in a descriptor in R
12. We compute our 9 SoCJs

on each frame and regroup them along the sequence result-

ing in a set Tseq = {Tj}[1≤j≤9N ] where N is the number

of frame in the sequence. Figure 4 shows an example of a

particular SoCJ around a thumb.

4.2. Fisher Vector representation

Fisher Vector (FV) coding method was firstly proposed

for large-scale image classification. Il can be considered as

an extension of the Bag-Of-Word (BOW) method by go-

ing beyond count analysis. It encodes additional informa-

tion about the distribution of the descriptors. Its superiority

against BOW has been analysed in the image classification
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[20]. It also has been used over the past years in action

recognition [6, 16].

The FV consists of fitting K parametric models to the

descriptor and then encoding the derivative of each log-

likelihood of the models with respect to their parameters.

The common way to obtain such models is to train a K-

component Gaussian Mixture Model (GMM). We denote

the parameters of a GMM by λ = {πk, µk, σk}[1≤k≤K]

where πk, µk, σk are respectively the prior weight, mean

and covariance of the Gaussian k. After the training pro-

cess, we are able to model any new sequence represented

by its set of SoCJ, Tseq , as follow:

p(Tseq|λ) =

9N∏

j=1

K∑

k=1

πkp(Tj |λk) (2)

Once we have the set of Gaussian Models, we can compute

our FV, which is given by the gradient of the formula of Eq.

(2):

G
Tseq

λ =
1

9N
∇λ log p(Tseq|λ) (3)

The normalization term 1
9N avoids dependency related to

the size of Tseq . The derivatives in Eq. (3) are computed

separately with respect to mean and standard deviation pa-

rameters, leading to the final Fisher Vector :

Φ(Tseq) = {GTseq
µk

,GTseq
σk

}[1≤k≤K] (4)

Where G
Tseq
µk and G

Tseq
σk have the same size as the de-

scriptor used to train the GMM. We also normalize the final

vector with a l2 and power normalization to eliminates the

sparseness of the FV and increase its discriminability. We

refer the reader Sanchez et al. [17] for more details.

We noticed that the final size of a Fisher Vector is 2dK
where d is the size of the descriptor and K the number of

cluster in the classification process. It can be a strong dis-

advantage against BOW, which has a size of K, when ap-

plying on a long descriptor.

4.3. Other relevant features

We chose to characterize the different aspects of the hand

movement independently. To this end, before normalizing

the hand in order to extract its shape information, we com-

puted two other descriptors:

Histogram of hand directions (HoHD): Some gestures

are defined practically only by the way the hand moves into

space (e.g. swipes). To take this information into account,

we first computed a direction vector using the position of

the palm node noted xpalm along the sequence.

d(S) = {xt
palm − xpalmt− L}[L+1≤i≤N ]

where N is the size of the sequence and L a constant cho-

sen by experiment. As the amplitude of the movement

Figure 5. Computing of histogram of hand direction: (a) an ex-

ample of Swipe Right gesture of 5 frames, (b) only the palm joint

of each frame is kept and the direction vectors is computed with

an offset L = 2, (c) each direction vector is then represented in

the spherical coordinate, (d) the 3D space is divided into N bins

allowing to localize each direction vector (e) the resulting N-

dimensional histogram.

may vary from performer to another, we remove the mag-

nitude of each vector using spherical coordinate representa-

tion (ρ, θ, ϕ), letting aside the radial distance ρ. The range

of the features are 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. Inspired by

[24], which previously worked in 2D, the space of θ and ϕ

are respectively divided in nθ and mϕ resulting in a global

partitioning of the 3D space into nθmϕ bins. Each direc-

tion are then localized at a unique bin and used to construct

a histogram of size nθmϕ. Figure 5 shows the construction

of this descriptor.

Histogram of wrist rotations (HoWR): The rotation of

the wrist can also be important for some gestures ( e.g. R-

CW, R-CCW). For each frame, we use the direction vector

from the wrist node to the palm node to get the rotational

information of the hand skeleton. As for the HoHD, we

transpose our vector into the spherical coordinates, divide

the space into nθmϕ bins, localize our vector into a unique

one and construct a histogram.

