
The Best of Both Worlds: Combining Data-independent and Data-driven

Approaches for Action Recognition

Zhenzhong Lan, Shoou-I Yu, Dezhong Yao, Ming Lin, Bhiksha Raj, Alexander Hauptmann

{lanzhzh, minglin, iyu, alex}@cs.cmu.edu, dyao@hust.edu.cn

Abstract

Motivated by the success of CNNs in object recogni-

tion on images, researchers are striving to develop CNN

equivalents for learning video features. However, learning

video features globally has proven to be quite a challenge

due to the difficulty of getting enough labels, processing

large-scale video data, and representing motion informa-

tion. Therefore, we propose to leverage effective techniques

from both data-driven and data-independent approaches to

improve action recognition system.

Our contribution is three-fold. First, we explicitly show

that local handcrafted features and CNNs share the same

convolution-pooling network structure. Second, we pro-

pose to use independent subspace analysis (ISA) to learn

descriptors for state-of-the-art handcrafted features. Third,

we enhance ISA with two new improvements, which make

our learned descriptors significantly outperform the hand-

crafted ones. Experimental results on standard action

recognition benchmarks show competitive performance.

1. Introduction

Despite a long history of prior work, action recognition

in videos, especially unconstrained videos with large visual

and motion variations, remains a challenging task. Recent

progress on this problem mainly relies on improvements of

features, which can be categorized into two broad classes:

1) more traditional hand-crafted local features [35, 32] and

their corresponding bag-of-feature (BoF) encoding methods

[24], and 2) learning based features that are mainly inspired

by the success of convolutional neural networks (CNNs) for

image recognition [15, 27, 14] and of recurrent neural net-

works (RNNs) for speech recognition [5, 6, 21]. In this pa-

per we combine the merits of both methodologies.

Trajectory based features, especially Improved Dense

Trajectories (IDT) [34], are state-of-the-art hand-crafted

features that have dominated action recognition in videos

over recent years. Compared with other hand-crafted mo-

tion features, IDT performs better in that it models long

term motion information and has a motion boundary de-

Figure 1: Illustration of our novel local video descriptors.

LOP and LOF describe gray pixel and optical flow vol-

umes, respectively. They resemble HOG/HOF/MBH in a

data-driven learning framework.

scriptor (MBH) which is robust to camera motion. This

long-term motion information modeling, as shown in [14,

27], is very hard to learn in a CNN framework. Despite

its superiority, IDT, somewhat surprisingly, relies on simple

hand-crafted local descriptors such as Histogram of Gradi-

ent (HOG) and Histogram of Optical Flow (HOF) [20] that

took years of effort to develop. In contrast, for image and

speech recognition [15, 21], data-driven approaches have

consistently demonstrated their superiority and have been

gradually replacing the traditional hand-crafted methods.

These revolutionary changes are largely enabled by the

availability of neural networks algorithms, large scale la-

belled data, and powerful parallel machines. Learning video

features for action recognition, however, has proven to be

quite a challenge due to its intrinsic high dimensionality, the

lack of training data, and the difficulty in processing large-

scale video data [14, 27, 21]. With limited training data
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and computational power, the learned features are gener-

ally not discriminative enough and perform worse than IDT,

especially among datasets that have few training instances.

Recent approaches [27, 21] circumvent these problems by

learning from sampled frames or very short video clips,

as well as using weakly labelled data. However, video-

level label information can be incomplete or even missing

at the frame/clip-level and leads to false label assignment,

which can be even worse for weakly labelled data [14]. In

other words, the imprecise frame/clip-level labels populated

from video labels are usually too noisy for learning power-

ful models. With better labelled data, neural network algo-

rithms can give superior results. Unfortunately, accurately

labelled video data is very expensive to obtain.

