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Abstract

Human action recognition has emerged as one of the

most challenging and active areas of research in the com-

puter vision domain. In addition to pose variation and

scale variability, high complexity of human motions and the

variability of object interactions represent additional sig-

nificant challenges. In this paper, we present an approach

for human-object interaction modeling and classification.

Towards that goal, we adopt relevant frame-level features;

the inter-joint distances and joints-object distances. These

proposed features are efficiently insensitive to position and

pose variation. The evolution of the these distances in time

is modeled by trajectories in a high dimension space and

a shape analysis framework is used to model and compare

the trajectories corresponding to human-object interaction

in a Riemannian manifold. The experiments conducted fol-

lowing state-of-the-art settings and results demonstrate the

strength of the proposed method. Using only the skeletal in-

formation, we achieve state-of-the-art classification results

on the benchmark dataset.

1. Introduction

Analysis of human activities and behavior through vi-

sual data has attracted a tremendous interest in the com-

puter vision community. Indeed, this represents a task of

interest for a wide spectrum of areas due to its huge po-

tential, like human-machine interaction, physical rehabilita-

tion, surveillance security, health care and social assistance,

video games, etc[13]. The recent development and wide-

spread use of portable, commodity, high-quality and accu-

rate depth cameras such as Microsoft Kinect[1] has changed

the picture by providing 3D depth data of video-based hu-

man action recognition. Thus several datasets have been

collected to serve as benchmark for researchers algorithms

like the MSR dataset [23].

In the literature of activity recognition, most of the previ-

ous works have focused on simple human action recognition

such as boxing, kicking, walking, etc. However, human ac-

tivity understanding is a more challenging problem due to

the diversity and complexity of human behaviors [2] and ac-

curate human action recognition is still a quite challenging

task and is gradually moving towards more structured in-

terpretation of complex human activities involving multiple

people and especially interaction with objects.

Actually, during a human object interaction scene, the

hands may hold objects and are hardly detected or recog-

nized due to heavy occlusions and appearance variations

[22]. A high level of information of the objects is needed to

recognize the human-object interaction.

To the best of our knowledge, the majority of ac-

tion recognition past approaches investigate simple action

recognition and less effort have been spent on human ob-

ject interaction. In this paper, we propose to apply spatio-

temporal modeling (STM) and shape analysis framework to

perform human-object interaction. The main contributions

of this work are the following:

• The use of STM of skeletons and objects in time as

trajectories.

• A rate-invariant comparison of these trajectories and

compute rate-invariant means of them.

• The proposed method is performed on and gets com-

petitive results with respect to state-of-the-art work on

one representative benchmark dataset.
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The remainder of the paper is organized as follows. Sec-

tion 2 briefly describes the related works. In Section 3,

we introduce the overview of our method. The spatio-

temporal modeling and the shape analysis framework and

presented in Section 4 and Section 5 respectively. In Section

6, the classification algorithm is described. The recogni-

tion results of the proposed approach on MDRDaily activity

dataset which represents the becnchmark of of human ac-

tivities and comparison with the state-of-the-art algorithms

are presented in Section 7. Finally Section 8 summarizes

the work, addresses several aspects of the model that can be

improved and future research directions.

2. Related Work

The approaches on action recognition can be roughly

divided into the following two main categories. The first

category includes methods based on static and 2D video.

There is emerging interest in exploiting human pose for ac-

tion recognition. The release of the low-cost RGBD sen-

sor Kinect has brought excitement to the research in com-

puter vision, gaming, gesture-based control, and virtual re-

ality. [7] adopted grouplet encode detailed and structured

information from the images to estimate the 2D poses. In

[8], it treated object and human pose as the context of each

other in human-object interaction activities. [4] [25] devel-

oped spatio-temporal AND-OR graph to model the spatio-

temporal structure of the poses in an actions. [9] [10]

learns a discriminative deformable part model(DPM) that

estimates both human poses and object location.

