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Abstract

We introduce a novel geometric approach to the image

labeling problem. A general objective function is defined

on a manifold of stochastic matrices, whose elements assign

prior data that are given in any metric space, to observed

image measurements. The corresponding Riemannian gra-

dient flow entails a set of replicator equations, one for each

data point, that are spatially coupled by geometric averag-

ing on the manifold. Starting from uniform assignments at

the barycenter as natural initialization, the flow terminates

at some global maximum, each of which corresponds to an

image labeling that uniquely assigns the prior data. No tun-

ing parameters are involved, except for two parameters set-

ting the spatial scale of geometric averaging and scaling

globally the numerical range of features, respectively. Our

geometric variational approach can be implemented with

sparse interior-point numerics in terms of parallel multi-

plicative updates that converge efficiently.

1. Introduction

Image labeling amounts to determining a partition of the

image domain by uniquely assigning to each pixel a sin-

gle element from a finite set of labels. The mutual depen-

dency on other assignments gives rise to a global objective

function whose minima correspond to favorable label as-

signments and partitions. Because the problem of comput-

ing globally optimal partitions generally is NP-hard, relax-

ations of the variational problem only define computation-

ally feasible optimization approaches.

Relaxations of the variational image labeling problem

fall into two categories: convex and non-convex relax-

ations. The dominant convex approach is based on the

local-polytope relaxation, a particular linear programming

(LP-) relaxation [17]. This has spurred a lot of research on

developing specific algorithms for efficiently solving large

problem instances, as they often occur in applications. We

mention [10] as a prominent example and refer to [7] for a

comprehensive evaluation. Yet, models with higher connec-

tivity in terms of objective functions with local potentials

Figure 1. Geometric labeling approach and its components. The

feature space F with a distance function dF , along with observed

data and prior data to be assigned, constitute the application spe-

cific part. A labeling of the data is determined by a Riemannian

gradient flow on the manifold of probabilistic assignments, which

terminates at a unique assignment, i.e. a labeling of the given data.

that are defined on larger cliques, are still difficult to solve

efficiently. A major reason that has been largely motivat-

ing our present work is the non-smoothness of optimization

problems resulting from convex relaxation, corresponding

problem splittings and the resulting dual objective functions

– the price to pay for convexity.

Non-convex relaxations are e.g. based on the mean-field

approach [16, Section 5]. They constitute inner relax-

ations of the combinatorially complex feasible set (the so-

called marginal polytope) and hence do not require a post-

processing step for rounding. However, as for non-convex

optimization problems in general, inference suffers from the

local-minima problem, and auxiliary parameters introduced

for alleviating this difficulty, e.g. by deterministic anneal-

ing, can only be heuristically tuned.

Contribution. We introduce a novel approach to the

image labeling problem based on a geometric formulation.

Geometric methods in connection with probabilistic mod-

els have been used in computer vision, of course. See, e.g.

[14, 4, 5]. Our approach to image labelling is new, however.

Figure 1 illustrates the major components of the approach

and their interplay. Labeling denotes the tasks to assign

prior features to given features in any metric space (raw data
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just constitute a basic specific example). This assignment is

determined by solving a Riemannian gradient flow with re-

spect to an appropriate objective function, which evolves

on the assignment manifold. The latter key concept en-

compasses the set of all strictly positive stochastic matri-

ces equipped with a Fisher-Rao product metric. This fur-

nishes a proper geometry for computing local Riemannian

means, in order to achieve spatially coherent labelings and

to suppress the influence of noise. The Riemannian met-

ric also determines the gradient flow and leads to efficient,

sparse interior-point updates that converge in few dozens of

outer iterations. Even larger numbers of labels do not signif-

icantly slow down the convergence rate. We show that the

local Riemannien means can be accurately approximated by

closed-form expressions which eliminates inner iterations

and hence further speeds up the numerical implementation.

For any specified ε > 0, the iterates terminate within a ε-
neighborhood of unique assignments, which finally deter-

mines the labeling.

Our approach is non-convex and smooth. Regarding

the non-convexity, no parameter tuning is needed to escape

from poor local minima: For any problem instance, the flow

is naturally initialized at the barycenter of the assignment

manifold, from which it smoothly evolves and terminates at

a labeling.

