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Abstract

We propose a new statistical framework for spatio-

temporal modeling of elastic planar, closed curves. This

approach combines two recent frameworks for elastic func-

tional data analysis and elastic shape analysis. The pro-

posed trajectory registration framework enables matching

and averaging to quantify spatio-temporal deformations

while taking into account their dynamic specificities. A key

ingredient of this framework is a tracking method that op-

timizes the evolution of curves extracted from sequences of

consecutive images to estimate the spatio-temporal defor-

mation fields. Automatic estimation of such deformations

including spatial changes (strain) and dynamic temporal

changes (phase) was tested on simulated examples and real

myocardial trajectories. Experimental results show sig-

nificant improvements in the spatio-temporal structure of

trajectory comparisons and averages using the proposed

framework.

1. Introduction

Recent advances in imaging technology have led to an

increased need for image registration methods which are

used in a large number of applications including medical

imaging, computer vision, augmented reality, etc. The im-

age registration problem consists of mapping a target im-

age to a reference image under certain transformation con-

straints. The estimated deformation can be based on inten-

sity (gray-scale level correspondences), geometry (features

or landmarks) or both [7]. However, most of these meth-

ods are applied in a cross-sectional manner, i.e., they ig-

nore any temporal structure contained in data sequences and

deal only with the static spatial information. The develop-

ment of techniques for spatio-temporal tracking and defor-

mation will enable one to capture both the local shape and

temporal variabilities under a unified framework [3]. Such

spatio-temporal registration methods incorporate the con-

struction of a statistical model in order to account for the

cross-sectional geometric variability of object shapes and

the additional functional dynamics. In the case of medical

imaging, such models can assist physicians in the interpre-

tation of image sequences. For example, they can be used

to guide disease characterization via image sequence classi-

fication and unsupervised segmentation [2]. As an ultimate

goal, one can perform statistical comparisons between indi-

viduals and groups to help produce efficient clinical tools.

In order to build a statistical model from image se-

quences describing both the shape and dynamics of an ob-

ject, the following issues must be addressed: (i) Spatial

registration (local shape differences): How to capture the

spatial variability for observations at a specific instance in

time? (ii) Temporal registration (temporal shape differ-

ences): How to capture the dynamics during a sequence

of shape evolution?, and (iii) Inter-subject variability: fix-

ing the observation period, how to build a reference model

for comparison? and finally how to capture differences in

shape trajectories caused by deformation during that pe-

riod? In this spirit, we present a new trajectory-based regis-

tration/statistical modeling approach that can automatically

register curve sequences observed during a common time

period to study their developmental and spatio-temporal
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variability. Our method is applicable to modeling soft tissue

motion and deformation, and motivated by spatio-temporal

mechanical models. Soft tissue was first modeled as a linear

model in order to apply continuum mechanical constraints,

and then extended to nonlinear material models (viscoelas-

tic or hyperelastic) for more accuracy [1]. Due to low com-

plexity and easy implementation of the linear models, these

methods have been widely used in applications, but their

performance is very limited [4].

In the last decade, there have been many efforts to accu-

rately model soft tissue motion and deformation in general

settings. In soft tissue modeling, several models were pro-

posed including elastic, viscoelastic, and hyperelastic mod-

els [12]. Most of the presented solutions are based on gen-

eral models and were implemented with a wide range of

computational methods. Among others, we can cite varia-

tional methods and finite-element methods, spatio-temporal

B-splines, and deformable models [13, 2]. Specifically,

variational formulations have been mainly used to regular-

ize ill-conditioned problems in several applications includ-

ing medical imaging. In this study, we propose to model the

soft tissue motion as trajectories on an elastic shape space

in order to capture main disease characteristics: trajectory

dynamics and spatial strain. Hence, both spatial and tempo-

ral registration is considered in our analysis. Recent meth-

ods that have considered statistical analysis of shape tra-

jectories, and accounted for their spatio-temporal variabil-

ity, include [10] and [11]. Both of these methods focused

on applications to activity recognition and applied to sin-

gle shapes at each time along the trajectory. In this paper,

we are motivated by the problem of analyzing myocardial

trajectories, which contain endo- (inside) and epi- (outside)

cardial boundaries, thus resulting in temporal evolutions of

two shapes.

This paper is organized as follows. Section 2 describes

the preliminaries needed for statistical analysis of spatio-

temporal trajectories. Section 3 presents the proposed

framework. Section 4 gives results on simulated and real

data followed by a short summary (Section 5).