In the second category, there are still two sub-categories

because of feature types. Some works adopted all of or two

of skeleton, RGB and depth information and others only

used skeleton-based algorithms. Recently, the development

of depth cameras offers a cost-effective method to track 3D

human poses [18]. In [24], an approach for human action

recognition with histograms of 3D joint locations (HOJ3D)

as a compact representation of postures is proposed. The

HOJ3D computed from the action depth sequences are re-

projected using LDA and then clustered into several posture

visual words, which represent the prototypical poses of ac-

tions. The temporal evolutions of those visual words are

modeled by discrete hidden Markov models (HMMs). [20]

represented a human skeleton as a point in the Lie group

which is curved manifold, by explicitly modeling the 3D

geometric relationships between various body parts using

rotations and translations. Using the proposed skeletal rep-

resentation, it modeled human actions as curves in this Lie

group then mapped all the curves to its Lie algebra, which is

a vector space, and performed temporal modeling and clas-

sification in the Lie algebra. [14] used a spatio-temporal

modeling of skeleton joint position in a Riemannian man-

ifold. There are several works [11] [12] [15] [17] [23] re-

lyed on skeleton information and developed features based

on depth images for human object interaction recognition.

To the best of our knowledge, there are a few works on

recognizing human-object interactions only based on skele-

ton joints. [22] presented a 4D human-object interaction

model for joint event recognition through joint inference

from RGBD videos. The 4DHOI model represents the ge-

ometric, temporal and semantic relations in daily events in-

volving human object interactions. [26] proposed a novel

middle level representation called orderlet [21] for recog-

nizing human object interactions. It presented an orderlet

mining algorithm to discover the discriminative orderlets

from a large pool of candidates.

3. Overview of our method

An overview of the proposed approach is given in Figure

1. The human-object interaction videos are modeled as tra-

jectories in R
210∗n via a Spatio-Temporal Modeling (STM),

then a rate invariant shape analysis of these trajectories is

performed and this make the comparison of the videos in-

variant to the rate.

First, STM is applied on each video of training and test-

ing data to get trajectories of dimension R
210∗n (where n is

the number of frames for each video).

Then, the rate-invariant mean shape µi of each action

ai, i = 1..k is calculated. The feature vector for a given tra-

jectory is then built by concatenating the distances dS be-

tween this trajectory and all of the mean trajectories. Lastly,

Random Forest-based classification is performed.

4. Spatio-temporal modeling

The 3-D humanoid skeleton can be extracted from depth

images (via RGB-D cameras, such the Microsoft Kinect) in

real-time thanks to the work of [18]. This skeleton contains

the 3-D position of a certain number of joints representing

different parts of the human body and provides strong cues

to recognize human-object interaction.

Similarly to [16] we propose to use the inter-joints and

the object-joints distances. The object position is detected

by the LOP algorithm [21] unlike [16] where the authors

manually detect the position of the object by associating it

to the hand holding it. For each frame, all pairwise distances

of 20 skeleton joints and object one are calculated. When

the action does not have object, the corresponding entries

in the distance matrix are blank and we fill them using an

imputation technique [5]. In our experiments we employed

the mean imputation method, which consists of replacing

the missing values by the means of values already calculated

in presence of the object from the training set. The skeleton

information is donated as S which contains 20 joints from

the original data and object joint represented by jo.

S = {j1, j2, ..., j20, jo} (1)
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Figure 1. Overview of our method. Four main steps are shown: low-feature extraction from each frame; Buiding feature vector by spatio-

temporal modeling; Mean calculation of feature vector; Random Forest-based classification. Note that the both training and testing data

are built by spatio-temporal modeling and the red point is the object position we assumed.

D refers to the set of the pairwise distances between the

joint a and joint b from S.

D = {d(a, b)} , a ∈ S b ∈ S (2)

Thus the low-level feature vector is composed by the all

pairwise distances between the joints and the distances be-

tween the object and the joints. The size of this vector is

equal tom× (m−1)/2, withm = 21: the 20 joints and the

object joint. The concatenation of this feature vector along

frames gives rise to a trajectory in R
210. The shape of the

resulting trajectories will be investigated in next section for

human object classification.

5. Shape analysis of distance vector

5.1. SRVF calculation

Let β : I → R
210, where I = [0, 1], represents a param-

eterized curve encoding the trajectory of pairwise distances

along a video. For each frame t, β(t) = Dt encodes the

pairwise distances at this frame.

To analyze the shape of β, we shall represent it math-

ematically using the square-root velocity function (SRVF)

[19], denoted by q(t), according to: q(t) = β̇(t)√
‖β̇(t)‖

; q(t)

is a special function of β that simplifies computations under

elastic metric.

