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Abstract

Topological data analysis is becoming a popular way

to study high dimensional feature spaces without any con-

textual clues or assumptions. This paper concerns itself

with one popular topological feature, which is the number

of d−dimensional holes in the dataset, also known as the

Betti−d number. The persistence of the Betti numbers over

various scales is encoded into a persistence diagram (PD),

which indicates the birth and death times of these holes as

scale varies. A common way to compare PDs is by a point-

to-point matching, which is given by the n-Wasserstein met-

ric. However, a big drawback of this approach is the need

to solve correspondence between points before computing

the distance; for n points, the complexity grows accord-

ing to O(n3). Instead, we propose to use an entirely new

framework built on Riemannian geometry, that models PDs

as 2D probability density functions that are represented in

the square-root framework on a Hilbert Sphere. The re-

sulting space is much more intuitive with closed form ex-

pressions for common operations. The distance metric is 1)

correspondence-free and also 2) independent of the number

of points in the dataset. The complexity of computing dis-

tance between PDs now grows according to O(K2), for a

K×K discretization of [0, 1]2. This also enables the use of

existing machinery in differential geometry towards statisti-

cal analysis of PDs such as computing the mean, geodesics,

classification etc. We report competitive results with the

Wasserstein metric, at a much lower computational load, in-

dicating the favorable properties of the proposed approach.

1. Introduction

Topological data analysis (TDA) has emerged as a use-

ful tool to analyze underlying properties of data before any

contextual modeling assumptions kick in. Generally speak-

ing, TDA seeks to characterize the shape of high dimen-

sional data (viewed as a point-cloud in some metric space),

by quantifying various topological constructs such as con-

nected components, high-dimensional holes, level-sets and

monotonic regions of functions defined on the data [9]. In

particular, the number of d-dimensional holes in a data, also

known as the Betti-d number, corresponds to the rank of the

d−dimensional homology group. A commonly used and

powerful topological feature, the persistence diagram (PD)

summarizes the persistence of the Betti numbers with re-

spect to the scale parameter used to analyze the data. A typ-

ical machine learning pipeline using TDA features would

first estimate the PDs from the given point cloud, and de-

fine a metric on them to compare different point clouds.

The Wasserstein distance measure has become ubiquitous

as a metric between such PDs, as it is stable and has a well-

defined metric space associated with it [21, 8]. However,

computation of the Wasserstein distance involves finding a

one-to-one map between the points in one persistence dia-

gram to those in the other, which is a computationally ex-

pensive operation.

In this paper, we propose a novel representation for per-

sistence diagrams as points on a hypersphere, by approx-

imating them as 2D probability density functions (pdf).

We perform a square-root transform of the constructed pdf,

wherein the Hilbert sphere becomes the appropriate space

for defining metrics [19]. This insight is used to construct

closed form metrics – geodesics on the Hilbert sphere –

which can be computed very efficiently, bypassing the cor-

respondence problem entirely. The overall pipeline of op-

erations for computing the proposed representation is given

in Figure 1.

The biggest advantage of the proposed representation is

that it completely works around the computationally ex-

pensive step of obtaining one-to-one correspondences be-

tween points in persistence diagrams, thereby making the

distance computation between PDs extremely efficient. We

show that approximating PDs as pdfs results in compara-

ble performances to the popular and best performing L1-

Wasserstein metric, while at the same time being orders

of magnitude faster. We also provide a theoretically well-

grounded understanding of the geometry of the pdf repre-

sentation. Additionally, the availability of closed form ex-

pressions for many important tools such as the geodesics,
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Figure 1. The overall sequence of operations leading to the proposed representation, illustrated for the application of activity analysis. Joint

position data from motion capture systems are collected as 1D time series. The phase space is reconstructed from these time series via

Takens’ embedding theorem. We represent the topological properties of this phase space using the persistence diagram (PD). Next, we use

kernel density estimation to represent the PD itself as a 2D probability density function (pdf). Finally, we use the square-root framework

to interpret these pdfs as points on a Hilbert sphere.

exponential maps etc. enables us to adapt powerful statis-

tical tools – such as clustering, PCA, sample mean etc. –

opening new possibilities for applications involving large

datasets. To the best of our knowledge we are the first to

propose this representation for persistence diagrams.