2. Elastic Statistical Shape Analysis of Curves

In this work, we develop a new framework for statisti-

cal shape analysis of temporal evolutions of planar, closed

curves. In particular, we address the problem of spatio-

temporal registration of such trajectories. We split the

spatio-temporal registration problem into two steps: (1) we

perform temporal registration of the shape trajectories us-

ing a scalar feature invariant to shape preserving transfor-

mations, and (2) we perform cross-sectional spatial regis-

tration by removing all shape preserving transformations

from the representation space. The temporal registration is

performed using ideas from elastic functional data analysis

[9, 6]. The spatial registration applies elastic shape analysis

of planar, closed curves [8]. We provide short descriptions

of these two methods in the following sections, and subse-

quently present a unified framework for analyzing spatio-

temporal myocardial trajectories.

2.1. Elastic Functional Data Analysis

Without loss of generality, let f be a real-valued, ab-

solutely continuous function with the domain [0, 1]. Let

F denote the set of all such functions and Γ be the set

of orientation-preserving diffeomorphisms of [0, 1]. Ele-

ments of Γ are used to represent temporal variability of

functions. In order to register two given functions f1 and

f2, we take an approach based on the square-root slope

function (SRSF) representation q : [0, 1] ! R defined as

q(t) = sign(ḟ(t))
q

|ḟ(t)|, where ḟ is the derivative of f

[9, 6]. If the function f is absolutely continuous, the re-

sulting SRSF is square-integrable. Furthermore, if we tem-

porally warp a function f by γ 2 Γ, the SRSF of f ◦ γ is

given by q̃ = (q, γ) = (q ◦ γ)pγ̇. The main motivation for

using the SRSF for temporal registration of functional data

is that, under this representation, Γ acts on F by isometries

under the L
2 metric, i.e., kq1 − q2k = k(q1, γ) − (q1, γ)k.

This property is necessary to define a proper metric, which

can be used as a cost function to temporally register two or

multiple functions.

Pairwise alignment of functions can be performed by uti-

lizing equivalence classes of the form: [q] = {(q, γ)|γ 2
Γ}. Under this setup, any two functions within the same

temporal warping of each other are considered equivalent

(i.e., any two functions in the set [q] differ only in their tem-

poral alignment). The space of all equivalence classes is

denoted by Q = {[q]}. To temporally register two func-

tions (compare any two equivalence classes), we use the L2

metric on the space of SRSFs as follows. For any two func-

tions f1, f2 2 F and their corresponding SRSFs, q1, q2,

we define the warping invariant distance between them as

dQ([q1], [q2]) = infγ∈Γ kq1 − (q2 ◦ γ)
p
γ̇k. The minimizer

of dQ is denoted by γ∗ and represents the optimal tempo-

ral alignment of f2 to f1. This optimization can be solved

using a dynamic programming algorithm.

An important goal of the proposed framework is to align

multiple functions simultaneously for the purposes of tem-

poral registration of multiple trajectories. This is accom-

plished using the notion of the Karcher mean. For a sample

of functions f1, f2, . . . , fn, let q1, q2, . . . , qn denote their

SRSFs. Then, their Karcher mean is defined as [q̄] =
argmin[q]∈Q

Pn
i=1 dQ([q], [qi])

2. The Karcher mean is ac-

tually an equivalence class of functions, and we choose a

representative element of this equivalence class using the

orbit centering method (see [9] for details). This procedure

results in three items: (1) q̄, the preferred element of the

Karcher mean equivalence class, (2) {γ∗
i }, the set of opti-

mal temporal alignment functions, and (3) {f∗
i = fi ◦ γ∗

i },
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the set of temporally aligned functions.

2.2. Elastic Size-and-Shape Analysis of Planar,
Closed Curves

The framework of Srivastava et al. [8, 5] provides tools

for spatial alignment, comparison and averaging of planar,

closed curves. We provide a brief description of the rele-

vant methods, and refer the reader to the original paper for

details. Let β : S1 ! R
2 denote a planar closed curve. In

order to study shapes of closed curves, we impose a con-

dition, which ensures that each β starts and ends at the

same point. Its corresponding square-root velocity func-

tion (SRVF) representation is defined as m(s) = β̇(s)p
|β̇(s)|

,

where β̇ is the derivative of β and | · | is the Euclidean

norm. As in the case of functions presented in the previ-

ous section, the curve β can be uniquely recovered from

its SRVF up to a translation. We are interested in mod-

eling size and shape of myocardial curves, and thus, we

seek a representation that is invariant to translation, rota-

tion, and re-parameterization. The SRVF representation is

automatically invariant to translation (it only depends on

β̇). The shape space of planar, closed curves is obtained

by removing the re-parameterization group denoted by Λ
(the set of diffeomorphisms from S

1 to itself) and rota-

tion group SO(2) using equivalence classes of the form:

[m] = {O(m ◦ λ)
p

λ̇|O 2 SO(2), λ 2 Λ}. The shape

space is then defined as S = {[m]}. The motivation for us-

ing the SRVF representation for modeling shapes of curves

is similar to the function case discussed earlier, i.e., Λ acts

on the SRVF space by isometries under the L
2 metric.