Though we see the value in developing fully automat-

ically learned global video features using labeled training

data, in this paper we propose to revisit the traditional local

feature pipeline and unsupervised feature learning methods,

connect both data-independent and data-driven approaches,

and combine their strengths. Inspired by the two-stream

ConvNet [27] and ConvISA [19], we introduce a two-

stream ISA-IDT to learn both visual appearance and motion

information in an unsupervised manner. As shown in Fig-

ure 1, instead of learning from frames or short video clips,

we learn from much smaller primitives – video volumes

that follow the trajectories detected by IDT. The learned

descriptors, called LOP (Learned descriptors of Pixel) and

LOF (Learned descriptors of optical Flow), aim to improve

the best performing hand-crafted descriptors within an un-

supervised data-driven learning framework. Our proposed

architecture has several attractive properties:

• Compared to full video learning, small video volumes

lie in a much lower dimensional space, hence they are

computationally efficient to learn and apply.

• Unsupervised learning avoids the costly work of col-

lecting labelled data and the false label assignment

problem among current supervised video learning set-

tings.

• Through learning from video volumes defined by IDT,

the resulting descriptors can be seamlessly combined

with hand-crafted descriptors and boost the overall

performance.

• By following the traditional local feature pipeline, we

can easily utilize techniques developed for traditional

local descriptors to improve our data-driven descrip-

tors.

Although the idea of unsupervised video feature learning

sounds appealing, it is, in fact, a very challenging problem.

It introduces several novel problems that have not been suf-

ficiently studied in the literature. The first one, of course,

is the challenge of achieving high accuracy. For our algo-

rithm to be useful, it needs to at least as good as IDT. This

is by no means easy. For example, in unsupervised image

feature learning, after years of research efforts, SIFT was

still the best ingredients in PASCAL VOC challenges 2012

([2]). The second challenge, which is unique to video fea-

ture learning, is how to learn to describe optical flow data

in an unsupervised way. Research in the past [18, 1, 27, 34]

show that the optical flow feature is an essential part of mo-

tion representation. To the best of our knowledge, we are

the first to deal with unsupervised optical flow feature learn-

ing.

Before revealing how we address the above mentioned

challenges, let us first show that our algorithm indeed out-

performs IDT. We conduct experiments on the benchmark

action datasets of HMDB51 and UCF101, as in [27]. Ta-

ble 1 compares the model training time and accuracy of

our method to IDT, as well as the two-stream CNN ([27]),

a state-of-the-art CNN approach. Note that for both IDT

and two-steam CNN, several improvements have been pro-

posed since they were first introduced in 2013 and 2014,

respectively; but we compare results from the original pa-

pers as most of the improvements can also be applied to our

method. Later in this paper, we will have more complete

comparisons to the state of the art. As can be seen in Ta-

ble 1, in terms of training time, our approach is much more

efficient than two-stream CNNs by several orders of magni-

tude. Two-stream CNNs need about 1 day to train a model

on 4 Titan-X GPUs while our method only needs about 2

hours on 1 CPU. IDT feature training only needs around 1

hour on 1 CPU because the only part that requires learn-

ing is the codebook training. With regard to accuracy, our

method outperforms two-stream CNNs on HMDB51 and

has similar results on UCF101 despite the fact that it was

trained on less data and does not need any labels to train the

feature extraction module. Our results are also significantly

better than the results of IDT.

In the remainder of this paper, we first provide more

background information about video features with an em-

phasis on recent attempts at learning with deep neural net-

works. We then describe the relationship between hand-

crafted features and CNN-based features in detail, followed

by the descriptions of our two-stream ISA-IDT algorithm.

After that, we conduct experiments and show more detailed

comparisons of our method to the state-of-the-art methods.

Further discussions including potential improvements are

provided at the end.

2. Related Work

Features and encoding methods are the major sources

of breakthroughs in conventional video representations.

Among them, trajectory based approaches [34, 12], espe-

cially the Dense Trajectory (DT) and IDT [32, 34], are
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Feature Training Time Need Label HMDB51 UCF101

Ours ∼2 hours / 1 CPU No 61.5% 88.3%

IDT ∼ 1 hour / 1 CPU No 57.2 % 85.9%

Two-stream CNNs ∼ 1 day / 4 GPUs Yes 59.4% 88.0%

Table 1: Performance comparison of our approach with IDT and two-stream CNNs.

the basis of current state-of-the-art hand-crafted algorithms.