Actually, under L2-metric, the re-parametrization group

acts by isometries on the manifold of q functions, which is

not the case for the original curve β. To elaborate on the last

point, let q be the SRVF of a curve β. Then, the SRVF of a

re-parameterized curve β ◦ γ is given by
√
γ̇(q ◦ γ). Here

γ : I → I is a re-parameterization function and let Γ be the

set of all such functions.

Define the preshape space of such curves: C = {q : I →
R

210|‖q‖ = 1} ⊂ L
2(I,R210), where ‖ · ‖ implies the

L
2 norm. With the L

2 metric on its tangent spaces, C be-

comes a Riemannian manifold. Also, since the elements of

C have a unit L2 norm, C is a hypersphere in the Hilbert

space L
2(I,R210). The geodesic path between any two

points q1, q2 ∈ C is given by the great circle, ψ : [0, 1] → C,
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where

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) , (3)

and the geodesic length is θ = dc(q1, q2) =
cos−1(〈q1, q2〉).

In order to study shapes of curves, one identifies all re-

parameterizations of a curve as an equivalence class.

Note that the parameterization of a trajectory during an

action corresponds to the rate of the action. Thus compari-

son of equivalent classes rather than trajectories themselves

is rate invariant differentiation which reduces the difference

in rate between actions and facilitates the action recogni-

tion.

Let’s define the equivalent class of q as: [q] =
{
√

γ̇(t)q(γ(t)), γ ∈ Γ}. The set of such equivalence

classes, denoted by S .
= {[q]|q ∈ C} is called the shape

space of open curves in R
210. As described in [19], S in-

herits a Riemannian metric from the larger space C due to

the quotient structure. To obtain geodesics and geodesic

distances between elements of S , one needs to solve the op-

timization problem:

γ∗ = argminγ∈Γdc(q1,
√

γ̇(q2 ◦ γ)). (4)

The optimization over Γ is done using the dynamic pro-

gramming algorithm. Let q∗2(t) =

√

˙γ∗(t)q2(γ
∗(t)))

be the optimal element of [q2], associated with the opti-

mal re-parameterization γ∗ of the second trajectory, then

the geodesic distance between [q1] and [q2] in S is

ds([q1], [q2])
.
= dc(q1, q

∗
2) and the geodesic is given by Eqn.

3, with q2 replaced by q∗2 .

5.2. Mean calculation

One advantage of a shape analysis framework of the tra-

jectories is that one has the actual deformations in addition

to distances. In particular, we have a geodesic path in S be-

tween the two trajectories β1 and β2 in R
210. This geodesic

corresponds to the optimal elastic deformations of two tra-

jectories. The Riemannian structure defined on the mani-

fold of shape of the trajectories in S enables us to perform

such statistical analysis for computing curves (trajectories)

mean and variance. The Karcher mean utilizes the intrin-

sic geometry of the manifold to define and compute a mean

on that manifold. It is defined as follows: Let ds(β
i, βj)

denote the length of the geodesic from βi to βj in S .

To calculate the Karcher mean of trajectories

{β1, ..., βn} in S , define the variance function:

V : S → R,V(N) =

n
∑

i=1

ds(SRV F (β
i), SRV F (βj))2

(5)

The Karcher mean is then defined by:

β = argmin
µ∈S

V(µ) (6)

The intrinsic mean may not be unique, i.e. there may be a

set of points in S for which the minimizer of V is obtained.

To interpret geometrically, β is an element of S , that has the

smallest total deformation from all given trajectories.

Algorithm 1 Karcher mean algorithm

Set k = 0. Choose some time increment ǫ ≤ 1

n
. Choose a point µ0 ∈ S

as an initial guess of the mean. (For example, one could just take µ0 =
β1.)

1- For each i = 1, ..., n choose the tangent vector ti ∈ Tµk
(S) which

is tangent to the geodesic from µk to βi. The vector g =
∑i=n

i=1
ti is

proportional to the gradient at µk of the function V .

2- Flow for time ǫ along the geodesic which starts at µk and has velocity

vector g. Call the point where you end up µk+1.

3- Set k = k + 1 and go to step 1.

