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Abstract

Identifying landmarks, points of interest on a shape, is

crucial for many statistical shape analysis applications.

Landmark-based methods dominate early literature; more

recently, a method combining continuous shape outlines

with landmark constraints was proposed. Unfortunately,

methods requiring landmark specification depend on the

number selected and their locations; such annotations are

tedious for large datasets and subject to human interpreta-

tion. This work provides a Bayesian model-based method

for automatic landmark selection, based on good approxi-

mations of landmark set interpolations. We outline an ap-

propriate prior and likelihood, allowing for efficient pos-

terior inference on landmark locations. The model allows

for location uncertainty quantification, an important infer-

ential procedure for further analysis. A method for select-

ing an appropriate number of landmarks is also discussed.

Applications include a simulated example, shapes from the

MPEG-7 dataset, and mice vertebrae.

1. Introduction

The comparison and analysis of shape, the representa-

tion of an object by its outline, lends itself useful in applica-

tions ranging from medical imaging to pattern recognition.

Statistical shape analysis provides tools for summarization

and inference based on shape data. Many of the techniques

in literature resemble standard statistical methods for mul-

tivariate data; however, two complications arise from the

analysis of shapes:

1. The lack of a unifying mathematical representation of

shapes.

2. The nonlinearity of the shape space.

Both issues are caused by the mathematically complex na-

ture of shapes. The definition of shape requires invariance

to all shape-preserving transformations, including transla-

tion, rotation, and scaling, of the objects of interest. As

a result, several different representations of these objects

have been proposed in existing literature. Early methods

(pioneered by Kendall in [7]) used the idea of landmarks, a

finite set of important, labeled points on a curve which help

represent the population of shapes. Using this representa-

tion allows one to apply multivariate statistical techniques

(with some slight adjustments), like those discussed in Dry-

den and Mardia [4] and Small [15]. However, the landmark

approach tends to provide a crude approximation of the ob-

jects of interest; much information about the geometry of

the shape is lost, resulting in possibly biased statistical con-

clusions.

More modern approaches improve on landmark meth-

ods by formulating representations of shapes based on

the parameterized curve defining the outline of an object

([19],[11],[8]). These representations are now infinite-

dimensional, as opposed to their finite-dimensional land-

mark counterparts. Introducing frameworks with curve rep-

resentations for shape analysis requires an additional invari-

ance property to be added to the definition of shape: invari-

ance to re-parameterization (dictates the rate at which the

curve is traversed). Elastic shape analysis outlines meth-

ods to compare curves while incorporating this invariance,

by matching features of curves through the search for an

optimal re-parameterization. One such framework relies on

the square-root velocity function (SRVF), developed in a

series of papers ([16],[6],[9]). This framework is applicable

to both open and closed Euclidean curves. However, recent

work (see [17]) has shown that an improvement in shape

alignment and comparison can be achieved by combining

the SRVF framework with specified landmark points, essen-

tially constraining curve parameterizations; this is known as

landmark-constrained elastic shape analysis, and raises two

important questions:

1. Where and how should the landmarks be selected on a

shape?

2. How many landmarks should be selected?

For some shapes, it is immediately obvious where the im-

portant points lie; however, this is not true in most cases.
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In this work, we develop a method which searches for

landmark locations (and the number of landmarks), based

on simple properties of the shape at hand. More impor-

tantly, the search is Bayesian model-based, which allows

efficient statistical inference to be performed on the pos-

terior landmark locations including uncertainty quantifi-

cation. Finding the landmark locations then allows for

landmark-constrained elastic shape analysis for shape com-

parison and statistical modeling.

The idea of automatic landmark detection is not novel

by any means. Automatic methods for extracting landmark

information have been discussed for many different classes

of shapes; many of them tackle this problem from an im-

age analysis point of view. However, much of the literature

only focuses on specific objects; for instance, Chen et al.

([1]) discuss estimation of X-ray landmarks jointly through

a voting scheme involving displacements of image patches.

The tracking of facial expression landmarks over time us-

ing particle filters with kernel correlation techniques was

proposed by Tie and Guan in [18]. Curvature-based meth-

ods have been discussed by Segundo et al. [14] and Gilani

et al. [5], both of which are also regarding facial objects.

