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Abstract

Gradient histogram based descriptors, that are con-

structed using the gradient magnitudes as votes to orien-

tation bins, are successfully used for Pedestrian Detection.

However, their performance is hampered when presented

with datasets having many variations in properties such as

appearance, texture, scale, background, and object pose.

Such variations can be reduced by smoothing the images.

But, the performance of the descriptors, and their classifiers

is affected negatively by this, due to the loss of important

gradients along with the noisy ones. In this work, we show

that the ranks of gradient magnitudes stay resilient to such a

smoothing. We show that a combination of image smoothing

and the ranks of gradient magnitudes yields good detection

performances, especially when the variations in a dataset

are large or the number of training samples is less. Exper-

iments on the challenging Caltech and Daimler Pedestrian

datasets, and the Inria Person dataset illustrate these find-

ings.

1. Introduction

Pedestrian Detection is a significant task in automotive

applications, surveillance systems, and assistive technolo-

gies for the challenged among others. Apart from the com-

mon challenges like clothing and pose variations, there are

also additional ones such as clutter, scale changes, blur,

Gaussian noise, compression artefacts, illumination and

background changes. Any reliable pedestrian detection sys-

tem will have to address these challenges to meet the strin-

gent demands posed by real-world scenarios.

The literature is replete with attempts to solve the prob-

lem of pedestrian detection. [16, 22] and [27] suggested

the use of Haar or Haar-like wavelets to learn the patterns

of pedestrians and detect them in a sliding window manner.

To handle more variations, Dalal and Triggs [4] presented

their landmark paper that used the Histograms of Gradi-

ent features with an SVM classifier. HOG [4] was subse-

quently improved by incorporating colour features [17, 28],

texture reasoning [29, 24], motion cues [30], modifying

and extending to multiple scales [13], improving run-time

efficiency [32], and being used as a low-level component

for other features in [1, 11]. Felzenszwalb et al. [10] in-

cluded contrast-sensitive gradient directions and texture in-

formation, following an interesting eigenvalue analysis of

HOG vectors. This revealed that the top few HOG eigen-

vectors exhibit a certain pattern that can be used to reduce

the dimensionality of HOG. Dollar et al. [8] have pro-

vided an extensive survey of the state-of-the-art in Pedes-

trian Detection. They benchmark the performance of many

descriptors such as HOG-LBP [29], Felzenszwalb’s HOG

[10], Multiple Features and Colour Self Similarity [28], and

those proposed in Partial Least Squares Analysis [24], Fea-

ture Synthesis [1]. They also observe that the information

contained in gradient histograms is an important compo-

nent of most of the competitive descriptors. Recent work

[31, 5, 23, 7, 2, 21, 3, 6] use information such as mo-

tion, spatially-pooled covariance [26], features of different

colour spaces or a combination of these in addition to gra-

dient histograms with Random Forests classifier. [2] also

studies the effect of using appropriate feature pools for ef-

fective Pedestrian Detection. Works based on deep-nets

have also been attempted, refer [18, 19, 20].

Dollar et al.[8] also introduce a dataset for on-board

pedestrian detection whose images have many variations,
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such as object pose, appearance, texture, scale, and back-

ground changes that challenge a pedestrian detector. These

variations can be suppressed to an extent by smoothing the

images. However, doing so inherently affects the gradient

magnitudes which leads to a reduction in the detection rate.

As smoothing is a non-linear change, linear normalization

techniques are not sufficient to recover the important gradi-

ents. In this paper, we show that a non-linear normalization

technique based on the ranks of gradient magnitudes within

a window is able to recover these gradients to a large extent.

To suppress any spurious gradients, it is combined with a

simple min-max normalization technique. This combina-

tion gives good gains in performance especially in datasets

with many variations.

Apart from the notable attempts in [14, 29] that use LBPs

or their variations, non-linear ranking techniques have sel-

dom been used for the task of Pedestrian Detection. We

propose new techniques which use the robust ranks of the

gradient-magnitudes of the pixels within a window to form

the votes to the bins of the orientation histograms. The

major contribution of this work is to improve gradient his-

togram based descriptors on challenging real-world scenar-

ios that contain many variations. We show that smoothing

the images in the training and testing phases, followed by

our normalization techniques can increase performance by

good margins.

We validate our study on the Caltech Pedestrian Detec-

tion dataset [8], the Daimler Pedestrian Dataset [9] and the

Inria Person Dataset [4]. The proposed techniques have

achieved an improvement over HOG by ~20% on the Cal-

tech [8] dataset, and by ~12% on the Daimler [9] set in the

acceptable operating ranges on the FPPW axis. We also

achieve competitive results on the Inria person dataset [4].