4.4. Temporal modelling and classification

Our three descriptors SoCJ, HoHD and HoWR allow us

to describe the hand shape and geometric variation inside

the sequence without taking into consideration the tempo-

ral nature of the gesture. Some inversed gestures like Pinch

/ Expand may be confused in this case. To add the tem-

poral information, we use the simple representation called

Temporal Pyramid (TP) which is widely used in action and

hand gestures recognition [6, 28]. The principle of the TP is

to divide the sequence into j sub-sequences at each jth level

of the pyramid (Figure 6). We compute our three descriptors

en each sub-sequence and concatenate them. Adding more
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Figure 6. An example of a temporal pyramid of size 3. We com-

pute each descriptor on each sub-sequence. Notice that a TP of

size 3 multiply the final size of our descriptor by 6.

level to the pyramid allows the results to be more precise,

but increase the size of the final descriptor and the comput-

ing time substantially.

The final size of our descriptor is then (
∑Lpyr

i=1 i) ×
(2kD + 2nθmϕ), where Lpyr is the level of the TP, k is

the number of cluster in the GMM, D is the size of the

SoCJ descriptor and nθmϕ is the number of bins in the rota-

tion and direction histograms. For gesture classification, we

used the supervised learning classifier SVM. We choose the

linear kernel as it easily deal with our high-dimensional rep-

resentation. We employed a one-vs-rest strategy resulting in

G binary classifier, where G is the number of different ges-

tures in the experiment. We make use of the implementation

contained in the LIBSVM package [1].

5. Experiments

First, we evaluate our approach in two cases by consid-

ering 14 and 28 classes of gestures thus taking account of

the number of fingers used. Then, a comparison analysis on

depth-vs-skeleton based descriptors is presented. Finally,

we discuss the impact of taking into account the number of

fingers in the gesture recognition accuracy. For each ges-

ture, 9 SoCJs of size D = 12 per frame are computed. We

also compute a GMM of 128 clusters using SoCJs from the

training data, thus leading to 3072-element FVs. For the

HoHD and the HOWR, the values, nθ and mϕ, used for

partitioning the 3D space into bins are respectively 8 and

6. Finally, we consider 4 levels (Lpyr = 4), leading to 10

FVs (1 + 2 + 3 + 4) , resulting in 31680-dimensional vector

descriptor by sequence.

For all following experiments, we use a leave-one-

subject-out cross-validation strategy. The dataset contains

2800 sequences of hand gestures. The depth images and

hand skeletons are provided with some others information

(e.g. timestamp, region of interest of the hand in the depth

images,...). Each sequence is labelled following the gesture

Features fine coarse both

HoHD 39.90% 83.06% 67.64%

HoWR 42.70% 31.67% 35.61%

SoCJ 67.40% 61.00% 63.29%

SoCJ + HoHD 70.70% 88.72% 82.29%

SoCJ + HoHD + HoWR 73.60% 88.33% 83.07%

Table 2. Results of our method for 14 gestures on the DHG dataset

using skeleton data. Fine and Coarse columns are respectively

the mean accuracies of fine and coarse gestures, obtained from the

confusion matrix of Figure 7.

represented, a performer id and the number of fingers used

while performing the gesture. Notice that the sequences are

previously cropped using the effective beginning and end of

the gestures manually labelled by the dataset makers.

5.1. 14­gestures classification

To assess the effectiveness of our algorithm to classify

the gestures of the DHG dataset into 14 classes, we com-

pare the results for each descriptor separately. The Table

2 presents the results of our skeleton-based approach ob-

tained using each of our descriptors independently and by

combining them. The results introduced in this table rep-

resent mean accuracies calculated for each descriptor. For

clarity, we divide the result by coarse and fine gestures ac-

cording to the labels from Table 1, allowing us to analyse

the impact of each descriptor on each category.