The mean are calculated on trajectories belonging to the

same action in order to get mean of the trajectory for each

action. These means will be used in the classification of the

actions. Moreover, the mean trajectory is invariant to the

rate of execution of given videos due to the elastic metric

used in the calculation of the mean.

6. Classification

6.1. Feature vector

The feature vector is built by using the distances to the

means of the actions calculated on train data. Given train set

T = {β1, ..., βn} ∈ R
210∗n, each trajectory corresponds to

an action class labeli ∈ {a1, ..., ak}. We first calculate,

using algorithm 1, the mean µi for each class. Next, we cal-

culate the geodesic distance dS between a given curve β and

the mean curves. Thus a vector of distance of size k is pro-

vided as feature vector to classify the curve β. For example,

this is a feature vector size k of one video sequence:

dS =
{

d(β1, µ1), d(β
1, µ2), ..., d(β

1, µk)
}

6.2. Random Forest

For the classification task we used the Multi-class ver-

sion of Random Forest algorithm. The Random Forest al-

gorithm was proposed by Leo Breiman in [6] and defined as

a meta-learner comprised of many individual trees. It was

designed to operate quickly over large datasets and more

importantly to be diverse by using random samples to build

each tree in the forest. Diversity is obtained by randomly

choosing attributes at each node of the tree and then us-

ing the attribute that provides the highest level of learning.

Once trained, Random Forest classify a new action from an

input feature vector by putting it down each of the trees in
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Method Accuracy

Skeleton in [21] 68.0%
4DHOI model [22] 70.0%
Skeletal shape trajectories [3] 70.0%
Discriminative Orderlet Mining [26] 73.8%
Proposed approach 77.05%

Table 1. Reported results comparison to state of the art

the forest. Each tree gives a classification decision by vot-

ing for that class. Then, the forest chooses the classification

having the most votes (over all the trees in the forest). In

our experiments we used Weka Multi-class implementation

of Random Forest algorithm by considering 150 trees. A

study of the effect of the number of the trees is reported

later in the experimental part.

7. Experiments

7.1. Dataset

MSRDailyActivity3D dataset [21] is a daily activity

dataset captured by Kinect [1] device, to cover human daily

activities in the living room. There are 16 action classes:

drink, eat, read book, call cellphone, write on a paper, use

lap- top, use vacuum cleaner, cheer up, sit still, toss paper,

play game, lay down on sofa, walk, play guitar, stand up,

sit down each of which was performed twice by 10 sub-

jects. For each video, it provides 3 kinds of data: RGB,

depth image and joint and 320 samples in total. Addition-

ally, the activities includes human-object interactions and

human motion that is the most important reason we choose

this dataset.

7.2. Results

As our feature vectors built only based on skeleton joint

information, this dataset is very challenging if the depth in-

formation is not used. To make it fair for comparison, we

mainly compared with the algorithms on skeleton feature

[21], [22] and [26]. [3] only used skeleton information that

is the same as our work. We used the same experimental

setting as [26] and performed on the 2-fold cross-validation

which is using the samples of half of the subjects as train-

ing data, and the samples of the rest half as testing data. The

comparison of the performance is shown in Table 1. We can

notice in Table 1 that we obtained better accuracy than other

works. The accuracy of our approach is 77.05%.

To fully evaluate our method, we performed the experi-

ments with different numbers of trees. So we can see clearly

that the performance of Random Forest classifier varies with

the number of trees from Figure 2. As illustrated in this

figure, the recognition rate raises with the increasing num-

ber of trees until 150; the recognition rate reaches the peak

77.05% and then becomes quite stable.

Figure 2. Human-Object interaction recognition results using a

Random Forest classifier when varying the number of trees.

8. Conclusion and future work

This paper proposed an human-object interaction ap-

proach that use STM to model the pairwise distances of

skeleton joints and object joints in each video as a trajec-

tory. Then we compute the mean shape of trajectories cor-

responding to each action in a rate-invariant way. Human-

object interaction classification is solved using Random

Forest algorithm applied the feature vector calculated based

on the distances to the means of actions. Experiments per-

formed on MSRDaily Activity dataset testing on human

motion and human-object interaction have demonstrated

that our proposed approach gives comparative results with

respect to state-of-the-art work. As the object assumed as

one of skeleton joints in this paper, we will focus on object

itself such as its shape in future.
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