Further, we perform experiments by reducing the sizes of

the training sets in order to show the capacity of the pro-

posed techniques to effectively represent many variations of

the object (i.e. pedestrian). We also demonstrate the abil-

ity of the proposed techniques to work in conjunction with

other complementary information to improve their individ-

ual performances.

The paper is organized as follows. In Section 2, we

present the motivation to smooth the images and use the

ranks of gradient magnitudes in building the descriptor.

Section 3 describes the proposed techniques in detail,

analysing their behaviour and gives the construction of the

feature descriptors. Experimentation and results are pre-

sented in Section 4. Finally, in Section 5, we summarize

and conclude this paper.

2. The Effect of Smoothing on Variations

In any real world pedestrian dataset, such as the Cal-

tech Dataset [8], there exist a large number of variations

in the positive images, apart from the usual pose and cloth-

(a) σ = 0 pixels

(b) σ = 4 pixels

Figure 1. Figure best viewed in colour. The average intensity

images for Inria, Daimler and Caltech datasets, before and after

smoothing, are shown in Figures 1(a) and 1(b). These give a good

measure of the variations present in each dataset. The images were

smoothed by convolving with a Gaussian kernel of size 4 pixels.

ing variations, such as clutter, scale changes, blur, Gaussian

noise, compression artefacts, and background and illumina-

tion changes. These can greatly affect the performance of

any pedestrian detection algorithm. Figure 1(a) shows the

average intensity images for three datasets - Inria [4], Daim-

ler [9], and Caltech [8]. Essentially, these show the extent

of the variations that are present in each dataset. Evidently,

the image for the Inria dataset in Figure 1(a) is quite sharp

and appears more human-like, implying the lesser number

of variations in this dataset. Hence, the computation of gra-

dients at the finest scale, without smoothing was suggested

by Dalal and Triggs [4].

In datasets with large variations, however, we observe

that smoothing can decrease the impact of these varia-

tions as it reduces clutter, noise, compression artefacts, and

weaker gradients. Figure 1(b) portrays the average images

of the blurred counterparts shown in Figure 1(a). We notice

that all the images have improved in their portrayal of the

average ‘pedestrian’.

However, smoothing (which can also be inherently

present in images in the form of motion blur or defocussing)

strongly affects gradient magnitudes in a non-linear manner.

As can be seen in Figure 2, stronger gradients (which occur

on the right ends of the histograms in Figure 2) are espe-

cially affected. These gradients are more important as they

might represent object contours, and hence, it is imperative

to retain them in order to have a better classification or de-
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(a) σ = 0 pixels

(b) σ = 4 pixels

Figure 2. Figure best viewed in colour. The effect of smoothing

on gradient magnitudes. The histograms of gradient magnitudes

for a positive window from the Caltech dataset [8] before and after

smoothing are shown in Figures 2(a) & 2(b). The stronger gradient

magnitudes (on the right side of the histograms) that can represent

object contours are shifted significantly under smoothing, as seen

in Figure 2(b).

tection result. Furthermore, since smoothing is a non-linear

process, a normalization scheme, such as L2-hys ∗ which

is a clipping function and so is essentially (piece-wise) lin-

ear, cannot deal with such losses effectively. Hence, a non-

linear normalization scheme needs to be adopted. Such a

normalization can effectively recover gradients that were

lost in the smoothing. This could result in better detection

rates, since the smoothing gets rid of clutter and unimpor-

tant gradients.

3. Robust ranking of gradient magnitudes

The objective of the ranking procedure is to effectively

recover important gradients that were lost in smoothing the

image. This needs to be done keeping in mind the non-

linearity imposed by the process of smoothing. The gradi-

ent magnitudes are ordered such that the ranks are designed

to be robust to non-linear changes in gradient magnitudes

induced by smoothing.