Rueda et al. considered general shapes and employed vari-

ance equalization (in essence placing landmarks at locations

with high variance) in [12]. They also considered local cur-

vature in [13]. However, none of these methods are model-

based. One Bayesian model-based approach was proposed

by Domijan and Wilson in [3], using a segmented image

idea with a model depending on pixel values.

In view of past literature on this topic, the main benefits

of the proposed Bayesian method are three-fold:

1. The method is model-based, rather than relying on de-

terministic algorithms using features of the shape such

as curvature or manual annotation of landmarks, which

can be time consuming.

2. The Bayesian perspective allows for quantifying un-

certainty in landmark locations based on posterior in-

ference; this is very important for subsequent statisti-

cal shape analysis given that most objects do not have

shapes for which the locations of landmarks are cer-

tain.

3. The model is applicable to general shapes of open or

closed curves, and does not rely on intrinsic properties

of the objects under study (e.g., the meaning of fea-

tures on a face).

The rest of this paper is organized as follows. In Section 2,

we provide a detailed description of the proposed Bayesian

model for automatic landmark detection, which relies on

linear interpolations of landmark sets. Section 3 presents a

number of examples where the proposed method is applied

to simulated and complex shapes. Finally, we provide a

summary and some directions for future work in Section 4.

2. Statistical Framework for Landmark Selec-

tion

In this section, we present a Bayesian approach to deter-

mining landmark locations on planar curves. We begin with

some background material related to elastic shape analy-

sis, which is used for specification of the model; the spe-

cific prior and likelihood specifications follow. Once the

prior and likelihood are determined, the posterior is derived

(up to a proportionality constant). Finally, an importance

sampling technique used for sampling from the posterior is

discussed, along with a heuristic approach for selecting the

number of landmarks.

2.1. Elastic Shape Analysis Preliminaries

Let β : D → R
2 denote an absolutely continuous, planar

curve which represents the outline of a particular object of

interest. Here D is the curve domain with [0, 1] for open and

S
1 for closed curves. The goal is to automatically identify

the locations of a fixed number of landmarks, say k, on β.

In this framework, we assume k is relatively small, which is

reasonable considering literature on landmark-based shape

analysis. Choosing k can be a difficult task; one approach is

discussed in Section 2.5. Notice that β is parameterized by

t ∈ D. Thus, let θ(1), θ(2), . . . , θ(k) ∈ D represent values of

the parameter t, which correspond to landmark locations on

β. Without loss of generality, assume θ(1) < θ(2) < . . . <

θ(k).

At this point, we must distinguish between open curves

and closed curves. Closed curves require β(0) = β(2π),
whereas open curves do not. The importance in differen-

tiating between these types of curves arises because while

open curves have a natural starting and ending point, closed

curves do not; any point on the curve can be treated as the

starting and ending point. In practice, closed curves are pro-

vided sequentially, with the first point given equal to the last

point. We desire our Bayesian method to be independent of

the chosen starting point.

In order to compare two shapes β1 and β2, a metric must

be specified on the shape space. This metric must be invari-

ant to rigid motion, scaling, and re-parameterization. Un-

fortunately, as shown in several places including [16], the

standard L
2 metric is not parameterization invariant. To ad-

dress this problem, Srivastava et al. ([16]) define the square-

root velocity function (SRVF) as q(t) = β̇(t)√
|β̇(t)|

, where | · |
is the Euclidean norm in R

2. The original curve β can be

recovered from q up to a translation; in other words, there

is a bijective map between β and the pair (β(0), q). The

benefits of the SRVF representation include:
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• The unit q vector at t represents the direction of the

tangent vector to β(t).

• The squared norm of q(t) is the instantaneous speed of

β(t).

• Because the SRVF only depends on β̇, invariance to

translation is automatic.

• The representation is applicable to both open and

closed curves.

• Finding distances between SRVFs via the L
2 metric is

equivalent to measuring differences between the corre-

sponding curves using the elastic metric.

Invariance to scaling, rotations, and re-parameterizations

can also be obtained through appropriate restrictions on the

space of SRVFs and algebraic structures; details can be

found in [16]. The importance of the SRVF for our pur-

pose comes from the last two items. The ability to present

a unified framework for both open and closed curves (with

some modifications for closed curves) is rather beneficial.

