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Abstract

This paper studies two questions: (1) Does the functional

connectivity (FC) in a human brain remain stationary dur-

ing performance of a task? (2) If it is non-stationary, how

can one evaluate and estimate dynamic FC? The framework

presented here relies on pre-segmented brain regions to rep-

resent instantaneous FC as symmetric, positive-definite ma-

trices (SPDMs), with entries denoting covariances of fMRI

signals across regions. The time series of such SPDMs

is tested for change point detection using two important

ideas: (1) a convenient Riemannian structure on the space

of SPDMs for calculating geodesic distances and sample

statistics, and (2) a graph-based approach, for testing sim-

ilarity of distributions, that uses pairwise distances and a

minimal spanning tree. This hypothesis test results in a tem-

poral segmentation of observation interval into parts with

stationary connectivity and an estimation of graph display-

ing FC during each such interval. We demonstrate these

ideas using fMRI data from HCP database.

1. Introduction

This paper investigates the dynamic nature of functional

connectivity (FC) between different anatomical parts of

brain during performances of cognitive tasks. Friston [1]

defines FC as statistical dependencies among remote neu-

rophysiological events. It further states that “effective con-

nectivity is dynamic (activity-dependent), and depends on a

model of interactions or coupling”. FC is usually expressed

as quantification of similarity, or correlations, between

functional measurements of neuronal activities across re-

gions in human brain. For instance, it can be estimated

using localized neuronal responses to external stimuli, as

measured using different modalities. The primary tool for

recording FC is functional Magnetic Resonance Imaging

Figure 1. BOLD signals of 4 regions under the task “gambling”.

(fMRI), which measures the blood oxygen level dependent

(BOLD) contrast signals of each brain voxel over a period

of time. Consequently, FC can be expressed as correlation

or covariance of these BOLD signals. The fMRI data used

in this article is from Human Connectome Project (HCP),

and an example is shown in Fig. 1. While earlier models

have assumed stationary models for FC (i.e. the underlying

distribution remains the same), recently there has been an

increased interest in understanding changes in FC patterns

during fMRI experiments. A dynamical FC model is bound

to provide insight into the fundamental working mechanics

of brain networks and their evolutions during performances

of tasks [2]. Such a model can, for instance, be related to

different neurological disorders, and has been suggested to

be a more accurate representation of functional brain net-

works. This applies to both resting state and task-related

studies.
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1.1. Past Work on FC Dynamics

For a review of recent progress on analyzing FC, please

refer to [1, 3]. A majority of early work assumed station-

ary FC, but recently some studies have developed tests for

changes in coherence pattern of multiple regions of inter-

est (ROI) [4]. For instance, Dynamic Connectivity Regres-

sion (DCR) is a data-driven technique used for detecting

temporal change points in FC between brain regions, where

the number and location of the change points are unknown

a priori. A new DCR algorithm involving single-subject

data is introduced in [5]. This algorithm increases accuracy

with a small number of observations and reduces the num-

ber of false positives in the estimated undirected (connectiv-

ity) graphs. Dynamic connectivity detection builds upon the

framework of a DCR algorithm. It overcomes the shortcom-

ings of DCR by adopting a simplified sparse matrix estima-

tion approach and a different hypothesis testing procedure

to determine change points [6]. In case FC is represented by

a correlation matrix of fMRI signals recorded at different lo-

cations, a sliding (time) window technique is often used to

estimate the correlation matrix. Lindquist et al. [2] critique

the sliding-window technique, and discuss some alternative

methods that have been used to model financial volatility

in the past. Similar to [7], where an asymptotic test proce-

dure to assess the stability of volatility and cross-volatility

of linear and nonlinear multivariate time series models is in-

troduced, they use a hypothesis test but with neuro-imaging

data.

1.2. Our Approach

We analyze stationarity of FC by developing a formal

statistical test. We start by taking a fixed partitioning of hu-

man brain into functional units or regions. Then, we repre-

sent the instantaneous FC as a symmetric, positive definite

matrix (SPDM) with entries denoting covariances of local-

ized functional responses under resting state or under exter-

nal stimuli. In this computation, we use a sliding window

to segment multivariate time series into overlapping blocks,

and compute a covariance matrix for each block. The orig-

inal time series data (BOLD signal) can thus be converted

in to an indexed sequence of SPDMs and the goal is now to

detect if these matrices denote samples from a single distri-

bution or the underlying distribution changes at some time

points. In other words, we formulate the question of testing

stationarity of FC as a problem of change-point detection in

the associated SPDM process. The actual test is performed

using the graphical approach of Chen et al. [8], where one

constructs a minimal spanning tree (MST) connecting the

observed SPDMs. The number of edges connecting across

temporally divided subgroups leads to a test statistic for

change point detection. We utilize a Riemannian structure

on the space of SPDMs to define and compute geodesic dis-

tances between covariance matrices, and to facilitate con-

struction of MSTs.