Contributions

1. We present the first representation of persistence di-

agrams that are approximated as points on a Hilbert

sphere resulting in closed-form expressions to com-

pare two diagrams. This also completely avoids the

correspondence problem, which is typically a compu-

tational bottleneck.

2. We demonstrate the ability of the proposed represen-

tation for statistical analyses, such as computing the

mean persistence diagram, principal geodesic analysis

(PGA), and classification using SVMs.

3. We show promising results for supervised tasks such as

action recognition, and assessment of movement qual-

ity in stroke rehabilitation.

4. The space of the representation – the Hilbert sphere –

is a geometrically well-understood and intuitive space,

which may further promote its use in topological ma-

chine learning applications.

The rest of the paper is organized as follows. Section

2 discusses related work in more detail. Section 3 provides

the necessary background on persistent homology, the space

of persistence diagrams, and the square-root framework on

the Hilbert space. Section 4 provides details about the pro-

posed framework for using the new representation of per-

sistence diagrams in a functional Hilbert space for statisti-

cal learning tasks. Section 5 describes the experiments and

results. Section 6 concludes the paper.

2. Related Work

Persistence diagrams elegantly summarize the topolog-

ical properties of point clouds, and the first algorithm for

computing topological persistence was proposed in [9].

Ever since, there has been an explosion in understanding the

properties of PDs, comparing PDs, and computing statis-

tics on them. Since a PD is a multiset of off-diagonal

points along with infinite number of points on the diago-

nal, the cost of optimal bijective assignment, also known as

the Wasserstein distance, between the individual points in

the PDs is a valid distance measure. The time complexity

of computing the distance between two PDs with n points

each is O(n3) [4]. It has been shown in [8] that the per-

sistence diagrams of Lipschitz functions are stable with re-

spect to p-Wasserstein distance. However, the bottleneck

and p-Wasserstein distance do not allow for easy computa-

tion of statistics. Hence, Lp-Wasserstein metrics have been

used to develop approaches for computing statistical sum-

maries such as the Fréchet mean [21]. Computing Fréchet

mean of PDs involves iteratively assigning points from the

individual diagrams to the candidate mean diagram, recom-

puting the mean, and repeating till convergence. Since the

mean PD obtained is not guaranteed to be unique, the au-

thors in [16] proposed the probabilistic Fréchet mean which

itself is a probability measure on the space of PDs. An in-

vestigation of the properties of the space of PDs that allow

for definition of various probability measures is reported in

[15], and a derivation of confidence sets that allow the sepa-

ration of topological signal from noise is presented in [10].

Since operations with PDs can be computationally ex-

pensive, Bubenik proposed a new topological summary -

known as the persistence landscape - derived from the PD

[5]. It can be thought of as a collection of envelope func-

tions on the points in PD based on the order of their im-

portance. Persistence landscapes allow for fast computa-

tion of statistics since they lie in a vector space. However

their practical utility has been limited since they provide

decreasing importance to secondary and tertiary features in
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PDs that are usually useful in terms of discriminating be-

tween data from different classes. Recently, an approach

that defines a stable multi-scale kernel between persistence

diagrams has been proposed [17]. The kernel is obtained

by creating a surface with a Gaussian centered at each point

in the PD along with a negative Gaussian centered at its

reflection across the diagonal. In addition, the authors in

[2] propose to compute a vector representation - the persis-

tence image - by computing a kernel density estimate of the

PD and integrating it locally. The kernel density estimate is

weighted such that the points will have increasing weights

as they move away from the diagonal. A similar weighting

approach is used in [14] to create a persistence-weighted

Gaussian kernel.