To this end, the space of gradient magnitudes in the win-

∗L2-hys proposed by Lowe [12] curbs down the effect of large gra-

dients by L2 normalizing the orientation histogram followed by clipping

each value to be no larger than 0.2.

dow is partitioned into R ranges such that each range en-

compasses nearly an equal number of gradient magnitude

values. The limits of each range are decided in the following

manner. Let m(X) denote the gradient magnitude of X. Let

S = {mi}
n−1

i=0
be the set of distinct, sorted gradient magni-

tudes of the window, where i is the index of mi when the

gradient magnitudes are sorted. Partition S into R ranges

(an integer parameter) using {mγ
0
, ..., mγ

R−1
, mγ

R
=

m
n−1

} such that

S =

R−2
⋃

i=0

[

mγ
i
, mγ

i+1

)

⋃

[

mγ
R−1

, mγ
R

]

, mγ
i
≤ mγ

i+1

We define index γ
i

as:

γ
i
= i

⌊ n

R

⌋

, 0 ≤ i < R < n, i ∈ Z≥0 (1)

The rank, r
nl
(X), of pixel X is defined as

r
nl
(X) =











i+ 1, mγ
i
≤ m(X) < mγ

i+1
,

R, mγ
R−1

≤ m(X) ≤ mγ
R
,

0 ≤ i ≤ R− 2, i ∈ Z≥0

For example, if R = 10, and the number of distinct gra-

dient magnitudes in the window are 100, then the pixels of

the window having the first 10 gradient Magnitude values

are assigned rank 1, the next 10 are assigned rank 2, and

so on. This type of a division ensures that under non-linear

changes induced by smoothing, the rank of a particular pixel

remains the same, because the ranges move accordingly. In

our experiments, we have used R = 256.† Although Ordi-

nal and Spatial Intensity Distribution (OSID) by Tang et al.,

[25] use the technique in Equation 1 for pixel intensities,

their method has been primarily designed for feature point

matching and making it robust against monotonic changes

in illumination, while the proposed technique operates in

the gradient space and aims at making an object descriptor

robust for classification or detection.

In case of non-linear changes brought about by smooth-

ing, the ranks are affected little, see Figure 3. The fig-

ure shows the distribution of ranked-magnitudes of a pos-

itive window from the Caltech dataset [8] before and after

smoothing the window with a Gaussian kernel of size 4 pix-

els. We notice that the distributions of ranks of the original

and smoothed images are similar, highlighting the robust-

ness of the usage of ranks over that of gradient magnitudes.

As the aforesaid scheme attempts to maintain an al-

most equal number of unique gradients per range, some

†If R = 256, the procedure is similar to histogram equalization of

gradient magnitudes, while setting R = 1 discards the magnitudes com-

pletely. The latter is comparable to LBP [15] in the way pixel information

is used.

106



(a) σ = 0 pixels

(b) σ = 4 pixels

Figure 3. Figure best viewed in colour. The effect of non-linearly

ranking the gradient magnitudes is demonstrated here. The distri-

bution of the ranks, r
nl

(for R = 256), of the pixels of the pedes-

trian window, before and after smoothing, are shown in Figures

3(a) and 3(b). The distribution changes little under smoothing.

of the low-valued gradients can become spurious, and so

one could employ a linear ranking procedure r
minmax

using

min-max normalization to curb these.

Simply put, S is partitioned using {m0, m1, ..., mR}
into R ranges such that they are all equi-sized. Here, m0

& mR are the minimum and the maximum gradient magni-

tudes.

The rank, r
minmax

(X), of pixel X, using this normaliza-

tion, is defined as

r
minmax

(X) =











1, m0 ≤ m(X) ≤ m1

i+ 1, mi < m(X) ≤ mi+1,

1 ≤ i < R, i ∈ Z≥0

Please note that the ranking scheme r
minmax

, although

helpful in suppressing spurious gradients, is a linear method

and so suffers from the demerits explained in Section 2. It

can, however be combined with the ranking scheme r
nl

as

they yield complementary benefits. The experimental Sec-

tion 4 shows the efficacy of such a combination in terms of

classification performance.

We use orientation histograms to build the feature vec-

tors of images. The construction of the orientation his-

tograms closely follows that of HOG[4, 10]. It is to be

noted that the orientation bin to which a pixel contributes

its vote is calculated based on its gradient direction. The

proposed descriptors are obtained by using the ranks (of

gradient magnitudes), instead of the raw gradient magni-

tudes, to form the votes to the bins of the orientation his-

tograms. Specifically, the vote that a pixel contributes is its

rank rather than its gradient magnitude. By individually us-

ing either r
nl

or r
minmax

on Dalal’s HOG [4], and its deriva-

tive felz by Felzenszwalb et al.[10], we obtain 4 variants:

r-nl HOG, r-minmax HOG, r-nl felz and r-minmax felz. A

fifth variant of Dalal’s HOG, r-minmax-nl HOG is obtained

by concatenating the descriptors obtained by the two rank-

ing schemes and aims to tap the advantages of both.