The rest of this paper is as follows. In Section 2, we de-

scribe components of the our proposed framework, includ-

ing: representation of FC using covariance matrices, the

Riemannian structure on space of SPDMs, a graphical ap-

proach for detecting change points, and a method for recon-

structing connectivity in homogeneous time periods. Sec-

tion 3 outlines the overall estimation procedure and Section

4 presents some experimental results using HCP fMRI data.

2. Components of the Proposed Framework

The proposed framework for detecting change point in

FC, during the performance of a task, is made up of several

current and novel components. In this section we briefly

outline these parts.

2.1. Covariance Estimation

The first problem is to estimate a correlation or a co-

variance matrix that represents the functional connectivity

between anatomical parts in brain. To specify this matrix,

we segment the brain anatomy in to d regions and then rep-

resent the functional connectivity at any time using a d× d
covariance matrix of corresponding BOLD signals. In this

paper we take a simple approach and use the standard sam-

ple covariance matrix of signal over a temporal window.

(There are more sophisticated ways of estimating covari-

ance matrix, see for example [9], and those can easily be ap-

plied here.) We segment multivariate time series into over-

lapping blocks with equal sizes. The block-size should be

large enough to result in a positive definite covariance, but

not too large to smooth over the subtle changes that are crit-

ical to assess stationarity of FC. Additionally, the step size

for moving the window should be large enough to reduce

dependency in successive covariance matrices. If the step is

too small, then only few points differ in successive blocks,

and the estimated covariance matrix will not change signifi-

cantly over time. In the experiments presented later, we use

a step-size to window-size ratio that is at least 0.2. If the

fMRI signal at location j is denoted by Xj(t) ∈ R, then

the sample covariance matrix is a d × d matrix with (j, k)

entry: Pjk = 1
T−1

∑T

i=1

(

Xj(t)− X̄j

) (

Xk(t)− X̄k

)

,

where X̄j(t) =
1
T

∑T

t=1 Xj(t).

2.2. Riemannian Structure on SPDMs

In order to evaluate stationarity of covariance matrices

over observation periods, we need impose a metric structure

on the space of SPDMs. While there are several Rieman-

nian and metric structures used in the literature, including

[10], we briefly summarize a convenient Riemannian struc-

ture taken from [11, 12]; please refer to these papers for

details.
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Let P be the space of n × n SPDMs, and let P̃ be

its subset of matrices with determinant one. Recall that

for any G ∈ SL(n), one can decompose it uniquely as

G = PS where P ∈ P̃ and S ∈ SO(n). The quo-

tient space SL(n)/SO(n) is the set of all orbits of the type

[G] = {GS|S ∈ SO(n)}, for G ∈ SL(n). Thus, we can

identify P̃ with the quotient space SL(n)/SO(n) via a map

π : SL(n)/SO(n) → P̃ , given by π([G]) =
√

G̃G̃t,

for any G̃ ∈ [G]. One can verify that π([G]) lies in

P̃ by letting G̃ = P̃S (polar decomposition), and then

π([G]) =
√

G̃G̃t =
√

P̃SStP̃ = P̃ . The inverse map

of π is given by: π−1(P̃ ) = [P̃ ] ≡ {P̃S|S ∈ SO(n)} ∈
SL(n)/SO(n). This establishes a one-to-one correspon-

dence between the quotient space SL(n)/SO(n) and P̃ .

There are several other bijections between these sets,

including the mapping proposed by Pennec et al. [10]:

πB([G]) = G̃G̃T with the inverse π−1
B (P̃ ) = [

√

P̃ ]. If we

use πB to transfer the Riemannian structure from the quo-

tient space SL(n)/SO(n) onto P̃ , we will reach the one

used in earlier papers [10]. However, π gives us convenient

formulae (parallel transport, exponential map, inverse ex-

ponential map, etc) for statistical analysis of elements in P ,

and thus we choose to use π here.