Organization. We formally detail the components of

our approach in Sections 2 and 3. The objective function

and the optimization approach are described in Sections 4

and 5. Two academical experiments are reported in Section

6 which illustrate the properties of our approach: (i) the in-

fluence of the two user parameters (setting the spatial scale

and for scaling the feature range); (ii) spatially consistent

image patch assignment.

Our main objective is to introduce and announce a novel

geometric approach to the image labeling problem of com-

puter vision. Due to lack of space, we omitted all proofs

and refer the reader to the report [2] which also provides a

more comprehensive discussion of the literature.

Basic Notation. We set [n] = {1, 2, . . . , n} and 1 =
(1, 1, . . . , 1)⊤. Vectors v1, v2, . . . are indexed by lower-

case letters and superscripts, whereas subscripts vi, i ∈ [n],
index vector components. 〈u, v〉 =

∑

i∈[n] uivi denotes

the Euclidean inner product and for matrices 〈A,B〉 :=
tr(A⊤B). For strictly positive vectors we often write point-

wise operations more efficiently in vector form. For exam-

ple, for 0 < p ∈ Rn and u ∈ Rn, the expression u√
p

denotes

the vector (u1/
√
p1, . . . , un/

√
pn)
⊤.

2. The Assignment Manifold

In this section, we define the feasible set for represent-

ing and computating image labelings in terms of assignment

matrices W ∈ W , the assignment manifold W . The basic

building block is the open probability simplex S equipped

with the Fisher-Rao metric. We refer to [1] and [6] for back-

ground reading.

2.1. Geometry of the Probability Simplex

The relative interior S = ∆̊n−1 of the probability sim-

plex ∆n−1 = {p ∈ Rn
+ : 〈1, p〉 = 1} becomes a differen-

tiable Riemannian manifold when endowed with the Fisher-

Rao metric, which in this particular case reads

〈u, v〉p :=
〈 u√

p
,
v√
p

〉

, ∀u, v ∈ TpS, (1a)

TpS = {v ∈ R
n : 〈1, v〉 = 0}, p ∈ S. (1b)

with tangent spaces denotes by TpS . The Riemannian gra-

dient ∇Sf(p) ∈ TpS of a smooth function f : S → R at

p ∈ S is the tangent vector given by

∇Sf(p) = p
(

∇f(p)− 〈p,∇f(p)〉1
)

. (2)

We also regard the scaled sphere N = 2Sn−1 as mani-

fold with Riemannian metric induced by the Euclidean in-

ner product of Rn. The following diffeomorphism ψ be-

tween S and the open subset ψ(S) ⊂ N , henceforth called

sphere-map, was suggested e.g. by [9, Section 2.1] and [1,

Section 2.5]. ψ : S → N and p 7→ s = ψ(p) := 2
√
p, The

sphere-map enables to compute the geometry of S from the

geometry of the 2-sphere. The sphere-map ψ is an isome-

try, i.e. the Riemannian metric is preserved. Consequently,

lenghts of tangent vectors and curves are preserved as well.

In particular, geodesics as critical points of length function-

als are mapped by ψ to geodesics. We denote by

dS(p, q) and γv(t), (3)

respectively, the Riemannian distance on S between two

points p, q ∈ S , and the geodesic on S emanating from

p = γ(0) in the direction v = γ̇(0) ∈ TpS . The exponen-

tial mapping for S is denoted by

Expp : Vp → S, v 7→ Expp(v) = γv(1), (4)

and Vp = {v ∈ TpS : γv(t) ∈ S, t ∈ [0, 1]}. The Rieman-

nian mean meanS(P) of a set of pointsP = {pi}i∈[N ] ⊂ S
with corresponding weights w ∈ ∆N−1 minimizes the ob-

jective function

meanS(P) = argmin
p∈S

1

2

∑

i∈[N ]

wid
2
S(p, p

i). (5)

We use uniform weights w = 1
N

1N in this paper. The fol-

lowing fact is not obvious due to the non-negative curvature

of the manifold S . It follows from [8, Thm. 1.2] and the

radius of the geodesic ball containing ψ(S) ⊂ N .
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Lemma 1. The Riemannian mean (5) is unique for any data

P = {pi}i∈[n] ⊂ S and weights w ∈ ∆n−1.