These trajectory-based methods are designed to address the

flaws of image-extended video features. Their superior per-

formance validates the need for a unique representation of

motion features.

There have been many studies attempting to improve

IDT due to its popularity. Peng et al. [23] enhanced the

performance of IDT by increasing codebook sizes and fus-

ing multiple coding methods. Sapienza et al. [26] ex-

plored ways to sub-sample and generate vocabularies for

DT features. Hoai & Zisserman [7] achieved state-of-the-

art performance on several action recognition datasets by

using three techniques including data augmentation, model-

ing score distribution over video subsequences, and captur-

ing the relationship among action classes. Fernando et al.

[3] modeled the evolution of appearance in the video and

achieved state-of-the-art results on the Hollywood2 dataset.

[17] proposed to extract features from videos with multi-

ple playback speeds to achieve speed invariances. However,

none of them dealt with the fact that IDT relies on very sim-

ple, hand-crafted descriptors. In contrast, many data-driven

approaches have demonstrated their modeling power in im-

age recognition [15] and are graduallyquickly replacing tra-

ditional hand-crafted methods.

Motivated by this success of CNNs, researchers are

working intensely towards developing CNN equivalents for

learning video features. Several accomplishments have

been reported from using CNNs for action recognition in

videos [38, 37, 31]. Karpathy et al. [14] trained deep CNNs

through one million weakly labelled YouTube videos and

reported moderate success while using it as a feature extrac-

tor. Simonyan & Zisserman [27] demonstrated a result com-

petitive to IDT [34] through training deep CNNs using both

sampled frames and stacked optical flows. Wang et al. [36]

use the outputs of two-stream CNNs as features to replace

HOG and achieve state-of-the-art results on HMDB51 and

UCF101 datasets. All of the above relied on a large amount

of labels which are expensive to get and generally perform

worse than hand-crafted features among small datasets.

There have been a limited number of studies regarding

unsupervised methods for learning video features. Among

them the Independent Component Analysis (ICA) [8] was

the first approach to learn representations of videos in an

unsupervised way. Le et al. [19] addressed the issue us-

ing stacked ConvISA. Srivastava et al. [29] applied unsu-

pervised feature learning through long-short term memory.

Since these methods rely purely on pixel data, they strug-

gled to capture motion information and generally performed

no better than state-of-the-art hand-crafted methods. Also,

the network structures of these methods, because they are

designed for pixel data, cannot directly used in learning mo-

tion features.

There are also several attempts at connecting the tra-

ditional feature encoding pipeline to the neural network

frameworks. Vladyslav et al. [30] studied the structure

similarities between Fisher vectors and neural networks and

proposed to jointly optimize Fisher vectors and the clas-

sifier. Richard and Gall [25] converted the kMeans-based

BoW model into an equivalent recurrent neural network and

trained the BoW model and classifier together. Both above

approaches focus on the end-to-end training of CNNs and

again require labels and significantly increase the model

training time. Instead, we emphasize the convoltional-

pooling structure of CNNs rather than their training meth-

ods. Jarrett et al. [11] also pointed out the connection be-

tween handcrafted features and one stage CNNs. However,

they focus on image feature learning, which is inherently

different from video feature learning. They also did not ex-

plicitly explain what linear and non-linear operators these

handcrafted features have and how to map them into a CNN

framework.

This study overcomes many limitations from previous

works by designing and adapting unsupervised feature

learning methods to video and optical flow volumes de-

tected by IDT. Our new learning paradigm does not rely

on any label, hence can work well among small datasets.

It is better at capturing motion information due to our en-

hanced approaches to model optical flow information, and

can use feature enhancing techniques developed for hand-

crafted descriptors, as illustrated by MIFS.

3. Improved Dense Trajectory

IDT improves DT feature [32] through explicitly esti-

mating camera motions and removing trajectories generated

by them. It relies on histogram-based descriptors, which

are computed within space-time volumes aligned with a tra-

jectory to encode the appearance and motion information.