Now, we start with a natural Riemannian metric on

SL(n), the trace metric, and use the map π to push it for-

ward from the quotient space SL(n)/SO(n) to P̃ . This

process leads to the following geodesic distance in P̃ . For

any P̃1, P̃2 ∈ P̃ , dP̃(P̃1, P̃2) = ‖A12‖ where A12 =

log(P12) and P12 =
√

P̃−1
1 P̃ 2

2 P̃
−1
1 . Reader can refer to

[12] for more details of this metric. Next, we extend this

Riemannian structure to P , the space of SPDMs. Since

for any P ∈ P we have det(P ) > 0, we can express

P = (P̃ , 1
n
log(det(P ))) with P̃ = P

det(P )1/n
∈ P̃ . Thus,

P is identified with the product space of P̃ × R and we

take a weighted combinations of distances on these compo-

nents to reach a metric on P̃ is: dP(I, P )2 = dP̃(I, P̃ )2 +
1
n
(log(det(P )))2. Finally, for two SPDMs P1 and P2, let

P12 = P−1
1 P2S12 ∈ P for some S12 ∈ SO(n). Then,

we have det(P12) = det(P2)/ det(P1). Therefore, the re-

sulting squared geodesic distance between two SPDMs P1

and P2 is dP(P1, P2)
2 = dP̃(I, P12)

2+ 1
n
(log(det(P2))−

log(det(P1)))
2.

Once we have a distance on SPDMs, we can use it to

define and compute sample means on P as follows. The

sample Karcher mean of a given set of SPDMs is given by

µP = argminP∈P

∑n

i=1(dP(P, Pi)
2), Pi denotes the i-

th SPDM. The algorithm for computing Karcher mean is a

standard one and is not repeated here. We refer the reader

to [11, 12] for those details.

2.3. ChangePoint Detection Using MST

The next issue is to detect change points in the under-

lying distribution associated with a time series, using a

distance-based approach. In this section we summarize the

approach introduced by Chen and Zhang in [8] for solving

this problem. We note that Friedman and Rafsky in [13]

proposed the first graph-based test for testing the null hy-

pothesis that subjects from two groups are equal in distri-

bution. Then, Chen and Nancy Zhang in [8] adapted this

framework to change-point detection of times series on ar-

bitrary metric spaces.

The basic formulation is as follows: Let X1, X2,
. . . , XT be random variables taking values on a manifold

M , and let F0, F1 denote different probability distribution

functions on M . We are interested in testing the null hy-

pothesis that all Xts are samples from the same distribu-

tion, against an alternative that all points after a certain time

τ follow a different distribution. That is,

H0 : Xt ∼ F0, t = 1, 2, . . . , T

H1 : ∃ 1 ≤ τ < T, Xt ∼

{

F1, t > τ
F0, otherwise ,

This test is phrased for a single change point, at time τ , but

one can perform this test for different τs to find multiple

change points.

The test statistic Z(τ) is calculated as follows. First we

compute all the pairwise distances between all Xt under the

chosen metric on M . Then, we use these pairwise distances

to form a minimal spanning tree (MST) connecting these

points. An MST is a connected graph such that: (1) each

Xt is a node in the graph, (2) if any two points are con-

nected by an edge then the weight of that edge is given by

the pairwise distance between those points, and (3) the sum

of weights of all connected edges is the smallest amongst all

such graphs. (We note that the MST is independent of the

ordering of the given points.) To test, if there is a change

point at a τ ∈ {1, 2, . . . , T − 1}, we divide Xts into two

groups: {X1, . . . , Xτ}, and {Xτ+1, . . . , XT }. Let R(τ)
represents the number of edges that connect points across

two groups in MST. Intuitively, if τ is a change point then

this seperation represents an appropriate clustering of points

and only a small number of edges connect across those clus-

ters. In contrast, if the two groups are from the same dis-

tribution, then we expect a large number of edges in MST

going across the groups.

In order to evaluate the size of R(τ) we use a boot-

strap approach as follows. We randomly divide the full

set of points into two groups of size τ and (T − τ) , and

count the number of cross edges; call it Rb(τ). This is

a bootstrap replicate of R(τ). We compute these repli-

cates {Rb(τ)|b = 1, 2, . . . , B} and use their sample mean

and standard-deviation to standardize R(τ). Let Z(τ) =
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− (R(τ)−R̄(τ))
σ̂R(τ) be the test statistic, where R̄(τ) and σ̂R(τ)

are mean and standard deviations of {Rb(τ)}. This stan-

dardized test statistic is then tested for a given confidence

level for accepting or rejecting the null hypothesis. If

there is a change point at τ , and if the observations are

independent or weakly dependent, then a Z(τ) ≥ 3 im-

plies a change-point detection at 0.95 confidence level. If

Z(τ) ≥ 4, this implies a change point detection at 0.99
confidence level. The change-point detection algorithm is

summarized as follows:

Algorithm 1 1. For a given ordered set of points {Xt ∈
M, t = 1, 2, . . . , T}, compute D, the T × T pairwise

geodesic distance matrix.