The square-root representation for 1D probability den-

sity functions (pdfs) was proposed in [19] and was used for

shape classification. It has since been used in several ap-

plications, including activity recognition [22] - where the

square-root velocity representation is used to model the

space of time warping functions. This representation ex-

tends quite easily to arbitrary high-dimensional pdfs as well.

3. Mathematical Preliminaries

In this section we will introduce the concepts of a) per-

sistence homology, b) persistent diagrams, c) our proposed

representation of PDs as a 2D pdf, and the square-root

framework resulting in the Hilbert sphere geometry.

3.1. Persistent Homology

The homology of point cloud X can be computed by first

constructing a shape out of the point cloud and estimating

its homology. A simplex is imposed on every set of points in

the point cloud that satisfy a neighborhood condition based

on a scale parameter ǫ. The collection of such simplices is

known as the simplicial complex S . S can be thought of as

a representation of the underlying shape of the data, and its

homology can be inferred. However, homology groups ob-

tained from S depend on the scale or time parameter ǫ based

on which the complexes are constructed [9]. The homolog-

ical features of the simplicial complex constructed from the

point cloud that are stable across scales, i.e., that are per-

sistent, are the ones that provide information about the un-

derlying shape. Topological features that do not persist are

considered to be noise. This information is represented us-

ing persistence diagrams as a 2D plot of birth versus death

times of each homology cycle corresponding to the homol-

ogy group Hk, k = {0, 1, . . .}. The birth time is the scale

at which the homological feature is born and the death time

is the scale at which it ceases to exist. The homology cycle

of dimension d is also referred to as a d−dimensional hole.

Therefore, the PD can be considered as an object that repre-

sents the number of holes in terms of the range of scales

at which they appear. Typically, PDs of the point cloud

data are obtained using filtration of simplicial complexes.

A well-known filtration is the Vietoris-Rips (VR) filtration,

where a simplex is induced between a group of points when-

ever the distance between each pair of points is less than the

given scale ǫ [26]. An example of point clouds and their

corresponding persistence diagrams for homology groups 0

and 1 are provided in Figure 2.

Point cloud data Persistence diagrams

Figure 2. The above example illustrates the topological features

extracted from the point cloud data with two and one one-

dimensional holes. These properties are reflected well in their cor-

responding persistence diagrams on the right.

3.2. The Space of Persistence Diagrams

Every PD is a multiset of 2D points, where each point

denotes the birth and death time of a homology group. Fur-

thermore, the diagonal is assumed to contain an infinite

number of points with the same birth and death times. For

any two PDsX and Y , the distance between the diagrams is

usually quantified using the bottleneck distance or the Lq-

Wasserstein metric [13]. In this paper, we consider only

the L2- and L1-Wasserstein (dL2
and dL1

) metrics given re-

spectively as,

dL2
(X,Y ) =

(

inf
η:X→Y

∑

x∈X

||x− η(x)||22

)
1

2

, (1)

and

dL1
(X,Y ) = inf

η:X→Y

∑

x∈X

||x− η(x)||1. (2)

Since each diagram contains an infinite number of points

in the diagonal, this distance is computed by pairing each

point in one diagram uniquely to another non-diagonal or

diagonal point in the other diagram, and then computing

the distance. This correspondence can be obtained via the

Hungarian algorithm or its more efficient variants [13].

The space of PDs with respect to the L2-Wasserstein

metric is given by

DL2
= {X|dL2

(X,∅) <∞}. (3)
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Turner et. al. [21] show this is a non-negatively curved

Alexandrov space. Furthermore, the diagram on the

geodesic between the PDs X and Y in this space is given as

γ(s) = (1− s)x+ sφ(x), (4)

where x is a point in the diagram X , φ(x) is a correspond-

ing point in the diagram Y and s ∈ [0, 1] parametrizes the

geodesic. Clearly, the points in the diagram on the geodesic

can be simply obtained by linearly interpolating between

the corresponding points on the candidate points X and

Y . Furthermore, the Riemannian mean between two PDs

is easily computed as γ(0.5).