Additionally, the equivalence of the L
2 metric for SRVFs

to a special case of the elastic metric for curves allows a

clear interpretation of the distance between SRVFs as the

amount of bending and stretching required to transform one

shape into the other (see [16] for more details). In a sense,

this describes the length of the path of deformations from

one shape to the other, and as will be seen later, is used in

the specification of the likelihood in the proposed Bayesian

model. A larger value of this metric indicates the need for

more bending and stretching for shape deformations.

2.2. Prior Specification on Landmark Locations

The first task is to specify a prior distribution for θ =
(θ(1), θ(2), . . . , θ(k)). For simplicity, we describe this for

the case of D = [0, 1] and note that a simple extension

can be used for D = S
1. Since θ(1), θ(2), . . . , θ(k) ∈ [0, 1]

by definition, a naive prior specification would assume

θ1, θ2, . . . , θk
iid∼ U(0, 1); i.e., for i = 1, . . . , k,

f(θi) = I(0 < θi < 1) (1)

where I is the indicator function. However, this creates two

issues: (1) landmark locations are certainly not indepen-

dent, and (2) allowing each component to be independent

and identically distributed from U(0, 1) does not guarantee

that θ1 < θ2 < . . . < θk (which was imposed in Sec-

tion 2.1). These problems can be resolved by noticing that

θ(1), θ(2), . . . , θ(k) are the order statistics of θ1, θ2, . . . , θk,

since θ(1) < θ(2) < . . . < θ(k); the joint distribution of

all order statistics can be derived with not much effort if the

marginal distributions of each component are known and in-

dependent. Therefore, our noninformative prior distribution

on the landmark locations is given by:

π(θ(1), θ(2), . . . , θ(k)) = k! I(0 < θ1 < θ2 < . . . < θk < 1)
(2)

We also explored other prior distributions; however, many

of these priors did not scale favorably with the number of

landmarks in terms of sampling efficiency. As seen later,

the proposed prior does not have this problem.

2.3. Likelihood Specification

Next, we choose a likelihood function for the data (β)

given landmark locations θ. As a pre-processing step, we

rescale β to have unit length (by rescaling its correspond-

ing SRVF to have L
2-norm equal to one); recall that this

does not impact the object’s shape. The motivation for

the proposed likelihood comes from defining landmarks as

point sets, which are important for representing the shape

of interest. Suppose θ = (θ(1), θ(2), . . . , θ(k)) are a sam-

ple of parameter values at which landmarks are located on

β. Let Lθ be the linear interpolation which passes through

β(θ(1)), β(θ(2)), . . . , β(θ(k)). For open curves, we addi-

tionally specify that Lθ passes through the endpoints β(0)
and β(1). Both β and Lθ can be represented by their corre-

sponding SRVFs, denoted qβ and qLθ
, respectively. Then,

the elastic distance between the two curves can be calcu-

lated using the L
2 distance between their corresponding

SRVFs:

d(β, Lθ) =

√

∫

D

|qβ(t)− qLθ
(t)|2 dt (3)

This distance calculation for closed curves requires an ad-

ditional seed alignment, since it should not depend on the

starting and ending point of the two curves. In practice, the

starting point on the original curve β is shifted such that

it coincides with the starting point of the linear interpola-

tion, i.e., θ(1). After posterior samples are drawn, θ is then

shifted to coincide with the first posterior sample (as a ref-

erence point for display purposes).

Calculating the distance in Equation 3 provides a mea-

sure of how well the sampled landmark locations represent

the underlying curve β: a small value of d means that the

linear interpolation through the sampled θ represents the

shape well, in relation to other possible sampled landmark

locations. Figure 1(a) shows θ which provide a good linear

interpolation for the given curve shape (small value of d).

Panel (b) shows an example of a poor linear interpolation

(large value of d). It is clear that the likelihood should be

much greater for the good linear interpolation, as the bad

one features landmark points that are not very representa-

tive for the given curve.