2. Use D to form a minimal spanning tree (MST) con-

necting all the points.

3. For a fixed τ , count R(τ), the number of edges in this

MST between first group: {X1, . . . , Xτ}, and the sec-

ond group {Xτ+1, . . . , XT }.

4. For b = 1, 2, . . . , B, repeat:

(a) Randomly separate the full set of points into two

groups of size τ and T − τ .

(b) Use the previous MST to compute Rb(τ), the

number of edges connecting these the two

groups.

5. Use the mean and standard deviation of {Rb(τ)} to

standardize R(τ), and compute Z(τ). If Z(τ) ≥ 3, a

change point is detected (at 0.95 confidence level).

We illustrate this algorithm with M = P and the cor-

responding geodesic distance dP . In these examples we

form a set of covariance matrices computed from zero-mean

Gaussian data, simulated from either the same or different

covariance matrices. We then apply Algorithm 1 and study

the test statistics Z(τ). Fig. 2 shows two examples of this

experiment. In the top example, the first 9 covariances were

generated from one model and the remaining 10 from a dif-

ferent model. It can be seen that there is only one edge

(drawn in red) connecting these two groups in MST. As a

result, R(τ) will be small Z(τ) will be large for τ = 9. In

the bottom case, we generate 39 covariances matrices from

the same model and randomly divide them into two groups.

In this case we see a lot of edges connecting the two groups

and no clear separation; thus, R(τ) will be large and Z(τ)
will be small for all τ .

To test for multiple change points in a time sequence of

SPDMs, we can repeatedly use the same idea but only after

localizing each test in time, using a moving window. (This

window is different from and much larger than the one used

for estimating covariances earlier). This is needed because

Figure 2. Top: MST involving 19 SPDM matrices with a real

change point at τ = 10. The two groups are {1, 2, . . . , 9} and

{10, 11, . . . , 19}. Bottom: MST involving 39 SPDMs with no

change point. The groups are formed by randomly dividing the

points in two groups. The red edges represent connections across

the chosen groups.

the future changes in distributions can adversely affect our

ability to test for a change point at the current time. By

restricting to a window we try to ensure that it contains at

most one change point. We remind the reader that the hy-

pothesis test, and the related test statistic computation, as-

sumes that there are at most two distributions, one before

τ and one after τ in the set {1, 2, . . . , T}. The presence

of another change point down the line can violate that as-

sumption. Therefore, we use a moving window to localize

computations and decisions in time. Given a window of

fixed length, we detect whether mid point in the window is

a change point, and then slide the window. An example of

moving window embedded in the distance matrix is given

in Fig. 3.

2.4. Estimating Functional Connectivity

Given a covariance matrix, denoting stationary FC over

a sub-interval, we are interested in estimating and visualiz-

ing a graph representing the connectivity of different brain

regions. We accomplish that by using a graphical Lasso

based method introduced in [14]. Let the observation period

[0, T ] be subdivided into several sub-intervals by detected

change points at τ1, τ2, etc. For each sub-interval [τj , τj+1]
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Figure 3. A moving window for localizing change point detection,

over a 52× 52 distance matrix.

ρ=0.01 ρ=0.03 ρ=0.06
Figure 4. Estimated connectivity of 30 ROIs using the same co-

variance but different ρs.

we compute the Karcher mean of all SPDMs over this sub-

interval; call it P̄j ∈ P . Then, we use this average SPDM

to estimate the associated precision matrix Θ = P̄−1
j by:

Θ̂j = argmin
Θ≥0

(tr(P̄jΘ)− log det(Θ) + ρ
∑

i 6=k

|Θik|) . (1)

where ρ > 0 is a parameter controls density of the gener-

ated graph (Fig. 4 illustrates its effect). While ρ > 0 in-

creases, the adjacency matrix becomes more sparse. Given

the estimated precision matrix Θ̂i, the adjacency matrix is

identified as (Aj)ik = 1|Θ̂ik|6=0. This adjacency matrix is

then used to form an undirected graph formed by the corre-

sponding brain regions.