3.3. Square­root Framework and the Hilbert
Sphere

We treat the points in a persistence diagram as samples

from an underlying probability distribution function. This

representation is inspired from recent work dealing with

defining Mercer kernels on PDs [17], where the feature em-

bedding obtained from the Mercer kernel closely resembles

a kernel-density estimator from the given points, with an

additional reflection term about the diagonal to account for

boundary effects while solving a heat-equation. The fact

that the feature embedding resembles a kernel density esti-

mate is not further exploited in [17].

In our work, we more directly exploit this pdf interpre-

tation of PDs, further endowing it with a square-root form

[19] – and then utilizing the Hilbert spherical geometry that

results.

Without loss of generality, we will assume that the sup-

ports for each 2D pdf is [0, 1]2. The space of pdfs that we

will consider is

P = {p : [0, 1]× [0, 1] → R ∀x, y|p(x, y) ≥ 0,

and

∫ 1

0

∫ 1

0

p(x, y)dxdy = 1} (5)

It is well-known that P is not a vector space [19]. Instead,

it is a Riemannian manifold with the Fisher-Rao metric as

the natural Riemannian metric. Geodesics under the Fisher-

Rao metric are quite difficult to compute. Instead, we adopt

a square-root form proposed by Srivastava et. al. [19] which

simplifies further analysis enormously. In other words we

consider the space,

Ψ = {ψ : [0, 1]× [0, 1] → R|ψ ≥ 0,
∫ 1

0

∫ 1

0

ψ2(x, y)dxdy = 1}. (6)

For any two tangent vectors v1, v2 ∈ Tψ(Ψ), the Fisher-Rao

metric is given by,

〈v1, v2〉 =
∫ 1

0

∫ 1

0

v1(x, y)v2(x, y) dxdy. (7)

The above two pieces of information imply that the

square-root form ψ =
√
p results in the space becom-

ing a unit Hilbert-sphere, endowed with the usual inner-

product metric. Geodesics on the unit-Hilbert sphere un-

der the above Riemannian metric are known in closed

form. In fact, the differential geometry of the Hilbert

sphere results in closed form expressions for computing

geodesics, exponential and inverse exponential maps [19].

Further, the square-root form with the above metric has ad-

ditional favorable properties such as invariance to domain

re-parameterization.

Given two points ψ1, ψ2 the geodesic distance between

them is given by

dH(ψ1, ψ2) = cos−1(〈ψ1, ψ2〉), (8)

where 〈ψ1, ψ2〉ψ =
∫ 1

0
ψ1(t)ψ2(t)dt. The exponential map

is defined as,

expψi
(υ) = cos(||υ||ψi

)ψi + sin(||υ||ψi
)

υ

||υ||ψi

, (9)

where υ ∈ Tψi
(Ψ) is a tangent vector at ψi and ||υ||ψi

=
√

〈υ, υ〉ψi
. The logarithmic map from ψi to ψj is given by:

exp−1

ψi
(ψj) =

u
√

〈u, u〉
cos−1 〈ψi, ψj〉 , (10)

with u = ψi − 〈ψi, ψj〉ψj . The geodesic on the sphere is

given in closed form as

π(s) =
(1− s)ψ1 + sψ2

s2 + (1− s)2 + 2s(1− s)(〈ψ1, ψ2〉)
, (11)

or equivalently as

π(s) = cos(s||v||)ψ + sin(s||v||) v

||v|| . (12)

A comparison of sampling of the geodesics in the

Alexandrov space induced by the L2-Wasserstein metric

and the proposed Hilbert sphere are provided in Figure 3.