Shape comparisons can be achieved by comparing the

corresponding equivalence classes of SRVFs in the follow-

ing manner. For two curves β1 and β2, represented us-

ing their SRVFs m1 and m2, the shape distance between

them is given by dS([m1], [m2]) = infO∈SO(2),λ∈Λ km1 −
O(m2 ◦ λ)

p

λ̇k, where k · k is the L
2 norm. This shape

distance can be used to define a shape average for a col-

lection of curves β1, . . . , βn, represented using their SRVFs

m1, . . . ,mn, using the notion of the Karcher mean: [m̄] =
argmin[m]∈P

Pn
i=1 dS([m], [mi])

2. Any element of the

Karcher mean orbit can be selected to represent its overall

shape (see [8] for details).

3. Spatio-temporal Registration, Comparison

and Averaging of Trajectories

In this section, we unify the methods presented in Sec-

tions 2.1 and 2.2 to define a framework for spatio-temporal

modeling of myocardial trajectories. Let η1 and η2 rep-

resent two temporal trajectories of closed, planar curves.

The first trajectory η1 represents the evolution of the outer

boundary of the myocardium (denoted βO), while the sec-

(a) η2 (b) η1 (c) Top view of (a)&(b)

Figure 1. Top: Myocardial wall boundaries extracted from image

sequences. (a)&(b) Full inner and outer trajectories (η2 and η1),

respectively. (c) Top view of the combined trajectory.

ond trajectory η2 represents the evolution of the inner

boundary (denoted βI ) (see Figure 1 for an example). Given

two sets of such myocardial trajectories, η1 = (η11 , η
1
2)

and η2 = (η21 , η
2
2) coming from two different subjects,

the first step in our analysis is to find their optimal tem-

poral alignment. For this purpose, we utilize the temporal

function of average areas enclosed by the inner and outer

boundaries. Let AO(t) and AI(t) denote the areas en-

closed by the outer and inner myocardial curves at time

t along the trajectory. These two quantities can be eas-

ily computed and are invariant to common translation and

rotation, and re-parameterization of the myocardial curves.

For each ηj , j = 1, 2 we form a univariate function Aj =
(Aj

O + Aj
I)/2 and use the elastic functional data analysis

framework described in Section 2.1 to estimate the optimal

temporal alignment of the trajectories, denoted by γ∗, based

on the average area functions A1 and A2. We then apply γ∗

to η2 resulting in η2∗(t) = (η21(γ
∗(t)), η22(γ

∗(t))).

Once the two trajectories are temporally aligned, we per-

form spatial alignment in a cross-sectional manner using

the elastic size-and-shape analysis framework presented in

Section 2.2. Then, the distance between two temporally

aligned myocardial trajectories is given by d(η1, η2∗) =
P2

j=1

R 1

0
dS([η

1
j (t)], [η

2∗
j (t)])dt. We make the following

small adjustment at the implementation stage: the optimal

rotation and seed placement are found jointly for the inner

and outer myocardial boundaries. This enforces consistency

between the two boundaries. Optimal re-parameterizations

are determined individually.

Averaging can be performed in a similar manner. Given a

set of myocardial trajectories η1, . . . , ηn, we begin by com-

puting the average area functions A1, . . . , An. We then per-

form multiple function alignment using the Karcher mean

resulting in the warping functions γ∗
1 , . . . , γ

∗
n. These are

subsequently applied to the myocardial trajectories result-

ing in ηj∗(t) = (ηj1(γ
∗
j (t)), η

j
2(γ

∗
j (t))), j = 1, . . . , n. After
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(c) (d) (c) (d)

Figure 2. Two comparisons ((1)-(2)) of simulated trajectories with temporal variability only. (a) Linear interpolation before spatio-temporal

alignment. (b) Shape geodesic after alignment. In both panels, the red and blue curves denote the two given trajectories while the black

and green ones give the interpolations. Each trajectory begins with t = 0 at the bottom of the plot and ends with t = 1 at the top of the plot

with equal time sampling in-between. (c) The average area function for trajectory 1 (blue), trajectory 2 before alignment (red) and after

alignment (green). (d) True temporal warping in blue and recovered temporal warping in red. ((1)=left, (2)=right).

temporal registration, we perform cross-sectional averaging

of the inner and outer myocardial shapes using the Karcher

mean on the shape space S .