After calculation of d, the likelihood can be expressed as

f(β|θ, c) ∝ c−N exp

(−1

2c
d2(β, Lθ)

)

(4)
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(a) (b)

d(β, Lθ) = 0.2763 d(β, Lθ) = 0.6497

Figure 1. (a) Landmarks which produce a linear interpolation re-

sulting in a small distance d (high likelihood). (b) Landmarks

which produce a linear interpolation resulting in a large distance d

(low likelihood). The original curve is shown in blue with sampled

landmarks θ in red. The linear interpolation is given in yellow.

Distance between original curve and interpolations are provided.

where c represents the variance. The given curves are

infinite-dimensional objects; however, in practice, we sam-

ple them using a finite number of points N . That is, we

model the pointwise differences between the SRVFs of

the original curve β and the linear interpolation using an

isotropic multivariate Gaussian distribution with zero mean:

qβ − qLθ
∼ N(0, cIN ), where IN is an N × N identity

matrix. Looking at the likelihood, we also require a prior

on the variance parameter c, which is closely related to the

scale of the distances d. Due to the imposed unit length

constraint, this distance is bounded above by π (see [16] for

details). We can therefore specify a noninformative prior on

c as πc = U(0, π).

2.4. Posterior Distribution and Sampling

Now that the prior and likelihood distributions have been

fully specified, the posterior can be obtained using Bayes’

rule (up to a proportionality constant):

π(θ, c|β) ∝ π(θ)πc(c)f(β|θ, c) (5)

The posterior distribution provides information about the

optimal landmark locations and likelihood variance, given

the observed shape. In our setup, the variance c is a nuisance

parameter, which we integrate out. Thus, the posterior we

are interested in is given by:

π(θ|β) ∝ π(θ)

∫ π

0

πc(c)f(β|θ, c)dc

∝ π(θ)

∫ π

0

f(β|θ, c)dc = π(θ)f(β|θ)
(6)

Sampling from this posterior allows for meaningful pos-

terior inference for landmark locations; however, the pos-

terior as given is difficult to sample from. Thus, proceed-

ing typically requires use of Markov chain Monte Carlo

(MCMC) methods. However, since we specify the number

of landmarks k to be fixed and relatively small, this low-

dimensional posterior can be approximately sampled using

the Sampling-Importance-Resampling (SIR) algorithm. To

perform this, we first draw M samples θ1, . . . ,θM from

π(θ) (recall that each θ is k-dimensional). In order to

sample from the target distribution π(θ|β) ∝ π(θ)f(β|θ),
importance sampling weights are calculated for each sam-

ple. In the present model, we take the importance func-

tion to be the same as the prior resulting in the follow-

ing weights: w(θi) = f(β|θi). Then, a sample of size

s << M is taken proportionally to the weights with re-

placement from the original sample θ1, . . . ,θM ; in other

words, for i = 1, . . . ,M , the probability of sampling θi

is given by
w(θi)∑
M

i=1
w(θi)

. The resulting sample of size s is a

sample from the posterior distribution π(θ|β).

2.5. Selecting the Number of Landmarks

Choosing the number of landmarks k is not trivial. Some

objects, such as the toy example in Figure 1, appear to have

distinct landmark locations. Thus, selecting the number of

landmarks for these cases is fairly straightforward. How-

ever, a general object from a given dataset may not share

the luxury of having easy-to-specify landmarks. Thus, we

also seek a method for determining k in the given frame-

work. One of the main issues with selecting k relates to the

classic overfitting problem in statistics. As one adds more

and more landmarks, the linear interpolation approximation

of β improves. But, adding too many landmarks compli-

cates posterior inference and interpretation.

The problem of selecting k here resembles that of many

other statistical problems where it is desired to select a rel-

atively small number of components or groups to represent

higher-dimensional data. For instance, principal component

analysis (PCA) is a popular method for representing high-

dimensional data by many fewer, but important, uncorre-

lated dimensions. Statisticians often perform PCA on data

prior to conducting analyses; thus, the number of principal

components to choose is a crucial step. Often, the number

of components is selected by the percentage of variation that

the components explain. Thus, as more components are in-

cluded, the percentage of variation explained starts to level

off, i.e., the marginal utility of including additional prin-

cipal components decreases. This usually occurs at the “el-

bow” of a plot of percent variation explained versus number

of principal components. A similar plot can be obtained to

help choose the number of clusters k in k-means clustering,

for example. We employ a similar method in our approach.