4. Algorithmic Details

Our proposed framework consists of reconstructing the

phase space of the time series data, computing the PDs of

the reconstructed phase space, transforming each PD to a

2D pdf by kernel density estimation, using the 2D pdfs in

the square-root framework to estimate distances or obtain

statistical summaries. The distances computed and the fea-

tures obtained will be used in inference tasks. Additional

details for some of the above steps are given below.
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Figure 3. Comparing geodesics in the Alexandrov space (top) and the proposed Hilbert sphere (bottom), for a simple persistence diagram

containing just 3 points. The Alexandrov space requires computing correspondence between points, and the geodesic involves linearly

interpolating between corresponding points. The persistence pdf avoids correspondence estimation, hence the geodesics correspond to new

local modes appearing and gradually increasing in intensity as the original modes decrease in intensity.

Phase-space Reconstruction from Activity Data In dy-

namical system understanding, we aim to estimate the un-

derlying states, but we measure functions – usually pro-

jections – of the original state-space. e.g. while human

movement is influenced by many joints, ligaments, muscles

of the body, we might measure the location of only a few

joints. One way to deal with this issue is to reconstruct-

ing the ‘phase space’ by the method of delays used com-

monly in non-linear dynamical analysis [20]. Reconstruct-

ing the phase-space in this manner only preserves important

topological properties of the original dynamical system, and

does not recover the true state-space. For a discrete dynami-

cal system with a multidimensional phase-space, time-delay

vectors (or embedding vectors) are obtained by the concate-

nation of delayed versions of the data points,

xt = [x(t), x(t+ τ), · · · , x(t+ (m− 1)τ)]T . (13)

where m is the embedding dimension, τ is the embed-

ding delay. For a sufficiently large m, the important topo-

logical properties of the unknown multidimensional sys-

tem are reproduced in the reconstructed phase-space [1].

The collection of n time-delay vectors is the point cloud

data under further consideration, and this is represented as

X = [xt]
n
t=0.

Estimating the PDs After estimating the point cloud in

the reconstructed phase space, we will construct a simpli-

cial complex S using the point cloud data X to compute

the persistence diagrams for the Betti numbers using the

VR filtration. However, this approach considers only spa-

tial adjacency between the points and ignores the temporal

adjacency. We improve upon the existing VR filtration ap-

proach by explicitly creating temporal links between xt−1,

xt, and xt+1 in the one-skeleton of S , thereby creating a

metric space which encodes adjacency in both space and

time [23]. The persistence diagrams for homology groups

of dimensions 0 and 1 are then estimated.

Square-root Framework for Distance Estimation be-

tween PDs Since each PD is a multiset of points in the 2D

space, we start by constructing a 2D pdf from each of them

using kernel density estimation using a Gaussian kernel of

zero mean and variance σ2. For each PD, we compute the

square-root representation ψ using the approach provided

in Section 3.3, and the distance between two PDs can be

computed using (8).

Dimensionality Reduction with Principal Geodesic

Analysis (PGA) We are able to extract principal com-

ponents using PGA [11], adapted to our Hilbert sphere

– which essentially performs classical PCA on the tan-

gent space of the mean-point on the sphere. Given a

dataset of persistence diagrams in their square-root form

{ψ1, ψ2, . . . , ψN}, we first compute the Riemannian cen-

ter of mass [12]. We use a simple approximation using an

extrinsic algorithm that computes first the Euclidean mean

and maps it on to the closest point on the sphere. Next, we

represent each ψi by its tangent vector from the mean. We
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then compute the principal components on the tangent space

and represent a persistence diagram as a low-dimensional

vector.