4. Experimentation and Results

Descriptors based on gradient histograms and their many

variants have been successfully used for the task of Pedes-

trian Detection. Dalal’s [4] & Felzenszwalb’s HOGs [10],

HOG-LBP [29], Multiple Features and Colour Self Similar-

ity [28], PLS [24], Colour Segmentation Features [17], and

Integral & Aggregated Channel Features [7, 5, 31], Roerei

& Spatially-pooled detectors [21, 2] either add information

to HOG-like gradient histograms or use such gradient his-

tograms in an appropriate form. In this paper, we compare

the performances of the proposed techniques with the base-

line performances of Dalal’s [4] and Felzenszwalb’s HOGs

[10]. It would be illustrative to study the effect of the pro-

posed methods on the other variants in a future work.

For all the experiments, linear kernel SVM was chosen

as the classifier, owing to its efficiency in runtime, and the

images were resized to 64 x 128 before computing the de-

scriptors. Cells were defined as 8 x 8 pixels and blocks as 2
x 2 cells with a stride factor of 1 cell in each direction. The

performance comparisons are brought out by the Detection

Error Trade-off (DET) curves i.e. Miss Rate vs. False Pos-

itives Per Window (FPPW) on a log-linear scale Since they

characterize Miss Rates, lower their values better is the per-

formance.

We conducted our experiments on three datasets: the

Inria Person Dataset [4], the Caltech Pedestrian Detection

Benchmark [8] and the Daimler Pedestrian Dataset [9]. As

FPPW metric is used, for evaluating on the Caltech dataset

[8], we extracted all pedestrians of heights ≥ 20 pixels from

the Caltech-USA test set (set06 - set10) and classified them.

We show the performance plots resulting from three dif-

ferent experiments: 1) images smoothed with kernels of dif-

fering radii to minimize the variations of the dataset and

study their impact on the performance of the descriptors.

2) training sets of differing sizes to analyse how well each

descriptor handles the variations of the dataset. 3) show-

ing how the proposed technique can be used in combination

with other descriptors having complementing information

to characterize an object better.
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(a) σ = 0 pixels on Inria (b) σ = 4 pixels on Inria

(c) σ = 0 pixels on Daimler (d) σ = 4 pixels on Daimler

Figure 4. Figure best viewed in colour. Performance on the Inria [4](row-1) and the Daimler [9](row-2) datasets for Gaussian smoothing

kernels of different radii.

4.1. Impact of Smoothing

Smoothing affects the gradients of the image non-

linearly, and two competing factors occur - one is the re-

duction of variations and the other is the reduction of gra-

dient magnitudes that are useful for detection. Both these

changes counter each other and can impact the performance

depending on which one gains dominance over the other. To

understand the effect, we convolved both the training and

the test images with Gaussian smoothing kernels of differ-

ing radii and studied the performance of various descriptors.

The plots in Figures 4 and 5 illustrate these.

Row-1 of Figure 4 shows the effect of smoothing on the

images of the Inria dataset[4]. As Inria images are focused,

centred, and have little variations, the gradients which are

well-defined when σ = 0 get affected, on smoothing, be-

yond the point of recovery, and so, lead to a loss of discrim-

inative information. Hence, we see a dip in the performance

of all the descriptors moving from σ = 0 to σ = 4. Row-2

of Figure 4 shows the behaviour of the descriptors on the

Daimler dataset [9]. The proposed HOG-variants yield per-

formance comparable with HOG when σ = 0 and improve

by ~12% when σ = 4 and FPPW ∈
[

10−5 , 10−4
]

. We

notice that the performances of all the descriptors go down

on moving from σ = 0 to σ = 4 pixels. The proposed de-

scriptors suffer by ~4% while the others suffer by more than

12%. The reason for the small dip in performance may be

due to the fact that Daimler images, though more challeng-

ing than Inria, still contain significant useful information at

the native scale which is lost in smoothing and is hard to

recover.
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(a) σ = 0 pixels (b) σ = 2 pixels

(c) σ = 4 pixels

Figure 5. Figure best viewed in colour. Performance on the CALTECH [8] dataset for Gaussian smoothing kernels of different radii.

Figure 5 shows the performances of the descriptors on

the Caltech dataset [8]. Smoothing results in an increase

in the performances of our techniques − the combined de-

scriptor improves its miss-rate from ~48% at σ = 0 to

~25% at σ = 2 at 10−5 FPPW − which are consistently

better than HOG [4] with a gain of ≥ 12% when FPPW

∈
[

10−5 , 10−4
]

. In the same FPPW range, when σ = 0,

the proposed combined technique gives a gain of ~25%.