For a specified k, the posterior sample of θ1, . . . ,θs can

be used to form linear interpolations Lθ1
, . . . , Lθs

. Then,

d2(β, Lθi
) can be computed for i = 1, . . . , s. Finally, the

average squared distances for all posterior samples are com-

pared for different values of k in a plot similar to the one

described in the previous paragraph. One expects a smaller

squared distance as k increases (although this is not always

true due to the complexity of shapes and sampling variabil-
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ity). Based on this plot, k can be chosen as the “elbow”, or

the point in the plot for which adding more landmarks does

not result in much decrease in the average squared distance.

An example of this plot for the toy example, described in

Figure 1, is given in the top left panel of Figure 2. It is

clear that after reaching k = 4, the average squared dis-

tance begins to level off and any additional landmark does

not significantly improve the interpolated curve representa-

tion.

3. Examples

In this section, we illustrate the use of this Bayesian

model-based landmark detection method on some simulated

and real data examples. Some of these examples have land-

marks which are easily detectable; others are not quite as

simple, and thus the Bayesian methodology proves very

useful. For all closed curve examples, we chose [0, 1] as

the curve domain for simplicity.

3.1. Simulated Example

First, we consider the parameterized curve defined by the

function (x, f(x)) = (x, sin(4πx)), 0 ≤ x ≤ 1. The num-

ber of landmarks (k = 4 as seen in Figure 2) and locations

of the landmarks (at the “peaks” and “troughs” of the curve)

for this shape appear to be fairly intuitive. For this example,

M = 106 samples are initially drawn from the prior distri-

bution. Using the corresponding likelihoods, we resample

s = 500 sets of θ. Figure 2 shows the given shape with the

landmark locations plotted in different colors. The posterior

landmark locations are consistent with what is expected.

The Bayesian methods used allow for visualization of the

marginal histograms of the sampled posterior landmark lo-

cations to illustrate the uncertainty in these locations. For

this example in particular, the locations are easily identifi-

able; the unimodality of the histograms reflects this, as well

as the low spread in the sampled θ.

Interesting patterns emerge for this example when k 6= 4.

Figure 3 shows sampled landmark locations for k = 2, 3, 5.

For k = 5 (which is one more landmark than necessary), the

model does not appear to know where to place the fifth land-

mark, thus impacting the locations of the other four. This is

in contrast to k = 2, 3, which show multimodal locations

because there are more important geometric features than

landmarks specified. For each k, the sample standard de-

viation was also calculated for each component of θ, and

the average was taken across components; a higher value

would indicate more uncertainty overall in landmark place-

ment. For the k = 4 case, this average was 0.0302. The

figure indicates the average standard deviations were much

greater for the other values of k selected, all of which are

larger, even when k = 5.

Figure 2. Top left: Plot of average squared distance vs. k. Top

right: The curve of interest β with scatter points representing the

posterior sample of landmark locations (red = landmark 1; yellow

= landmark 2; purple = landmark 3; green = landmark 4). Bottom:

Histograms of posterior samples for each of the four landmarks.

k = 2 k = 3 k = 5

0.2536 0.1341 0.0741

Figure 3. Sampled landmark locations for k = 2, 3, 5 for the sim-

ulated example. The average posterior sample standard deviation

is given below each plot.

3.2. MPEG­7 Data Examples

Next, we consider several complex objects from the

MPEG-7 dataset1. Figure 4 shows four example shapes

from this data along with landmark locations samples from

the posterior based on the proposed Bayesian models (with

k chosen according to the proposed method). For all exam-

ples in this section, we use M = 105 and s = 500 (except

the stingray, which uses s = 250).

Unfortunately, specifying the number of landmarks for

these complex objects is a much more difficult task than for

the toy example. In addition, landmark locations are not as

clear. We examine the proposed method in detail for the

half-circle shape and present the results in Figure 5. Our

1http://www.dabi.temple.edu/˜shape/MPEG7/dataset.html
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k = 4 k = 5 k = 4 k = 4

Figure 4. Four different shapes from the MPEG-7 dataset with their posterior landmark sample locations plotted in different colors.

landmark detection method is run for k = 3, . . . , 10, and

the average squared distance is computed for the posterior

sampled θ. While not as pronounced, k = 4 appears to

be the point beyond which further decreases to the average

squared distance are inconsequential. Thus, we select k = 4
and proceed with posterior sampling. The posterior location

of landmarks 3 and 4 (which are located close to the points

of high curvature) feature small variances and unimodality,

whereas landmarks 1 and 2 are much more variable. This

again matches our intuition.