Using all skeleton-based descriptors presented in Section

4, the final accuracy of our algorithm on the DHG-14 is

83%. It can reach 88% of recognition for the coarse ges-

tures, but for the fine ones the accuracy is below the 75%.

However, a large difference can be observed between ac-

curacies obtained for the fine and the coarse gestures, re-

spectively 40% and 83% when using only HoHD. These re-

sults attest the interest of the subdivision of our dataset into

2 meaningful sets of gestures where the coarse one can be

more described by the movement of the hand through space.

The analysis of the results obtained using only our SoCJ

descriptor encoded by its FVs, shows that the hand shape is

the most effective feature for the fine gestures with an ac-

curacy of 67%. On the other hand, this result shows that

the hand shape is also a way to describe the coarse gestures

with a not-so-low accuracy of 61%. If the HoWR descriptor

shows a low mean accuracy of 36% , it’s a valuable feature

for pair of alike gestures as R-CW and R-CCW, and exclude

it decreases the accuracy of 3% concerning the fine ges-

tures.

To better understand the behaviour of our approach ac-

cording to the recognition per class, the confusion matrix is

illustrated in Figure 7.

The first observation is that using our approach, 10 ges-

tures out of 14 are more than 85% correctly classified. The
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Figure 7. The confusion matrix of the proposed approach for

DHG-14

second observation concern a wide confusion between the

gestures Grab and Pinch. By analyzing the sequences, we

observe that they are very similar and hard to distinguish

even for human eyes. The main difference between them is

the amplitude of the hand movement in the space. As our

method doesn’t take this information into account, we let it

for future work and as an open challenge for the community.

As shown in Table 2, combining the descriptors leads to

a significant gain in performance (+15%). With a final ac-

curacy of 83% obtained on DHG-14 dataset, we notice that

the recognition of dynamic hand gestures is still challenging

whether in terms of handling the wide difference between

gestures performed by different persons, resulting in a chal-

lenging coverage of the gestures but also by improving the

hand pose estimation or finding more pertinent features and

their temporal representations.

5.2. 28­gestures classification

In order to meet the challenge about gesture recognition

performed with 2 different numbers of fingers, proposed in

Section 3, we consider the sequences of the DHG-14/28

dataset as belonging to 28 classes related to the gesture but

also the way it have been performed (with one finger or the

whole hand). The resulting confusion matrix is shown in

Figure 8. Using our 3 skeleton-based descriptors, we ob-

tain an accuracy of 80%. So, by multiplying the number of

classes by 2, we only loose 3% of accuracy.

5.3. Depth­vs­Skeleton based descriptors

To evaluate the contribution of the skeleton relative to the

depth information, we computed three depth-based descrip-

tors similar to those used in our approach. For the depth-

based HoHD, we computed the center of mass of the region

of interest of the hand in the depth to estimate the palm cen-

ter position. For the depth-based HoWR, we used a Prin-

Features fine coarse both

HoHD 46.50% 78.72% 67.21%

HoWR 25.10% 38.44% 33.68%

Shape descr. 53.00% 54.28% 53.82%

HoHD + SDV 65.14% 86.51% 77.70%

HoHD+HoWR+SDV 66.90% 85.94% 79.14%

Table 3. Results of our method for 14 gestures on the DHG dataset

using depth-based descriptors.

cipal Component Analysis (PCA) on the hand depth data to

find an approximation of the rotation of the hand in space.