3. Overall Procedure

We summarize the overall procedure for detecting

change points in FC observations and for estimating con-

nectivity graphs during homogeneous sub-intervals. In the

following: T denotes the full observation period, W de-

notes the size of a time window for computing covariance

matrices, S is the step size for sliding W - windows, and T0

is the size of a square-block of the distance matrix for local-

izing change-point test. As an example, in one experiment

we have T = 52, W = 15, S = 5, and T0 = 25.

Algorithm 2 Given a segmentation of brain into functional

units or anatomical regions of interest.

1. Divide the fMRI data into T different time blocks, and

compute covariances of BOLD signals in each time

block using sliding windows of width W and step size

S (0.2W ≤ S < W ), resulting in {P1, P2, . . . , PT }.

2. Compute T×T pairwise distance matrix between these

covariances.

3. For each T0×T0 diagonal block in the distance matrix

(with T0 < T ), perform the following:

(a) Use Algorithm 1, to form a normalized test statis-

tic Z(τ), where τ = T0/2.

(b) Select the τ if Z(τ) > 3 as a change-points of

FC.

Let the set of selected change points be {τj}

4. For each sub-interval {τj , τj+1}, find the Karcher

mean of covariance matrices {Pτj , Pτj+1, . . . , Pτj+1
}

to form P̄j .

5. For each P̄j , estimate its precisions matrix using Eqn.

1 and the the corresponding adjacency matrix to rep-

resent its connectivity graph.

4. Experiments

In this section we demonstrate the algorithm using both

simulated and real fMRI datasets.

4.1. Simulation Study

In the first experiment, we simulate a d-dimensional time

sequence data with T = 900 sample points from 3 different

multivariate normal distributions. Data points from t = 1
to t = 300 are simulated from f1(µ1,Σ1), from t = 301
to t = 600 are from f2(µ2,Σ2), and from t = 601 to t =
900 are from f3(µ3,Σ3), where µ1 = µ2 = µ3 = 0, and

Σ1,Σ2 and Σ3 are randomly generated in such a way that

dP̃ (Σi,Σi+1) > 0.6.

To detect change points we implemented Algorithm 2 us-

ing W = 30, S = 20 and T0 = 25, where W stands for the

window size and S represents step size of sliding windows.

Fig. 5 shows a plot of the test statistic Z(τ) versus τ , for

d = 2 in the left panel and d = 10 in the right panel. The

detected change points are marked using black circles, and

one can clearly see the peak value of test statistic around the

detected change points, and this agrees with the true change

points in the simulated datasets.

4.2. Real Data Study

Now we take the task fMRI (tfMRI) data from Human

Connectome Project (HCP) [15] to study the dynamic func-

tional connectivity (FC) problem. The majority of the HCP
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d = 2 d = 10
Figure 5. Change point detection result for two simulated data.

Detected change points are marked using black circles.

tfMRI data were acquired at 3T, which is considered to be

the field strength currently most suitable for acquiring high

quality data reliably from a large cohort of subjects. Acqui-

sitions are based on blood oxygen level dependent (BOLD)

contrast. A series of 4D imaging data were acquired for

each subject while the subjects perform different tasks in-

volving different neural systems, e.g. visual, motion and

cognition systems. The acquired image is with an isometric

spatial resolution of 2 mm and temporal resolution of 2 s.

All fMRI data in HCP are preprocessed by removing spa-

tial distortions, realigning volume to compensate for sub-

ject motion, registering the fMRI to the structural MRI, re-

ducing the bias field, normalizing the 4D image to a global

mean, masking the data with the final brain mask and align-

ing the brain to a standard space [16]. This preprocessed

tfMRI is then available for connectivity analysis.

To map functional connectivity, we begin with the seg-

mentation of brain into regions using an existing template,

such as the AAL (Automated Anatomical Labeling) atlas

[17]. Time series for each region in tfMRI are extracted us-

ing CONN functional connectivity toolbox [18] and AAL

atlas (116 regions). A [0.008, inf] (Hz) high-pass filter is

used to de-noise the functional data. Fig. 1 shows one ex-

ample of the de-noised BOLD signals of 4 regions from a

subject in HCP.

Next, we evaluate the dynamic FC using the proposed

method in two different tasks: (1) gambling and (2) social

cognition.

4.2.1 Dynamic FC for Gambling Task

The gambling task in HCP was adapted from the one devel-

oped in [19]. Participants play a card guessing game where

whey are asked to guess the number on a mystery card in

order to win or loss money. Three different blocks are pre-

sented through out the task: reward blocks, neutral blocks

and loss blocks. Brain regions that relate to this task include

basal ganglia, ventral medial prefrontal and orbito-frontal.