We call the computation of Riemannian means geomet-

ric averaging (cf. Fig. 1).

2.2. Assignment Matrices and Manifold

A natural question is how to extend the geometry of S to

stochastic matrices W ∈ Rm×n with Wi ∈ S, i ∈ [m], so

as to preserve the information-theoretic properties induced

by this metric (that we do not discuss here – cf. [15, 1]).

This problem was recently studied by [12]. The authors

suggested three natural definitions of manifolds. It turned

out that all of them are slight variations of taking the product

of S , differing only by the scaling of the resulting product

metric. As a consequence, we make the following

Definition 1 (Assignment Manifold). The manifold of as-

signment matrices, called assignment manifold, is the set

W = {W ∈ R
m×n : Wi ∈ S, i ∈ [m]}. (6)

According to this product structure and based on (1a), the

Riemannian metric is given by

〈U, V 〉W :=
∑

i∈[m]

〈Ui, Vi〉Wi
, U, V ∈ TWW. (7)

Note that V ∈ TWW means Vi ∈ TWi
S, i ∈ [m].

Remark 1. We call stochastic matrices contained inW as-

signment matrices, due to their role in the variational ap-

proach described next.

3. Features, Distance Function, Assignment

We refer the reader to Figure 1 for an overview of the

following definitions. Let

f : V → F , i 7→ fi, i ∈ V = [m], (8)

denote any given data, either raw image data or features ex-

tracted from the data in a preprocessing step. In any case,

we call f feature. At this point, we do not make any as-

sumption about the feature space F except that a distance

function dF : F × F → R, is specified. We assume that a

finite subset of F

PF := {f∗j }j∈[n], (9)

additionally is given, called prior set. We are interested in

the assignment of the prior set to the data in terms of an

assignment matrix W ∈ W ⊂ Rm×n, with the manifold

W defined by (6). Thus, by definition, every row vector

0 < Wi ∈ S is a discrete distribution with full support

supp(Wi) = [n]. The element

Wij = Pr(f∗j |fi), i ∈ [m], j ∈ [n], (10)

quantifies the assignment of prior item f∗j to the observed

data point fi. We may think of this number as the posterior

probability that f∗j generated the observation fi.
The assignment task asks for determining an optimal as-

signmentW ∗, considered as “explanation” of the data based

on the prior data PF . We discuss next the ingredients of

the objective function that will be used to solve assignment

tasks (see also Figure 1).

Distance Matrix. GivenF , dF and PF , we compute the

distance matrix

D ∈ R
m×n, Di ∈ R

n, Dij =
1

ρ
dF (fi, f

∗
j ), (11)

where i ∈ [m], j ∈ [n] and ρ > 0 is the first (from two) user

parameters to be set. This parameter serves two purposes.

It accounts for the unknown scale of the data f that depends

on the application and hence cannot be known beforehand.

Furthermore, its value determines what subset of the prior

features f∗j , j ∈ [n] effectively affects the process of de-

termining the assignment matrix W . We call ρ selectivity

parameter. Furthermore, we set

W =W (0), Wi(0) :=
1

n
1n, i ∈ [m]. (12)

That is, W is initialized with the uninformative uniform as-

signment that is not biased towards a solution in any way.

Likelihood Matrix. The next processing step is based

on the following

Definition 2 (Lifting Map (Manifolds S,W)). The lifting

mapping is defined by exp: TS → S ,

(p, u) 7→ expp(u) =
peu

〈p, eu〉 , (13)

and exp: TW →W with

(W,U) 7→ expW (U) =





expW1
(U1)

. . .
expWm

(Um)



 , (14)

where Ui,Wi, i ∈ [m] index the row vectors of the matrices

U,W , and where the argument decides which of the two

mappings exp applies.

Remark 2. The lifting mapping generalizes the well-known

softmax function through the dependency on the base point

p. In addition, it approximates geodesics and accordingly

the exponential mapping Exp, as stated next. We therefore

use the symbol exp as mnemomic. Unlike Expp in (4), the

mapping expp is defined on the entire tangent space, which

is convenient for numerical computations.