The size of the volume is s × s pixels and l frames long,

which corresponds to the input size of stacked ISA. To em-

bed structure information, the volume is subdivided into a

spatio-temporal grid of size sτ × sτ × lπ . The default size
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of volume and grid for IDT are s = 32, l = 15, sτ = 2 and

lπ = 3.

4. The Convolution-Pooling Architecture

In this section we first define the convolution-pooling

structure and then compare IDT with CNN-based video fea-

tures. We highlight their structural similarities by showing

that they are both features generated by deep convolution-

pooling cascade with two key elements: convolution and

pooling layers.

We define a convolution-pooling cascade as any single,

iterative or recursive implementation of the following se-

quence of operations:

c(x) = f(w ⊗ x)

p(x) = g(c(x))

where w⊗x is a three-dimensional convolution of a filter w

with the N×M×T video blocks x and f() is any non-linear

component-wise operation. w ⊗ x, and as a consequence

c(x) also have size N ×M × T . (In practice, convolution

may result in size shrinking). g() is a pooling function that

results in a shrinking of the argument and operates on any

N × M × T input to generate a J × K × L output p(x),
where J ≤ N , K ≤ M , and L ≤ M .

4.1. Handcrafted Video Features

A typical handcrafted video feature extraction procedure

is often composed of two stages of convolution and pool-

ing. The first stage purely relies on handcrafted filters and

generates descriptors from local data. The second one often

uses filters learned from unsupervised methods to encode

the descriptors generated from the first stage and pool them

together to get global features. For example, shown in Fig-

ure 2 is a schematic description of three HOG-based IDT

descriptors, each of which contains two stages of convolu-

tion and pooling (marked by dashed red and green boxes,

respectively) including a total of three convolution and two

pooling operations. Among them, Conv1 uses two gradient

filters as w and with:

f(x) = x.

Conv2 is an oriented soft binning, which can be approxi-

mated with w being the unit directional vectors and f being

non-linear activation functions such as rectified linear unit

([15]):

f(x) = max(x, 0).

Conv3 is KMeans-based BoW, which uses KMeans cen-

troids as w and a softmax function ([25]) as f :

fk(x) =
exp(xk)

∑

j exp(xj)
,

where k is the kth centroid. Pool1 is a local sum pooling:

gx,y,t(x) =
∑

j,l,m∈[1,d]

xxj,yl,tm,

where d is the pool size in space and time and x, y, t are

the space and time locations where g() applied. Pool2 is a

global sum pooling:

g(x) =
∑

x,y,t

xx,y,t.

Using above key operators, the IDT-HOG Net repre-

sents the procedure of generating a KMeans-based bag of

words (BoW) encoded HOG feature from stacked frames.

At the first stage, the stacked frames are convolved with

two gradient filters followed by 8 oriented binning filters

and one spatio-temporal sum pooling. During the second

stage, the descriptors from the first stage are convolved with

K binning filters learned using KMeans and pooled together

afterwards. The IDT-HOF Net and IDT-MBH Net repre-

sent the procedures of generating KMeans encoded HOF

and MBH features, respectively, from stacked optical flows.

IDT-MBH Net is similar to the IDT-HOG Net except tak-

ing optical flows as inputs instead of pixels. IDT-HOF Net

removes Conv1 and using 9 oriented binning filters instead

of 8. Note that although we use KMeans encoding as an ex-

ample, other encoding methods such as Fisher Vector and

VLAD have similar procedures ([30, 25]). For simplicity,

we leave out the feature detection step, which can be viewed

as another convolution with binary activation function. The

main strength of this pipeline is that it is computationally ef-

ficient because of the layer-wise training and does not need

labels to train the feature extraction module due to the ob-

jection of reconstructing the data itself. Its limitations lie in

the first stage of the structure (dashed red box) in which it

uses fixed parameters and structures for different sources of

data.