5. Experiments

We perform experiments on two datasets for human ac-

tion analysis. First we perform action recognition on the

MoCap dataset [3], next we show the use of the framework

in quality assessment of movements in stroke rehabilitation

[7]. We will describe the datasets next, followed by the eval-

uation settings and parameters used. In all our experiments,

we performed a discretization of the 2D pdf into a K ×K

grid. The choice of K indirectly affects classification per-

formance as expected, i.e. – a smaller value ofK results in a

reduced ability to identify between nearby points in the PD

due to lower resolution. On the other hand, a larger value of

K improves resolution, but also increases computational re-

quirements. Typical values of K used in experiments range

from 50 to 100 at most, whereas typical values of n – the

number of points in a PD – ranges from 20 to 50.

5.1. Motion Capture Data

We evaluate the performance of the proposed framework

using 3-dimensional motion capture sequences of body

joints [3]. The dataset is a collection of five actions: dance,

jump, run, sit and walk with 31, 14, 30, 35 and 48 instances

respectively. We generate 100 random splits having 5 test-

Method Accuracy (%) Time (sec)

Chaos [3] 52.44 -

VR-Complex

[26]

93.68 -

DT2 [24] 93.92 -

T-VR Complex

(L1) [23]

96.48 (1.2±1.23)×103

Proposed - 1NN 89.87 (0.059± 0.044)
Proposed - PGA

+SVM

91.68 -

Table 1. Comparison of classification rates for different methods

using nearest neighbor classifier on the motion capture dataset. It

is observed that on an average, the proposed metric is 10
5 times

faster than the traditional Wasserstein metric, while achieving a

comparable recognition accuracy.

ing examples from each action class and use an SVM clas-

sifier on the vector features computed with PGA, we get

a performance of 91.68%. The mean recognition rates for

the different methods are given in Table 1. We also com-

pare with a 1-nearest neighbor classifier computed on the

Hilbert sphere, which gives a performance of 89.87%. This

is clearly competitive, when compared to approaches that

use the L1-Wasserstein metric as shown in table 1. Clearly,

the proposed metric for persistence diagrams is able to cap-

ture most of the important information, with the added ben-

efit being free from expensive correspondence estimation.

To compute the times taken using the Wasserstein metric

and the proposed metric, we average across 3 samples from

5 action classes, across 57 (19 joint trajectories along 3

axes) trajectories – a total of 855 persistence diagrams. We

computed a pairwise distance matrix for all these PDs, and

computed the average time taken in Matlab 2014 on a stan-

dard Intel i7 PC.
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Figure 4. Recognition accuracy vs σ, the standard deviation of the

2D Gaussians used in the kernel density estimates.

In Figure 4, we compare the recognition accuracy with

the choice of σ, the standard deviation used during kernel

density estimation. The accuracy is generally higher for a

small σ and drops as the σ increases. We note that a similar

trend is also reported in [17].

5.2. Stroke Rehabilitation Dataset

Our aim in this experiment is to quantitatively assess the

quality of movement performed by the impaired subjects

during repetitive task therapy. The experimental data was

collected using a heavy marker-based system (14 markers

on the right hand, arm and torso) in a hospital setting from

15 impaired subjects performing reach and grasp move-

ments to a defined target. The stroke survivors were also

evaluated by the Wolf Motor Function Test (WMFT) [25]

on the day of recording, which evaluates a subject’s func-

tional ability on a scale of 1−5 (with 5 being least impaired

and 1 being most impaired) based on predefined functional

tasks. In our experiments, we only use the data corre-
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Figure 5. The mean persistence pdfs visualized as heat maps for unimpaired subjects (left) and stroke survivors (right), for the reach-and-

grasp action, are shown. These means are computed as the extrinsic means (we choose extrinsic mean here for simplicity) on the Hilbert

sphere using the proposed representation. The locations of the peaks are exactly the same, since the subjects perform the same general

movement, however the intensity differs significantly indicating that the quality of movement is captured using topological tools well.

sponding to the single marker on the wrist from the heavy

marker-based hospital system, which allows us to evaluate

the framework in a home-based rehabilitation system set-

ting. We utilize the WMFT scores as an approximate high-

level quantitative measure for movement quality (ground-

truth labels) of impaired subjects performing the reach and

grasp movements.