Proposition 1. Let

v =
(

Diag(p)− pp⊤
)

u, v ∈ TpS. (15)
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Then expp(ut) given by (13) solves

ṗ(t) = p(t)u− 〈p(t), u〉p(t), p(0) = p, (16)

and provides a first-order approximation of the geodesic

γv(t) from (3), (4)

expp(ut) ≈ p+ vt, ‖γv(t)− expp(ut)‖ = O(t2). (17)

Given D and W , we lift the vector field D to the mani-

foldW by

L = L(W ) := expW (−U) ∈ W, (18)

and Ui = Di − 1
n
〈1, Di〉1, i ∈ [m], with expW defined by

(14). We call L likelihood matrix because the row vectors

are discrete probability distributions which separately rep-

resent the similarity of each observation fi to the prior data

PF , as measured by the distance dF in (11). Note that the

operation (18) depends on the assignment matrix W ∈ W .

Similarity Matrix. Based on the likelihood matrix L,

we define the similarity matrix

S = S(W ) ∈ W, Si = meanS{Lj}j∈ÑE(i), i ∈ [m],
(19)

where each row is the Riemannian mean (5) of the likeli-

hood vectors, indexed by the neighborhoods as specified by

the underying graph G = (V, E), ÑE(i) = {i}∪NE(i), and

NE(i) = {j ∈ V : ij ∈ E}.
Note that S depends on W because L does so by (18).

The size of the neighbourhoods |ÑE(i)| is the second user

parameter, besides the selectivity parameter ρ for scaling

the distance matrix (11). Typically, each ÑE(i) indexes the

same local “window” around pixel location i. We then call

the window size |ÑE(i)| scale parameter. In basic applica-

tions, the distance matrix D will not change once the fea-

tures and the feature distance dF are determined. On the

other hand, the likelihood matrix L(W ) and the similarity

matrix S(W ) have to be recomputed as the assignment W
evolves, as part of any numerical algorithm used to compute

an optimal assignment W ∗. We point out, however, that

more general scenarios are conceivable – without essen-

tially changing the overall approach – where D = D(W )
depends on the assignment as well and hence has to be up-

dated too, as part of the optimization process.

4. Objective Function, Optimization

We specify next the objective function as criterion for

assignments and the gradient flow on the assignment mani-

fold, to compute an optimal assignment W ∗. Finally, based

on W ∗, the so-called assignment mapping is defined.

Objective Function. Getting back to the interpretation

from Section 3 of the assignment matrix W ∈ W as poste-

rior probabilities,

Wij = Pr(f∗j |fi), (20)

of assigning prior feature f∗j to the observed feature fi, a

natural objective function to be maximized is

max
W∈W

J(W ), J(W ) := 〈S(W ),W 〉. (21)

The functional J together with the feasible set W formal-

izes the following objectives:

1. Assignments W should maximally correlate with the

feature-induced similarities S = S(W ), as measured

by the inner product which defines the objective func-

tion J(W ).

2. Assignments of prior data to observations should be

done in a spatially coherent way. This is accomplished

by geometric averaging of likelihood vectors over lo-

cal spatial neighborhoods, which turns the likelihood

matrix L(W ) into the similarity matrix S(W ), de-

pending on W .

3. Maximizers W ∗ should define image labelings in

terms of rows W
∗
i = eki ∈ {0, 1}n, i, ki ∈ [m],

that are indicator vectors. While the latter matrices are

not contained in the assignment manifold W , which

we notationally indicate by the overbar, we compute

in practice assignments W ∗ ≈ W
∗

arbitrarily close to

such points. It will turn out below that the geometry

enforces this approximation.

As a consequence of 3. and in view of (20), such points

W ∗ maximize posterior probabilities akin to the interpre-

tation of MAP-inference with discrete graphical models by

minimizing corresponding energy functionals. The mathe-

matical structure of the optimization task of our approach,

however, and the way of fusing data and prior information,

are quite different. The following Lemma states point 3.

above more precisely.

Lemma 2. LetW denote the closure ofW . We have

sup
W∈W

J(W ) = m, (22)

and the supremum is attained at the extreme points

W∗ :=
{

W
∗ ∈ {0, 1}m×n : W ∗i = eki ,

i ∈ [m], k1, . . . , km ∈ [n]
}

⊂ W, (23)

corresponding to matrices with unit vectors as row vectors.