4.2. Comparison with CNN­based video features

Needless to say CNNs employ convolution-pooling ar-

chitecture. In CNNs, the non-linear activation is gener-

ally given by f(x) = tanh(x), f(x) = (1 + e−x)−1 or

f(x) = max(x, 0). The pooling functions are local average

or maximum pooling, for example,

gx,y,t(x) = max
j,l,m∈[1,d]

xxj,yl,tm,

where d is the pool size in space and time. The parameters

of the model are the filters w. These are learned by mini-

mizing a loss function, typically defined by

min
w

n
∑

i=1

||yi − h(w, xi)||2
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Figure 2: Schematic description of IDT as procedures of multiple convolution and pooling operations. Dashed red and green

boxes represent the procedure of generating handcrafted descriptors and KMeans-based BoW encoding, respectively. In each

operation, the first three numbers are the receptive field sizes in space and time (x, y, t) and the last number indicates the size

of output channels.

where h(w, ·) is the full convolution-pooling architecture

that takes x as inputs. As can be noted above, the loss func-

tion requires the labels y of the training data.

Comparing the above two procedures, it is clear that their

differences are not so much structural, but rather in how to

get the network parameters. With this understanding, we

try to answer the question of how to design a video feature

learning algorithm that balances efficiency and effective-

ness. At first, one might try performing end-to-end training

on the network structure in Figure 2. However, this train-

ing again requires labels and large computational resources.

In addition, results from [30] and [25] show that directly

applying end-to-end learning on the traditional handcrafted

pipelines would not bring large performance gains. So in-

stead we keep the stage-wise unsupervised training to avoid

the costly labeling and training. We address the limitations

of handcrafted features by proposing a two-stream ISA-IDT

to replace the handcrafted filters and enhance the proposed

algorithms with two well motivated improvements.

5. Two-stream ISA-IDT

In this section, we will describe two-stream ISA-IDT in

detail and its structures for both appearance (pixel) and mo-

tion (optical flow) stream learning ([27]).

As illustrated in Figure 3, an ISA ([9]) is a unsuper-

vised feature learning method that can be described as a

two-layered network within convolution-pooling architec-

ture with: f(x) = x2 and g(x) =
√
x. Specifically, let

matrix W ∈ R
m×n and matrix V ∈ R

d×m denote the pa-

rameters of the first and second layers of ISA respectively.

n is the dimension of the inputs and d is the dimension of

Figure 3: The neural network architecture of an ISA net-

work with PCA preprocessing. The dashed blue boxes rep-

resent the outputs of our model.

outputs. m is the number of latent variables between the

first layer and the second layer. Typically d ≤ m ≤ n. The

matrix W is learned from data with orthogonal constraint

WW⊤ = I . Therefore we call W the projection matrix.

The matrix V is given by the network structure to group the

output variables of the first layer. Vij = 1 if the j-th out-

put variable of the first layer is in the i-th group, otherwise

Vij = 0. Therefore we call V the grouping matrix. Given

an input pattern Xt ∈ R
n, the activation of i-th output unit

of the second layer is pi(X
t;W,V ) defined by

pi(X
t;W,V ) ,

√

√

√

√

m
∑

k=1

Vik(
n
∑

j=1

WkjX
t
j)

2 . (1)

ISA enforces the activation of the output unit to be sparse.

To achieve the sparse activation, it minimizes the following
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(a) Example PCA filters (b) 4a in frequency domain

(c) Example ISA filters (d) 4c in frequency domain

Figure 4: Example filters learned from our ISA-IDT model.

For all figures, y-axis represents same component at differ-

ent time step and x-axis represents different components.

In frequency visualization, zero-frequency component are

centered in the figure.

loss function defined on T training instances:

min
W

T
∑

t=1

d
∑

i=1

pi(X
t;W,V, ) (2)

s.t. WW⊤ = I .

We select ISA as our unsupervised learning method be-

cause it is one of the best unsupervised feature learning

method [9]. Also, our theoretic analysis (in the Appendix)

shows that ISA is connected to the popular group Lasso al-

gorithms.

Figure 4 visualizes, in both original and frequency do-

mains, some example filters learned from ISA and PCA

models. As illustrated in Figure 4b and 4d , the ISA model

learns more complex filters that capture higher-frequency

information while PCA capture lower-frequency informa-

tion. To have a more complete frequency coverage, we

combine the outputs of ISA with an equivalent number of

top outputs from PCA. As will be shown in the experimen-

tal section, our enhanced method, denoted by ISA+, signif-

icantly outperforms individual PCA or ISA model.