We compute explicit features as described earlier using

PGA. This allows us to represent each movement by a low-

dimensional feature vector. We use the WMFT scores and

split the dataset into train and test to perform regression.

Since the dataset is small, we use a leave-one-out approach,

where we train on all but one sample, which is used for test-

ing, and repeat this over all the samples in the dataset. The

correlation performance with the WMFT score is shown in

Table 2, and it can be seen that we are comparable to the

state of the art, and much better than traditional features.

The predicted scores are shown in Figure 6 compared to the

original scores.

The dynamical features proposed in [24] and [3], de-

pend on describing the phase space for each movement.

We compute the topological features, which are expected

to be much weaker than other characteristics such as shape.

However, we are still able to capture subtle information re-

garding movement quality. This is illustrated in Figure 5,

where we see the 3D peaks associated with the average of

persistence diagrams across subjects impaired with stroke

and those who are unimpaired. It is clearly seen that since

they are performing the same kind of movements, the peaks

occur at the same location. However, the intensity is signif-

icantly different across these diagrams, perhaps indicating

information regarding movement quality.

Method Correlation

with WMFT

KIM (14 markers) [6] 0.85

Lyapunov exponent (1 marker) [18] 0.60

Proposed method (1 marker) 0.80

Table 2. Comparison of correlation coefficient for different meth-

ods using leave-one-subject-out cross-validation scheme and SVM

regressor on the stroke rehabilitation dataset. Even with just a sin-

gle marker, We obtain comparable results to a clinical 14-marker

system.
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Figure 6. Predicting movement quality scores for reach-and-grasp

in stroke survivors using topological features. We obtain a 0.8

correlation score with a p-value of 5.46× 10
−4
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6. Discussion and Conclusion

Based on the theory and experiments presented so far,

it is instructive to compare the space of PDs with respect

to the different distance metrics. We will consider only

the L2-Wasserstein metric (dL2
) and the proposed Hilbert

sphere metric dH . The interpretation of PDs with respect to

these two metrics is very different. dL2
(X,Y ) is the Earth

Mover’s Distance between the PDs X and Y considered as

scaled discrete probability mass functions (pmfs). However,

dH(ψX , ψY ) is the geodesic distance between the square

root of kernel density estimates of X and Y . Furthermore,

the “length” of the persistence diagrams induced by these

metrics are very different. For the Wasserstein metric, this is

given by dL2
(X,∅) which can be arbitrarily high, whereas

with the proposed metric it is constrained as the persistence

diagrams live on a unit sphere. The most important dis-

tinction arises when the pairwise distances between all the

points in the two PDs are sufficiently high. When the 2-

dimensional pdfs obtained from kernel density estimates of

the two PDs do not overlap anywhere, dH(X,Y ) → 1. This

implies that if the variance of the kernel is sufficiently small,

two PDs with non-overlapping points will always have dH
close to 1. This problem can be alleviated by using kernels

with multiple scales for smoothing the PDs to obtain and

combining the distances obtained at each scale.

The comparison between the geodesics in the persis-

tence space is also illuminating (Figure 3). Sampling of

the geodesic in the Alexandrov space shows that the points

in one diagram move towards the corresponding points in

the other, as we move along the geodesic. Whereas, a sim-

ilar sampling in the Hilbert sphere shows that the PDs in

the middle of the geodesic contain the modes from pdfs

corresponding to both the candidate PDs. This results in

markedly different interpretations of the means computed

from dL2
and dH even for the case of two persistence dia-

grams.

Several directions of future work emerge from this en-

deavor. On the theoretical side a more formal understand-

ing of the variety of metrics and their relationship to the

proposed one can be considered. On the applied side, the

favorable computational load reduction should open new

applications of TDA for massive datasets.
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