In order to represent the hand shape using the depth im-

ages, we implemented the 2 descriptors proposed by Ku-

rakin et al. [8]. The first consists of dividing the hand image

into several uniform grid (4×4, 8×8 or 16× 16). For each

cell of the grid, we calculate its occupancy (area of the cell

occupied by hand mesh) and the average depth after nor-

malization. The second one divides the whole image into a

number of fan-like sectors. For each one, we computed the

average distance from the hand contour in the sector to the

center of mass of the hand depth. We finaly concatecated

the 2 descriptors in a shape descriptor vector. Results ob-

tained using the depth-based descriptors are shown in Table

3. As noticed, depth-based HoHD and HoWR give more

or less the same results as skeleton-based ones. However,

for the hand shape description, the SoCJ gives better result

(63%) compared to the depth-based descriptor (54%). Us-

ing the descriptors computed on the depth images leads in

an overall decrease of the accuracy of 4%, mostly coming

from the misclassification of fine gestures. We also observe

a decrease of accuracy of 5% when going from 14 to 28

classes using depth-based descriptors. Moreover, we point

out that finer depth feature could yield better results.

5.4. Discussion

In order to study the confusion of recognition rates

between same gestures performed with different number

of fingers, we propose to compute a metric, denoted as

Loss of Accuracy when Removing the Finger Differentiation

(LARFD). The LARFD metric assesses if the loss of accu-

racy when passing from 14 to 28 gestures is coming from

the different number of fingers (intra-gesture confusion) or

from the confusion with other gestures (inter-gesture con-

fusion). Below, we use the notation Mg and Mgf respec-

tively to denote the confusion matrix using 14 and 28 ges-

ture classes (Figures 7 and 8).

E+
larfd(Gi) = (Mg(Gi, Gi)−

∑NHF

j=1

∑NHF

k=1 Mgf (G
j
i , G

k
i )

NHF

)

where G
j
i is a class gesture i performed with j fingers
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Figure 8. The confusion matrix of the proposed approach for DHG-28. The gestures annotated (1) and (2) were respectively performed

using one finger and with the whole hand.

in the confusion matrices and NHF the amount of different

number of fingers used in the dataset.

For example, in the case of the R-CCW gesture, an ac-

curacy of 85.5% is obtained when considering 14 classes.

For 28 classes, we see that its score using one finger is 77%

but also that 4% of them are seeing as performed with the

whole hand. So their sum means that 81% of the R-CCW

gesture performed with one finger are well recognized as R-

CCW gesture. For the case of the same gesture performed

with the whole hand, we obtained (76+9) 85%. The aver-

age of both is 83%. So, the loss of recognition accuracy

considering 28 classes on the R-CCW gesture (without tak-

ing into account the number of fingers) is equal to (85.5-83)

2, 5%. If we take into account the differentiation between

the numbers of fingers (meaning 77% and 76%), we get a

loss of accuracy of 9%. It means that in the general loss of

accuracy of 9% of the R-CCW gesture, 2.5% of them are

from intra-gestures confusion and the rest are from inter-

gestures confusion.

The average of the LARFD over all gestures, when using

skeleton-based descriptors, is equal to 0.0114. This score

shows that the loss of accuracy when passing from 14 to 28

classes is due more to intra-gestures confusion that inter-

gestures one (because on the 3% of general loss of accuracy,

only 1% is due to inter-gestures confusion). Finally, when

using depth-based descriptors, the obtained LARFD met-

ric is equal to 0.0157. This result shows that intra-gesture

confusion is greater when using the depth information than

the skeleton. This can be explained by the fact that the hand

skeleton provides more informative descriptions of the hand

shape that the depth information.

6. Conclusion

This work suggests the advantage of using 3D hand

skeleton data to describe hand gestures, and points out a

promising direction of performing gesture recognition tasks

using skeleton-like information. We present an approach to

recognize dynamic hand gesture as time series of 3D hand

skeleton returned by the Intel RealSense depth camera. We

take as input a several set of relevant joints inferred from 3D

hand skeleton. We propose a compact representation using

Fisher Vector kernel and on multi-level encoding the tem-

poral nature of gestures. Experimental results, conducted

on enrolled dynamic hand gesture dataset, show the perfor-

mance of our proposed method. Moreover, our approach

achieves a performance accuracy of 83% on a challenging

dataset, which is encouraging.

As future work, skeleton-based features can be combined

with the depth-based features to provide more informative

description and produce algorithms with better recognition

robustness.
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