To reflect the different characteristics of different data

sources, we design different network structures for pixel

and optical flow data. Our learned descriptor for appearance

stream, dubbed LOP, is learned by directly applying a ISA+

model to a stack of video frames and implicitly learning

temporal pooling. Our learned descriptor of motion stream,

denoted as LOF, is trained by applying a ISA+ model to

each individual optical flow frame and explicitly perform-

ing a temporal pooling afterwards. This difference of the

network structures is from of our observation that pixel data

has high temporal correlation while optical flow data often

has much less temporal correlation due to the estimation

(a) Image patches (b) Optical flow patches

(c) Image filters learned from

single frame

(d) Flow filters learned from

single frame

(e) Image filters learned from 5

stacked frames

(f) Flow filters learned from 5

stacked frames

Figure 5: Example inputs and filters learned from our ISA

models. For each figure, the y-axis represents same compo-

nent at different time steps and the x-axis represents differ-

ent component expect on Figure 5c and 5d, we replicate the

filters 5 times for visualization purpose.

error. As a result, it is much easier to learn temporally con-

sistent appearance filters than temporally consistent motion

filters. As shown in Figure 5, in which we show some exam-

ple images and optical flow patches and the filters learned

in both structures. From Figure 5a and 5b, it is clear that

image patches are consistent across frames while optical

flow patches have large temporal variation. Quantitatively,

we estimate a 0.8014 pixels correlation while only 0.2808

for optical flow correlation by using the Pearson product-

moment correlation coefficients to measure their temporal

correlation from 100000 random sampled HMDB51 track-

ets. As a result, the learned appearance filters (Figure 5e)

are temporally consistent and the learned flow filters are

quite chaotic (Figure 5f). We suspect that a better optical

flow will have higher correlation, but we have not explored

this direction further because the Farneback optical flow we

used has shown to be the best optical flow for IDT [32]. To

discriminate the implicit temporal pooling of LOP from the

explicit temporal pooling for optical flow data, we call it

temporal projection.

6. Experiments

In the following section, we first show that our ISA+

model performs significantly better than either ISA or PCA.

We then empirically demonstrate that custom designed net-
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PCA ISA ISA+

HMDB51 58.1% 58.4% 61.5%

UCF101 85.9% 86.2% 88.3%

Table 2: Comparison of different unsupervised feature

learning methods.

work structures for pixel and optical flow data are necessary.

After that, we compare our methods to the state-of-the-art

video features in both descriptors and overall performance.

We conduct experiments on benchmark action recognition

datasets of HMDB51 and UCF101 datasets.

6.1. Datasets

The HMDB51 dataset ([16]) has 51 action classes and

6766 video clips extracted from digitized movies and

YouTube. [16] provides both original videos and stabilized

ones. We only use original videos in this paper. As in [16],

Mean accuracy (MAcc) is used for evaluation.

The UCF101 dataset ([28]) has 101 action classes span-

ning over 13320 YouTube videos clips. We use the standard

splits with training and testing videos provided by [28]. We

report MAcc as in the original papers.

6.2. Experimental settings

As in [34], IDT features are extracted using 15 frame

tracking, camera motion stabilization and RootSIFT nor-

malization and described by Trajectory, HOG, HOF, MBH,

LOP and LOF descriptors. Two-stream ISA-IDT models

are trained on 200000 IDT trackets for each stream of data.

For both PCA and ISA, we keep the filter size the same as

in the handcrafted descriptors and use a pooling size of 10

for ISA. Another PCA is used to reduce the dimensionality

of the resulting descriptors by a factor of two. For Fisher

Vector encoding, we map the raw descriptors into a Gaus-

sian Mixture Model with 256 Gaussians trained from a set

of 256000 randomly sampled data points. After encoding,

we attach the normalized space-time location information

to the encoded descriptors as suggested in [17]. Power and

ℓ2 normalization are also used before concatenating differ-

ent types of descriptors into a video based representation.