The basal ganglia contains multiple subcortical nuclei and

is the part of brain that influences motivation and action se-

lection.

In the first study, we selected four regions inside the

Figure 6. FC change point detection for four regions in basal gan-

glia in gambling task with difference window sizes and T0 = 25

Sub-interval 1 Sub-interval 2 Sub-interval 3
Figure 7. Reconstructed connectivity for four nodes in basal gan-

glia region though out the gambling task.

basal ganglia: right & left Caudate and right & left Puta-

men, and study FC using 4×4 SPDMs representing covari-

ance of fMRI signal in these four regions. Algorithm 1 is

applied and the results are shown in Fig. 6. It shows the evo-

lution of the test statistic versus τ for four different choices

of window size W (from top-left to bottom-right, the win-

dow sizes used are 15, 16, 17 and 18 respectively). Despite

different window sizes, the Algorithm consistently detects

two change points, which means these four nodes formed

three different connection patterns during the task. More-

over, we reconstructed the network structures for the four

regions in basal ganglia using tfMRI data in the 3 intervals

segmented by the two detected change points. The recon-

structed three different network structures are presented in

Fig. 7.

In the second experiment, we selected grey matter re-

gions closed to basal ganglia (right & left central Opercular

Cortex, right & left Parietal Operculum Cortex, right & left

Planum Polare and right & left Heschl’s Gyrus) and esti-

mated their connectivity pattern. These regions also have

the same change point patterns. These results are consistent

with the design of the task with three conditions: neutral

blocks, reward blocks and loss blocks.

As a comparison we perform the change point detection

for FC involving regions that are deemed irrelevant to the

gambling task, e.g. Inferior Frontal Gyrus and Temporal
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Figure 8. FC change point detection for grey matter regions near

basal ganglia. W = 14 and T0 = 25 were used.

Figure 9. FC change point detection for two regions: Inferior

Frontal Gyrus and right Temporal Pole with different W ’s and

T0 = 25.

Pole Right. The result is shown in Fig. 9 and no change

point in FC is detected.

4.2.2 Dynamic FC for Social Cognition Task

In this experiment, participants were presented with short

video clips of objects (squares, circles, triangles) that either

interacted in some way, or moved randomly on the screen

[20]. After each video clip, participants judge whether the

objects had (1) a mental interaction (an interaction that ap-

pears as if the shapes are taking into account each other’s

feeling and thoughts); (2) not sure or (3) no interaction.

Each run of the task has 5 video blocks (2 Mental and 3 Ran-

dom in the data we used). Possible brain regions that relate

to this task are medial prefrontal cortex, temporal parietal

junction, inferior and superior temporal sulcus [21]. Since

this task has more experimental blocks (5 blocks) than the

gambling data, we expect to detect more change points.

Fig. 10 shows the results of Algorithm 2 on this data us-

ing four regions inside the inferior frontal gyrus. The algo-

rithm detects 4 change points, implying that the functional

network structure changes frequently during the task. In an-

other example, using 14 regions instead, the algorithm de-

tects the change point of the connectivity formed by these

Figure 10. FC change point detection result in social cognition task

for 4 regions of the inferior frontal gyrus with different W ’s and

T0 = 25.

Figure 11. FC change point detection in social cognition task for

14 regions (ROI 50-63) in AAL atlas for W = 16 and T0 = 25.

regions. Fig. 11 shows the result using block size 18. Three

major change points are detected in these regions. We re-

construct the connectivity networks for the 14 ROIs using

data in the four sub-intervals defined by the three detected

change points. Fig. 12 shows the reconstructed networks.

5. Conclusion

This paper describes a statistical approach for testing sta-

tionary of functional connectivity between brain regions,

during execution of certain tasks. In this approach, instan-

taneous FC is represented by a matrix of covariances be-

tween signals observed at different regions, and one obtains

a time-series of SPDMs for each task. This sequence is then

tested for change-point detection using a graphical approach

that utilizes a Riemannian structure on SPDMs to compute

distances and means. This detection divides the observa-

tion interval into sub-intervals with stationary connectivity

patterns. We average the SPDMs in each interval, form a

precision matrix for each average, and threshold it to com-

pute and display connectivity patterns for each sub-interval.

This framework provides tools for studying dynamical FC

patterns under different tasks for different subjects.
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Sub-interval 1 Sub-interval 2

Sub-interval 3 Sub-interval 4
Figure 12. Reconstructed FC network for 14 regions (50-63) in

AAL atlas.
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