The MPEG-7 dataset features even more complex

shapes, including the stingray displayed in Figure 6. The re-

quired number of landmarks in this example is not as clear.

The top left panel of Figure 6 appears to indicate that select-

ing k = 5 is sufficient for the landmark set. The histograms

display the posterior samples obtained from the SIR algo-

rithm. Landmarks 1, 2, and 5 appear to be exactly where

most would place them, i.e., at the two wings (yellow and

blue landmark points) and the snout (red landmark points).

Landmarks 3 and 4 are slightly less clear and exhibit much

more variability. Again, the dependence in landmarks is ev-

ident here. There are some infrequent samples of landmark

3 at larger parameter values (e.g., the purple points that are

mixed in with the green points along the stingray tail). In or-

der to compensate for that different landmark location, the

corresponding locations for landmark 4 also occur at larger

parameter values relative to the rest of the histogram (the

small mode around t = 0.8 corresponding to green points

deviating from the tail). This dependence allows the linear

interpolation to still be fairly close in distance to the original

stingray outline yielding high likelihood values and corre-

sponding posterior densities.

3.3. Mouse Vertebrae

The R package ’shapes’2 contains a real dataset featuring

the outlines of the second thoracic (T2) vertebrae of mice,

some of which were genetically selected for either small

or large weights, and the rest being from a control group

which were not genetically selected. Further description of

2https://cran.r-project.org/web/packages/shapes/index.html

Figure 5. Top left: Plot of average squared distance vs. k. Top

right: Half-circle β with scatter points representing the posterior

sample of landmark locations (red = landmark 1; yellow = land-

mark 2; purple = landmark 3; green = landmark 4). Bottom: His-

tograms of posterior samples for each landmark.

this data is provided in [4, 2]. We demonstrate the idea of

selecting the number of landmarks k on the T2 vertebrae

of a mouse from the large group as follows. First, posterior

samples are drawn for landmark locations for k = 3, . . . , 10
(with M = 105). For each k, the average distance of the lin-

ear interpolation of the posterior samples to the actual shape

is computed and plotted in the top left panel of Figure 7. A

large decrease in the average squared distance occurs from

three to four landmarks; however, after k = 4, the decrease

in the average squared distance is not as substantial, mean-

ing that there is a lack of utility in adding additional land-

marks.

Thus, we select k = 4 and apply the proposed Bayesian
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Figure 6. Top left: Plot of average squared distance vs. k. Top

right: Stingray β with scatter points representing the posterior

sample of landmark locations (red = landmark 1; yellow = land-

mark 2; purple = landmark 3; green = landmark 4; blue = landmark

5). Bottom: Histograms of posterior samples for each landmark.

model for landmark detection. Figure 7 illustrates the sam-

pled landmark locations along with the marginal posterior

sample histograms. Again, all histograms have one distinct

peak. However, we notice the slight multimodality of land-

marks 1 and 3. These correspond to the upper and lower

edges of the vertebrae. The stray peaks observed here illus-

trate the dependence of landmarks on each other. The high

values of posterior sampled θ(1) correspond to low values of

posterior sampled θ(3) in order to keep the distance between

the linear interpolation and the vertebra relatively small (see

Figure 8 for an example). Landmark 2 (yellow) displays the

least amount of variation in location - this appears consis-

tent with the idea that any linear interpolation going through

that part of the vertebra must be relatively close to the point

of maximum absolute curvature. Otherwise, the distance

will grow very quickly.

Figure 7. Top left: Plot of average squared distance vs. k. Top

right: Mouse vertebrae β with scatter points representing the pos-

terior sample of landmark locations (red = landmark 1; yellow =

landmark 2; purple = landmark 3; green = landmark 4; blue =

landmark 5). Bottom: Histograms of posterior samples for each

landmark.