For classification, we use a linear SVM classifier with a

fixed C = 100 as recommended by [34] and the one-versus-

all approach is used for multi-class classification scenario.

Note that we still need label for training SVM classifiers.

What we try to avoid is the labels for training the feature

extraction procedure, which, because of its much larger pa-

rameter size, requires a much larger number of labels.

6.3. ISA+ is better than individual PCA or ISA mod­
els

Table 2 compares our ISA+ model with individual PCA

and ISA models. First, comparing PCA and ISA, we ob-

LOG LOF

Projection Pooling Projection Pooling

HMDB51 52.4% 44.3% 46.2% 59.5%

UCF101 80.0% 73.5% 79.6% 84.8%

Table 3: Comparison of temporal projection and temporal

pooling.

serve that, surprisingly, a simple PCA model can get simi-

lar results to a much more complex ISA model. These re-

sults demonstrate that PCA can learn good features when

the number of features to generate is small. By combin-

ing the PCA and ISA outputs, we get more than 3% im-

provement on HMDB51 and 2% on UCF101. It should be

noted that these improvements are on the combined results

of appearance and motion models where the potential for

improvement is smaller.

6.4. Temporal projection versus temporal pooling

In Table 3, we compare the results of temporal projec-

tion and temporal pooling. As evidenced by the results of

both datasets, for appearance modeling, temporal projec-

tion is better than temporal pooling, and for motion model-

ing, temporal pooling performs much better than temporal

projection. Furthermore, if we compare single frame im-

age filters (Figure 5c) to filters learned using 5 frame stacks

(Figure 5e) , we can see that adding temporal variation can

help to learn more complex filters. A potential improve-

ment, therefore, is to explicitly enforce temporal coherence

for optical flow filter learning and learn the temporal pool-

ing for optical flow data.

6.5. Performance comparison of individual descrip­
tors

In Table 4, we compare our learned descriptors LOG

and LOF to the video descriptors from IDT and spatial (S-

CNNs) and temporal (T-CNNs) CNNs 1 from [27]. On

the appearance descriptors, an impressive performance im-

provement of more than 10% over HOG, from 42.0% to

52.4% is achieved by LOG on HMDB51. For UCF101,

LOG also gets more than 7% improvement over HOG and

Spatial CNNs despite the fact that Spatial CNNs utilize ad-

ditional training data. The same trend can be observed on

motion descriptors. LOF outperforms other descriptors by

more than 4% on HMDB51 and more than 3% on UCF101.

Although it may not surprise that LOG outperforms HOG

since it has been shown that unsupervised learned appear-

ance descriptors can outperform handcrafted descriptors.

However, as far as we know, we are the first to show that un-

supervised motion descriptors (LOF) can outperform MBH,

1The first split results from [27], pretrained on Imagenet and trained

HMDB51 and UCF101 together (multi-task learning)
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Appearance Descriptors Motion Descriptors

HOG S-CNNs LOG(ConvISA) LOG HOF MBH T-CNNs LOF(ConvISA) LOF

HMDB51 42.0% N.A. 47.2 52.4% 49.8% 52.4% 55.4% 51.0 59.5%

UCF101 72.4% 72.8% 79.3 80.0% 74.6% 81.4% 81.2% 81.2 84.8%

Table 4: Comparison of our proposed descriptors to IDT and two-stream CNNs.

which is currently the best handcrafted motion descriptor.

On the other hand, if we simply adopt the ConvISA [19]

structures that we designed for learning from pixels, we get

worse results (indicated by LOF (ConvISA)) than MBH.

These results again show that unsupervised optical flow fea-

ture learning is quite difficult.