Assignment Mapping. Regarding the feature space F ,

no assumptions were made so far, except for specifying a

distance function dF . We have to be more specific about

F only if we wish to synthesize the approximation to the

given data f , in terms of an assignment W ∗ that optimizes

(21) and the prior data PF . We denote the corresponding

approximation by

u : W → F |V|, W 7→ u(W ), u∗ := u(W ∗), (24)
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and call it assignment mapping.

A simple example of such a mapping concerns cases

where vector-valued prototypical features f∗j , j ∈ [n] are

assigned to data vectors f i, i ∈ [m]: the mapping u(W ∗)
then simply replaces each data vector by the convex combi-

nation of prior vectors assigned to it,

u∗i =
∑

j∈[n]
W ∗ijf

∗j , i ∈ [m]. (25)

And if W ∗ approximates a global maximum W
∗

as char-

acterized by Lemma 2, then each fi is uniquely replaced

(“labelled”) by some u∗ki = f∗ki .

Optimization Approach. The optimization task (21)

does not admit a closed-form solution. We therefore com-

pute the assignment by the Riemannian gradient ascent flow

on the manifoldW ,

Ẇij =
(

∇WJ(W )
)

ij

=Wij

(

(

∇iJ(W )
)

j
−
〈

Wi,∇iJ(W )
〉)

, j ∈ [n], (26)

using the initialization (12) with

∇iJ(W ) :=
∂

∂Wi

J(W )

=
( ∂

∂Wi1
J(W ), . . . ,

∂

∂Win

J(W )
)

, i ∈ [m], (27)

which results from applying (2) to the objective (21). The

flows (26), for i ∈ [m], are not independent as the product

structure ofW (cf. Section 2.2) might suggest. Rather, they

are coupled through the gradient∇J(W ) which reflects the

interaction of the distributions Wi, i ∈ [m], due to the geo-

metric averaging which results in the similarity matrix (19).

5. Algorithm, Implementation

We discuss in this section specific aspects of the imple-

mentation of the variational approach.

Assignment Normalization. Because each vector Wi

approaches some vertex W
∗ ∈ W∗ by construction, and

because the numerical computations are designed to evolve

onW , we avoid numerical issues by checking for each i ∈
[m] every entry Wij , j ∈ [n], after each iteration of the

algorithm (32) below. Whenever an entry drops below ε =
10−10, we rectify Wi by

Wi ←
1

〈1, W̃i〉
W̃i, W̃i =Wi − min

j∈[n]
Wij + ε, (28)

and ε = 10−10. In other words, the number ε plays the

role of 0 in our impementation. Our numerical experiments

show that this operation removes any numerical issues with-

out affecting convergence in terms of the termination crite-

rion specified at the end of this section.

Computing Riemannian Means. Computation of the

similarity matrix S(W ) due to Eq. (19) involves the com-

putation of Riemannian means. Although a corresponding

fixed-point iteration (that we omit here) converges quickly,

carrying out such iterations as a subroutine, at each pixel

and iterative step of the outer iteration (32), increases run-

time (of non-parallel implementations) noticeably. In view

of the approximation of the exponential map Expp(v) =
γv(1) by (17), it is natural to approximate the Riemannian

mean as well.

Lemma 3. Replacing in the optimality condition of the Rie-

mannian mean (5) (see, e.g. [6, Lemma 4.8.4]) the inverse

exponential mapping Exp−1p by the inverse exp−1p of the

lifting map (13), yields the closed-form expression

meang(P)
〈1,meang(P)〉

, meang(P) :=
(

∏

i∈[N ]

pi
)

1
N

(29)

as approximation of the Riemannian mean meanS(P), with

the geometric mean meang(P) applied componentwise to

the vectors in P .