Figure 8. Example of sampled θ which illustrates landmark de-

pendence.

3.4. Additional Posterior Summaries

In addition to graphical summaries of posterior samples

of θ, numerical summaries can provide insight into land-

mark locations and quantification of uncertainty. Mean and

median values of θ can be calculated in the usual manner

for open curves; however, some care must be taken when

dealing with closed curves, as the domain is circular. In

addition, the maximum a posteriori (MAP) estimate can be

defined as

θMAP = argmax
θi

w(θi) (7)
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(a) (b) (c)

Mean (0.013, 0.179, 0.500, 0.824) (0.038, 0.440, 0.724) (0.014, 0.280, 0.424, 0.565, 0.802)
Median (0.010, 0.169, 0.503, 0.837) (0.043, 0.440, 0.726) (0.011, 0.284, 0.390, 0.505, 0.804)

MAP (0.008, 0.169, 0.517, 0.848) (0.049, 0.442, 0.728) (0.005, 0.283, 0.379, 0.487, 0.763)

Figure 9. Three examples, each with the posterior mean, median, and MAP of θ (mean = circle, median = asterisk, MAP = diamond, 95%

credible interval endpoints = square). The colors match for each component of θ (red = 1, yellow = 2, purple = 3, green = 4, blue = 5).

where w(θi) are the importance weights for i = 1, . . . , s
(s being the number of posterior samples drawn from the

SIR algorithm) described in Section 2.4. Variability can be

addressed by constructing credible intervals using the per-

centiles of the posterior samples of θ for each component.

Figure 9 illustrates all of these summaries for three differ-

ent examples (mouse vertebra in (a), heart in (b), cup in

(c)); the curve outline is superimposed with markers for

mean, median, and MAP locations, as well as endpoints

for 95% credible intervals for each landmark. Note that on

the plot, markers may overlap (especially for landmark lo-

cations with very low variability). This is evident, for in-

stance, in the tail of the mouse vertebra; the landmark lo-

cations in purple appear to display low variability, and thus

the mean, median, and MAP estimates all approximately

coincide. The heart in Figure 9, with k = 3, is fairly easy to

annotate landmarks on. The credible intervals reflect this, as

the amount of variability in locations is small, and there is

no overlap in intervals between landmarks. However, com-

plex features on shapes may cause vastly different estimates

in the mean, median, and MAP. The green landmarks in col-

umn (c), for example, are widely variable in location from

the base of the cup to the handle itself; the MAP and median

locations are fairly close together, but the mean location is

further away and clearly impacted by some extreme sam-

ples drawn toward the cup’s base.

4. Summary and Future Work

In this paper, we proposed a novel Bayesian model for

automatic selection of landmark locations on planar curves.

We also outline a simple heuristic method for choosing an

adequate number of landmarks. A key component of our

Bayesian model is the dependence of the likelihood on the

distance between a linearly interpolated curve through sam-

pled landmark locations and the original curve. We choose a

noninformative prior on the landmark locations and capture

dependence through order statistics. We perform efficient

posterior sampling using the SIR algorithm with importance

weights equal to the likelihood specified in the model.

There are several future directions for this method. One

is related to the selection of the number of landmarks k. In-

stead of relying on a simple heuristic based on the “elbow”

in the average squared distance plots, a more reasonable ap-

proach would be to put a prior on k and infer that quantity as

well. Clearly, for some shapes, there could be large uncer-

tainty in the number of landmarks to specify, especially if

landmark locations are also very uncertain. This addition to

the model would require a different way of sampling from

the posterior, since the size of the parameter space changes

dimension depending on k. Another direction is to con-

sider the impacts of prior specification on θ and c on poste-

rior inference through sensitivity analysis. Finally, we will

explore the idea of posterior inference on θ given a sam-

ple of shapes (for instance many different T2 vertebrae of

mice), rather than just one shape. Doing so will allow for

automatic annotation of shapes to occur jointly (using much

more information) instead of the current proposal of select-

ing landmarks on each shape individually (as a doctor may

do with medical images, for example). A more ambitious

goal is to extend this work to detect landmarks on surfaces,

which has been of recent interest in graphics and medical

imaging (see [10] and [20]).
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