6.6. Comparing with the State­of­the­Art

In Table 5, we first show that ISA-IDT can incorporate

MIFS that were developed for IDT and get improved perfor-

mance from that. By using MIFS, we can improve the per-

formance of ISA-IDT on HMDB51 and UCF101 by about

3% and 1%, respectively. Second, we show that when com-

bine the learned descriptors (ISA-IDT) with handcrafted de-

scriptors (IDT) (Hybrid), we get further improvement on

both datasets by another 2% and 1%. We also compare our

performance with some state-of-the-art approaches. Note

that although we list several most recent approaches here

for comparison purposes, most of them are not directly com-

parable to our results due to the use of different features

and representations. For IDT-ISA, the most comparable

one is Wang & Schmid. [34], from which we build on our

approaches. For IDT-ISA + MIFS, the most comparable

one is Lan et al. [17], which developed and incorporated

MIFS for IDT. Peng et al. [23] improved the performance

of Improved Dense Trajectory by increasing the codebook

size and fusing multiple coding methods. Simonyan &

Zisserman [27] reported results that is competitive to IDT

method by training deep convolutional neural networks us-

ing both sampled frames and optical flows and get 57.9% in

HMDB51 and 87.6% in UCF101. Both Jiang et al. and Wu

et al. are improvements of two-stream CNNs [27]. Jain et

al. [10]’s result is the combination of 15000 image concepts

and the results of Peng et al. [24], which stacks two layers

of Fisher Vectors.

7. Conclusions

Contrary to the current trend of learning video features

using end-to-end deep CNNs, which is computationally de-

manding and label intensive, we propose in this paper to

revisit the traditional local feature pipeline and combine the

merits of both handcrafted and CNN approaches. As an ex-

ample, we present a video feature learning algorithm that

has better performance, lower computational expense than

current state-of-the-art methods and does not require labels.

HMDB51 UCF101

Oneata et al. [22] 54.8 Wang et al. [33] 85.9

Wang et al. [34] 57.2 Peng et al. [23] 87.9

Simonyan et al. [27] 57.9 Simonyan et al. [27] 87.6

Peng et al. [23] 61.1 Lan et al. [17] 89.1

Lan et al. [17] 65.1 Zha et al. [38] 89.6

Peng et al. [24] 66.8 Jiang et al. [13] 91.1

Jain et al. [10] 71.3 Wu et al. [37] 91.3

ISA-IDT 61.5 ISA-IDT 88.3

ISA-IDT + MIFS 64.8 ISA-IDT + MIFS 89.5

Hybrid 67.2 Hybrid 90.6

Table 5: Comparison of our results to the state-of-the-art.

We show that filters learned in an unsupervised fashion,

when incorporated in convolution-pooling structures that

are custom designed for pixel and optical flow data, can out-

perform supervised end-to-end networks. This result serves

as a reminder that the design choices in handcrafted fea-

tures may still have many useful properties which could be

potentially incorporated into future deep action recognition

networks. Future work would be explicitly enforcing tem-

poral consistency for optical flow feature learning and de-

veloping a deeper and better unsupervised learning method.

We would also like to explore end-to-end fine-tuning given

the unsupervised learned networks, which is less expensive

than training from scratch.
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9. Appendix

Another way to interpret ISA is from sparse coding

framework. Let G = [G1,G2, · · · ,Gd] denote the variable

group indexes defined by V , that is, j ∈ Gi if and only if

Vi,j = 1. |Gi| defines group size, which is generally the

same across groups.

As in group LASSO ([4]), for any vector a ∈ R
m, we

defined the group ℓ1-norm ‖a‖G,1 as

‖a‖G,1 ,

d
∑

i=1

√

∑

j∈Gi

a
2
j .

We can write pi(X
t;W,V ) as

pi(X
t;W,V ) = ‖WXt‖G,1 .

Denote αt = WXt, since WW⊤ = I , we have

Xt = W †
αt ,

where W † is the Moore–Penrose pseudo inverse of W . Eq.

(2) can be re-formulated as a sparse coding method that

min
W,αt

T
∑

t=1

‖αt‖G,1 (3)

s.t. (W †)⊤W † = I Xt = W †
αt

Based on Eq. (3), ISA is essentially searching a group-

sparse representation αt of the input signal Xt. The ma-

trix W † is the dictionaries of sparse coding. The orthogonal

constraint of W † makes the learned components maximally

independent.
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