Optimization Algorithm. A thorough analysis of var-

ious discrete schemes for numerically integrating the gra-

dient flow (26), including stability estimates, is beyond the

scope of this paper. Here, we merely adopt the following

basic strategy from [11], that has been widely applied in the

literature (in different contexts) and performed remarkably

well in our experiments. Approximating the flow (26) for

each vector Wi, i ∈ [m], and W
(k)
i := Wi(t

(k)
i ), by the

time-discrete scheme

W
(k+1)
i −W (k)

i

t
(k+1)
i − t(k)i

=W
(k)
i

(

∇iJ(W
(k))− 〈W (k)

i ,∇iJ(W
(k))〉1

)

, (30)

and choosing the adaptive step-sizes t
(k+1)
i − t

(k)
i =

1

〈W (k)
i

,∇iJ(W (k))〉
, yields the multiplicative updates

W
(k+1)
i =

W
(k)
i

(

∇iJ(W
(k))

)

〈W (k)
i ,∇iJ(W (k))〉

, i ∈ [m]. (31)

We further simplify this update in view of the explicit ex-

pression of the gradient of the objective function with com-

ponents ∂Wij
J(W ) = 〈T ij(W ),W 〉 + Sij(W ), that com-

prise two terms. The first one in terms of a matrix T ij

(that we do not further specify here) contributes the deriva-

tive of S(W ) with respect to Wi, which is significantly

smaller than the second term Sij(W ), because Si(W ) re-

sults from averaging (19) the likelihood vectors Lj(Wj)
over spatial neighborhoods and hence changes slowly. As a

consequence, we simply drop this first term which.
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Thus, for computing the numerical results reported in

this paper, we used the fixed-point iteration

W
(k+1)
i =

W
(k)
i

(

Si(W
(k))

)

〈W (k)
i , Si(W (k))〉

, W
(0)
i =

1

n
1, i ∈ [m]

(32)

together with the approximation due to Lemma 3 for com-

puting Riemannian means, which define by (19) the similar-

ity matrices S(W (k)). Note that this requires to recompute

the likelihood matrices (18) as well, at each iteration k.

Termination Criterion. Algorithm (32) was terminated

if the average entropy

− 1

m

∑

i∈[m]

∑

j∈[n]
W

(k)
ij logW

(k)
ij (33)

dropped below a threshold. For example, a threshold value

10−3 means in practice that, up to a tiny fraction of in-

dices i ⊂ [m] that should not matter for a subsequent fur-

ther analysis, all vectors Wi are very close to unit vectors,

thus indicating an almost unique assignment of prior items

f∗j , j ∈ [n] to the data fi, i ∈ [m]. This termination crite-

rion was adopted for all experiments.

Application to Patches: Patch Assignment

Let f i denote a patch of raw image data (or, more gener-

ally, a patch of features vectors) f ij ∈ Rd, j ∈ Np(i), i ∈
[m], centered at location i ∈ [m] and indexed byNp(i) ⊂ V
(subscript p indicates neighborhoods for patches). With

each entry j ∈ Np(i), we associate the Gaussian weight

wp
ij := Gσ(‖xi − xj‖), i, j ∈ Np(i), (34)

where the vectors xi, xj ∈ Rd correspond to the locations

in the image domain indexed by i, j ∈ V .

The prior information is given in terms of n prototypical

patches

PF = {f∗1, . . . , f∗n}, (35)

and a corresponding distance dF (f i, f∗j), i ∈ [m], j ∈
[n]. There are many ways to choose this distance depending

on the application at hand.

Given an optimal assignment matrix W ∗, it remains to

specify how prior information is assigned to every location

i ∈ V , resulting in a vector ui = ui(W ∗) that is the overall

result of processing the input image f . Location i is affected

by patches that overlap with i. Let us denote the indices of

these patches by

N i←j
p := {j ∈ V : i ∈ Np(j)}. (36)

Every such patch is centered at location j to which prior

patches are assigned by

EW∗
j
[PF ] =

∑

k∈[n]
W ∗jkf

∗k. (37)

Let location i be indexed by ij in patch j (local coordi-

nate inside patch j). Then, by summing over all patches

indexed by N i←j
p whose supports include location i, and

by weighting the contributions to location i by the corre-

sponding weights (34), we obtain the vector

ui = ui(W ∗)