The reason for the large gain despite no smoothing is due

to the many number of non-linear variations in the Caltech

dataset [8] which are better represented by the ranks that are

used to build the descriptor. Also when σ = 4, the gain of

the proposed descriptors over HOG is nullified. This may be

because the images have been overly smoothed, and so have

lost almost all of the valuable gradients without a possible

recovery and thus saturate the performances of the descrip-

tors.

4.2. Changing Training Set Size

The necessity of a large training set is to capture as many

generic variations of the object as possible, although, a ro-

bust descriptor should be able to sufficiently represent the

object in its generality even with a smaller number of sam-

ples. In order to study this property of the proposed tech-

nique, we measured the detection performances as a func-

tion of the sizes of the training set from the three datasets.

Changing the sizes of the training sets can be seen as a way

to increase the number of variations in the test set as well.

Subsets of sizes ranging from 10% - 90% were randomly

sampled from the training sets of the datasets, the classifiers

were trained on them and then tested on the corresponding

entire test sets.
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(a) Training set size = 30% (b) Training set size = 60%

(c) Training set size = 90% (d) Concatenation with the LBP descriptor

Figure 6. Figure best viewed in colour. Figures 6(a),6(b) and 6(c) portray the study of the impact of training set sizes on the detection

performance on the Caltech [8] dataset. Figure 6(d) shows the performance of the LBP variants on the Caltech dataset [8].

Figure 6(a), 6(b) and 6(c) show the detection perfor-

mances on the Caltech-USA test set when the classifiers

were trained on 3 subsets of the Caltech training set [8]. We

observe that the proposed techniques improve over HOG

[4] at all points on the FPPW axis for all the 3 subsets.

When FPPW ∈
[

10−5 , 10−4
]

the gain is nearly 20% for

the combined descriptor showing its ability to represent an

object(i.e. Pedestrian) better. Figure 7 shows the perfor-

mances of the descriptors on the entire Inria and Daimler

test sets, for 2 training subsets. Inria being a dataset with

not many variations, the performances are nearly the same,

as seen in Figures 7(a) and 7(b), though when FPPW ∈
[

10−5 , 10−4
]

, HOG and its proposed variants are better

than Felzenszwalb’s HOG and its variants. On the Daimler

dataset also, in Figures 7(c) and 7(d), the proposed variants

of HOG show improvements. Although not as large as in

Figures 6(a), 6(b) and 6(c) (due to the nature of Daimler

set [9]), the gains in the performances are ~5% for FPPW

∈
[

10−5 , 10−4
]

, showing the ability of the proposed de-

scriptors to represent an object when the training sets are

small in their sizes.

4.3. Concatenation with Other Descriptors

The use of information in addition to gradient histograms

can improve detection rates, refer [8]. The additional in-

formation is usually complementary to that provided by

the gradient histograms. We study one particular variant

- HOG-LBP [29] - to portray the feasibility of the proposed

technique as a concatenating component to other comple-

mentary information. Figure 6(d) shows the performance
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(a) Inria-30% (b) Inria-60%

(c) Daimler-30% (d) Daimler-60%

Figure 7. Figure best viewed in colour. (a) Study of the impact of training set sizes(30% & 60%) on the detection performance on the Inria

[4] (Fig.7(a) & 7(b)) and the Daimler [9] (Fig.7(c) & 7(d)) datasets.

of the proposed technique in conjunction with the LBP [15]

operator on the Caltech dataset [8]. When used with LBP

[15], the proposed techniques improve over themselves(viz.

the non-LBP versions), HOG, and HOG-LBP [29], espe-

cially when FPPW ∈
[

10−5 , 10−4
]

, showing their ability

to perform well when concatenated with other information.

5. Conclusions

We have proposed a technique that improves gradient

histogram-based features for pedestrian detection when the

dataset has a large number of variations. Smoothing the

images prior to gradient-computation helps in reducing

these variations. To recover the object gradients lost when

smoothing, a rank-based, non-linear technique is used. A

simple min-max technique is also used to curb spurious

gradients. Good gains in performance are seen both in the

CALTECH and the DAIMLER Pedestrian sets for different

smoothing amounts. It is also shown that concatenating the

proposed descriptors with others containing complementing

information works well in practice. It would be illustrative

to study the effect of the normalizations of the proposed

techniques on other variants of gradient histograms. Also,

it would be of interest to figure out an online procedure to

determine the optimal amount of blur as well as to see the

effect of this kind of normalization on flow features which

will be affected even more by variations in datasets.
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