4. Experimental Results

In this section, we present comparison and averaging re-

sults on synthetic and real data.

4.1. Simulations

Simulation 1: Temporal Registration. In the first simula-

tion, we study how well we can recover temporal variability

between two trajectories. For this purpose, we generate a

trajectory where the inside and outside boundaries are con-

centric circles with varying radii. Then, we simulate two

different temporal warpings: γ1 = t + 0.99t(1 − t) and

γ2 = t − 0.99t(1 − t). For each test, we apply one of the
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(a) (b)

Figure 3. A comparison of two simulated trajectories with spatial variability only. (a) Linear interpolation before spatio-temporal alignment.

(b) Shape geodesic after alignment. In both panels, the red and blue curves denote the two given trajectories while the black and green

trajectories give the interpolations. Each trajectory begins with t = 0 at the bottom of the plot and ends with t = 1 at the top of the plot

with equal time sampling in-between.

(a) (b)

(c) (d)

Figure 4. A comparison of two simulated trajectories with spatio-temporal variability. (a) Linear interpolation before spatio-temporal

alignment. (b) Shape geodesic after alignment. In both panels, the red and blue curves denote the two given trajectories while the black

and green trajectories give the interpolations. Each trajectory begins with t = 0 at the bottom of the plot and ends with t = 1 at the top of

the plot with equal time sampling in-between. (c) The average area function for trajectory 1 (blue), trajectory 2 before alignment (red) and

after alignment (green). (d) Temporal warping function.
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(a) (b)

(c) (d) (e) (f)

Figure 5. Averaging of trajectories with spatio-temporal variability. (a) Cross-sectional average without spatio-temporal alignment. (b)

Average computed using the proposed method. Each trajectory begins with t = 0 and ends with t = 1 (left to right). (c) Average area

functions for the five trajectories prior to temporal alignment. (d) Temporal warping functions. (e) Average area functions after temporal

alignment. (f) Evolution of the algorithm energy (average variance).

warpings to the generated trajectory and apply our compar-

ison method. In each case, we expect the distance between

the two trajectories to be exactly zero since they are within

a temporal warping of each other. The results are presented

in Figure 2. The proposed method is very accurate at recov-

ering the true temporal variation, even in the presence of

severe warping as in the given examples. In Example (1),

the initial distance between the two trajectories is 0.3202,

which reduces to 0.0055 once the trajectories are tempo-

rally aligned. In Example (2), the initial distance between

the two trajectories is 0.3561, which reduces to 0.0058 af-

ter alignment. In both cases, the distance decreases by over

98% and is very close to zero, as expected. This is reflected

in the interpolation plots in panels (a) and (b). In panel (b),

the geodesic interpolations constitute nearly constant paths,

which is consistent with the very low distance. Panel (c) dis-

plays the average area functions for the two trajectories be-

fore and after temporal alignment. The functions are nearly

identical once temporal registration is accounted for. Panel

(d) confirms that the proposed method is very accurate in

estimating the simulated temporal variability.

Simulation 2: Spatial Registration. In the second sim-

ulation, we study the effectiveness of the spatial registra-

tion portion of the proposed method. Here, we generate

two trajectories with small geometric variability in the form

of a shifting peak on a circle for both inside and outside

boundaries. But, to control the temporal variability we en-

sure that the average areas enclosed by the two boundaries

along each trajectory are the same. Thus, only spatial regis-

tration is required in this case. The results of our alignment

and comparison are presented in Figure 3. As expected,

the proposed method does not perform any temporal align-

ment. The effects of the spatial alignment are clearly seen

in panels (a) and (b). In (a), the linear interpolation be-

tween the two trajectories loses important features and re-

sults in distorted inside and outside shapes. In some cases,

the shapes even contain two peaks, which is never present

in the given data. This is not the case in panel (b) where the

simulated peaks simply shift as one trajectory is deformed

into another. This represents a more natural deformation.

The distance between the original trajectories is 1.7177; it

decreases to 0.8924 due to the spatial alignment using the

proposed method. These improvements also manifest them-

selves in averaging of such trajectories.

Simulation 3: Spatio-temporal Registration. In this sim-

ulation, the two trajectories vary in both time and space.