=
1

∑

j′∈N i←j
p

wp
j′ij

∑

j∈N i←j
p

wp
jij

∑

k∈[n]
W ∗jkf

∗kij (38)

that is assigned by W ∗ to location i. This expression looks

more clumsy than it actually is. In words, the vector ui as-

signed to location i is the convex combination of vectors

contributed from patches overlapping with i, that itself are

formed as convex combinations of prior patches. In particu-

lar, if we consider the common case of equal patch supports

Np(i) for every i, that additionally are symmetric with re-

spect to the center location i, then N i←j
p = Np(i). As a

consequence, due to the symmetry of the weights (34), the

first sum of (38) sums up all weights wp
ij . Hence, the nor-

malization factor on the right-hand side of (38) equals 1,

because the low-pass filter wp preserves the zero-order mo-

ment (mean) of signals. Furthermore, it then makes sense to

denote by (−i) the location ip corresponding to i in patch

j. Thus (38) becomes

ui = ui(W ∗) =
∑

j∈Np(i)

wp

j(−i)
∑

k∈[n]
W ∗jkf

∗k(−i). (39)

Introducing in view of (37) the shorthand

E
i
W∗

j
[PF ] :=

∑

k∈[n]
W ∗jkf

∗k(−i) (40)

for the vector assigned to i by the convex combination of

prior patches assigned to j, we finally rewrite (38) due the

symmetry wp

j(−i) = wp
ji = wp

ij in the more handy form1

ui = ui(W ∗) = Ewp

[

E
i
W∗

j
[PF ]

]

. (41)

The inner expression represents the assignment of prior vec-

tors to location i by fitting prior patches to all locations

j ∈ N (i). The outer expression fuses the assigned vec-

tors. If they were all the same, the outer operation would

have no effect, of course.

6. Experiments

In this section, we show results on empirical convergence

rate and the influence of the fix-point iteration (32). Addi-

tionally, we show results on a patch-based multi-class label-

ing problem of orientation estimation by labeling.

1For locations i close to the boundary of the image domain where patch

supports Np(i) shrink, the definition of the vector wp has to be adapted

accordingly.
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(a) Ground truth image (b) Noisy input image

Nϵ  3x3Nϵ  5x5Nϵ  7x7
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(c) Empirical convergence

|NE | = 3× 3 |NE | = 5× 5 |NE | = 7× 7

ρ
=

0.
0
1

ρ
=

0.
1

ρ
=

1.
0

Figure 2. Parameter influence on labeling. Panels (a) and (b) show a ground-truth image and noisy input data. Right show the assignments

u(W ∗) for various parameter values where W ∗ maximizes the objective function (21). The spatial scale |NE | increases from left to right.

The results illustrate the compromise between sensitivity to noise and to the geometry of signal transitions. Panel (c) shows the average

entropy of the assignment vectors W
(k)
i as a function of the iteration counter k and the two parameters ρ and |Nε|,

(a) (b)

(c)

(d) (e) (f)

(g) (h) (i)
Figure 3. Analysis of the local signal structure of image (a) by patch assignment. This process is twofold non-local: (i) through the

assignment of 3×3, (d)-(f) and 7×7 patches (g)-(i), respectively, and (ii) due to the gradient flow (26) that promotes the spatially coherent

assignment of patches corresponding to different orientations of signal transitions, in order to maximize the similarity objective (21).

6.1. Parameters, Empirical Convergence Rate

Figure 2 shows a color image and a noisy version of it.

All results were computed using the assignment mapping

(25) without rounding. This shows that the termination cri-

terion of Section 5, illustrated in panel (c) leads to (almost)

unique assignments.

The color images comprise of 31 color vectors forming

the prior data set PF = {f1∗, . . . , f31∗} and are used to

illustrate the labeling problem. The labeling task is to as-

sign these vectors in a spatially coherent way to the input

data so as to recover the ground truth image. Every color

vector was encoded by the vertices of the simplex ∆30, that

is by the unit vectors {e1, . . . , e31} ⊂ {0, 1}31. Choosing
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the distance dF (f i, f j) := ‖f i − f j‖1, this results in unit

distances between all pairs of data points and hence enables

to assess most clearly the impact of geometric spatial aver-

aging and the influence of the two parameters ρ and |Nε|,
introduced in Section 3.

In Figure 2, the selectivity parameter ρ increases from

top to bottom. If ρ is chosen too small, then there is a

tendency to noise-induced oversegmentation, in particular

at small spatial scales |NE |. The reader familiar with to-

tal variation based denoising [13], where a single parameter

is only used to control the influence of regularization, may

ask why two parameters are used in the present approach

and if they are necessary. Note, however, that depending

on the application, the ability to separate the physical and

the spatial scale in order to recognize outliers with small

spatial support, while performing diffusion at a larger spa-

tial scale may be beneficial. We point out that this separa-

tion of the physical and spatial scales (image range vs. im-

age domain) is not possible with total variation based reg-

ularization where these scales are coupled through the co-

area formula. As a consequence, a single parameter is only

needed in total variation. On the other hand, larger values

of the total variation regularization parameter lead to the

well-known loss-of-contrast effect, which in the present ap-

proach can be avoided by properly choosing the parameters

ρ, |Nε| corresponding to these two scales.

6.2. Orientation Estimation by Patch Assignment

Figure 3 (a) shows a fingerprint image characterized by

two grey values f∗dark, f
∗
bright, that were extracted from the

histogram of f after removing a smooth function of the spa-

tially varying mean value (panel (b)). The latter was com-

puted by interpolating the median values for each patch of

a coarse 16 × 16 partition of the entire image. Panel (c)

shows the dictionary of patches modelling the remaining bi-

nary signal transitions. The averaging process was set-up to

distinguish only the assignment of patches of different patch

classes and to treat patches of the same class equally. This

makes geometric averaging particularly effective if signal

structures conform to a single class on larger spatial con-

nected supports. Moreover, it reduces the problem size to

merely 13 class labels: 12 orientations at k · 30◦, k ∈ [12]
degrees, together with the single constant patch comple-

menting the dictionary.

The distance dF (f i, f∗j) between the image patch cen-

tered at i and the j-th prior patch was chosen depending on

both the prior patch and the data patch it was compared to.

For the constant prior patch, the distance was

dF (f
i, f∗j) =

1

|Np(i)|
‖f i − f∗i f∗j‖1 (42)

with

f∗i =

{

f∗dark if med{f ij}j∈Np(i) ≤ 1
2 (f
∗
dark + f∗bright),

f∗bright otherwise.

For all other prior patches, the distance was

dF (f
i, f∗j) =

1

|Np(i)|
‖f i − f∗j‖1. (43)

Panels (d)-(f) and (g)-(i) in Figure 3, show the assign-

ment u(W ∗) of the dictionary of 3× 3 patches and of 7× 7
patches. Panels (e) and (h) depict the class labels of these

assignments according to the color code of panel (c) and il-

lustrates the interpretation of the image structure of f from

panel (a). While the assignment of patches of size 3 × 3 is

slightly noisy, which becomes visible through the assign-

ment of the constant template marked by black in panel

(e), the assignment of 5 × 5 or 7 × 7 patches results in

a robust and spatially coherent, accurate representation of

the local image structure. The corresponding pronounced

nonlinear filtering effect is due to the consistent assign-

ment of a large number of patches at each pixel location

and fusing the corresponding predicted values. Panels (f)

and (i) show the resulting additive image decompositions

f = u(W ∗) + v(W ∗) that seem difficult to achieve when

using established convex variational approaches (see, e.g.,

[3]) that employ various regularizing norms and duality, for

this purpose. Finally, we point out that it would be straigh-

forward to add to the dictionary further patches modelling

minutiae and other features relevant to fingerprint analysis.

We do not consider in this paper any application-specific

aspects, however.

7. Conclusion

We presented a novel approach to image labeling, formu-

lated in a smooth geometric setting. The approach contrasts

with etablished convex and non-convex relaxations of the

image labeling problem through smoothness and geomet-

ric averaging. The numerics boil down to parallel sparse

updates, that maximize the objective along an interior path

in the feasible set of assignments and finally return a la-

beling. Although an elementary first-order approximation

of the gradient flow was only used, the convergence rate

seems competitive. In particular, a large number of labels

does not slow down convergence as is the case of convex re-

laxations. All aspects specific to an application domain are

represented by a single distance matrix D and a single user

parameter ρ. This flexibility and the absence of ad-hoc tun-

ing parameters should promote applications of the approach

to various image labeling problems.
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