Again, the spatial variability comes from small geometric

differences due to shifting peaks on circular inside and out-

side boundaries. The temporal variability is simulated by

changing the circle radii in different manners across the two

trajectories. In this example we are interested in the effec-

tiveness of the proposed method to jointly register the tem-

poral and spatial components of the two trajectories. The

comparison is presented in Figure 4. First, we focus on the

temporal alignment. Comparing panels (a) and (b), it can be

clearly seen that there is temporal variability across the two

red-blue trajectories. This is especially clear in the fourth

row from the top. Panel (c) also clearly indicates a misalign-

ment based on the average area functions. Prior to temporal

alignment, the peaks for the two functions occur at approxi-

mately time t = 0.5 for trajectory 1 (blue) and t = 0.85 for

trajectory 2 (red). The proposed method accounts for this

by nonlinearly shifting the red function such that the peaks

match, resulting in the green function. The temporal warp-

ing is given in (d). Next, we focus on the spatial variability.

Again, without spatial alignment the linear interpolation be-

tween the two trajectories contains distorted features. After

alignment, the deformations are more natural. In this exam-

ple, the initial distance (without spatio-temporal alignment)

was 2.0559. After alignment, the distance was 1.2169 (de-
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(1) (2)

(3) (4)

(1) (2) (3) (4)

Figure 6. Top: Four comparisons ((1)-(4)) of myocardial trajectories using the proposed method. Each trajectory begins with t = 0 at the

bottom of the plot and ends with t = 1 at the top of the plot with equal time sampling in-between. Bottom: Average area function for

trajectory 1 (blue), trajectory 2 before alignment (red) and after alignment (green).

crease of over 40%).

Simulation 4: Trajectory Averaging. In the last simula-

tion, we generate five different trajectories that vary tempo-

rally and spatially. We do not display these trajectories for

brevity and note that they are of the same form as those in

Simulation 3. We compute an average trajectory using the

proposed method and compare its spatio-temporal structure

to a simple cross-sectional average without spatio-temporal

registration. The results of this analysis are presented in

Figure 5. From panels (c)-(e) it is evident that the pro-
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(a)

(b)

(c) (d) (e) (f)

Figure 7. Averaging of myocardial trajectories. (a) Given sample. (b) Average computed using the proposed method. Each trajectory

begins with t = 0 and ends with t = 1 (left to right). (c) Average area functions for the four trajectories prior to temporal alignment. (d)

Temporal warping functions. (e) Average area functions after temporal alignment. (f) Evolution of the algorithm energy (variance).

posed method effectively accounts for the temporal vari-

ability based on the average area functions. The subsequent

cross-sectional spatial averaging greatly improves the geo-

metric structure of the inside and outside boundaries in the

average trajectory. A naive average without spatio-temporal

registration contains distorted features as displayed in panel

(a). The average computed using the proposed method,

shown in panel (b), contains sharp peaks and is a better rep-

resentative of the original data. The decrease in the energy

of the averaging algorithm as a function of the number of

iterations is given in (f). The energy decrease is large due to

the spatial registration performed by the proposed method.

4.2. Myocardial Trajectories from medical images

Here, we present four comparisons of myocardial tra-

jectories extracted as endocardial and epicardial boundaries

from cine MRI images during one cardiac cycle. In the bot-

tom of Figure 6, we display the temporal registration results

based on average area functions. It is noted that the align-

ment of peaks and valleys after temporal registration is sig-

nificantly improved. The top portion of this figure displays

the geodesic deformations between the spatio-temporally

registered trajectories. It is more difficult to interpret these

results in terms of the preservation of inside and outside

boundary features along the deformation. Nonetheless, in

each example, the distance decreases significantly due to

the additional spatio-temporal alignment of the trajectories:

(1) 2.5243 to 2.2968, (2) 2.7234 to 2.5006, (3) 3.0279 to

2.8917, and (4) 3.9096 to 2.5702.

Finally, we present an example of averaging of four my-

ocardial trajectories; the results are presented in Figure 7.

The original sample is displayed in panel (a). Panel (b)

shows the average myocardial trajectory computed using

the proposed method. Panels (c)-(e) display the temporal

registration results where a clear improvement in alignment

of the average area functions is observed. Panel (f) shows

the evolution of the average variance as a function of the

number of iterations. As in the case of the simulated exam-

ples, we notice a significant decrease in the variance.

5. Summary and Future Work

We presented a new framework for spatio-temporal anal-

ysis of elastic shape trajectories based on the concepts of

elastic functional data analysis and elastic shape analysis.

The proposed method allows for joint registration, compar-

ison and averaging of such trajectories. We evaluated our

approach using simulated examples as well as real myocar-

dial trajectories. In the future, we plan to focus on devel-

oping generative models for myocardial trajectories, which

can be used for statistical simulation and tracking of the my-

ocardium in cardiac pathologies.
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